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ABSTRACT
This paper develops a prototype system for evaluating upper limb
function that combines Internet of Things (IoT) and Augmented
Reality (AR) technology. IoT builds the network of patients, test en-
vironment and doctor’s surgery from which the system gathers and
exchanges data such as the speeds and locations of hand movement.
With the help of AR technology, the real-world test environment is
overlaid with the information (e.g. the instructions from doctors,
the progress of evaluation) gathered from the IoT. Compared to the
conventional system, the detailed information of hand movement
supports further assessments and the instructions generated in the
AR scene for patients relieve the burden of doctors. The control
experiments were conducted to explore the e�ects of the object size,
the existence of obstacles and the hand dominance on the upper
limb function using the developed system. The results veri�ed the
validity of the developed system.

CCS CONCEPTS
•Human-centered computing→Mixed / augmented reality;
Information visualization; • Hardware→ Wireless integrated net-
work sensors;
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1 INTRODUCTION
The primary function of the upper limb is to move the hand around
the body to interact with the surroundings as a manipulator. The
shoulder, elbow and wrist rotation movements are responsible for
positioning the hand at the desirable place while the hand is for
handling objects, such as grasping, manipulation and release [1].
Upper limb function evaluation is generally implemented during
rehabilitation among the patients who have upper limb impair-
ments or persons who use an upper limb prosthetic device. The
results can provide evidence for making rehabilitation plans and
further enable measuring the rehabilitation progress. The com-
monly used function tests used in upper limb rehabilitation, e.g.,
Box and Block Test (BBT) [10], Manual Function Test (MFT) [11],
Simple Test for Evaluating Hand Function (STEF) [6], Southampton
Hand Assessment Procedure (SHAP) [8], Wolf Motor Function Test
(WMFT) [13], examine integrated functions of the arm and hand.
The patients are usually instructed by a rehabilitation therapist to
grasp or pinch objects in di�erent sizes and shapes, carry them to
a designated place (usually with obstacles in the movement tra-
jectory) and �nally drop/insert the objects. The score is measured
through counting the number of transferred objects within a �xed
time or measuring elapsed time in moving speci�ed number of
objects.

During the whole evaluation process, the rehabilitation ther-
apists give instructions, �ll the examination sheet and calculate
scores, while the patients follow the instructions and complete
the task [6, 8, 10, 11, 13]. The test administration for therapists is
however time consuming and the repetitive motions may make
the patients feel tired and boring. In addition, the scorings in most
function tests are relatively simple by just measuring time or count-
ing the number of objects. Only little evidence on the condition
of upper limb function can be acquired. But the comprehensive
information contained in the grasping force, hand movements tra-
jectory, timing of muscle activation and some other factors that
in�uence the ability to manipulate activities are necessary both for
functional assessment and recovery evaluation in rehabilitation.
Especially they would support to make a more detailed and accurate
rehabilitation plan.

To improve the performance of the conventional function tests,
some studies try to employ wearable sensors or cameras to capture
the movements of upper limb. Chua et al. created a computer vision
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system to capture the motions of patients’ arms. The system could
detect the arm motions and measure the muscle strength [2]. Study
of [5] developed a digital BBT system. The system automatically
locates the blocks, counts the number of the moved blocks, and then
scores the results that can be sent to the doctors’ o�ce remotely. It
also provides additional information such as the hand movement,
speeds and locations for the clinicians to perform further outcome
assessments of the patients. The system is designed to be used by
the patient himself without the instructions of the doctors. The
system may work well in the case of BBT since the task of BBT is
easy to understand and operate. But in the case of a relative complex
function test, e.g., MFT, the developed system may not appropriate.
The MFT has 8 main tasks and each task includes 3-6 sub-tasks. It’s
not realistic to ask the patients to remember the details of every
task and their instructions in the functional evaluation.

Our objective is to develop an upper limb functional test sys-
tem that has multiple sources of data gathered from not only the
subjects, but also the test environment. Thus, the system owns
better understanding of subjects’ movements and enough knowl-
edge about the test environment. At the same time, the system
can provide an intuitive way to explain the data gathered and give
instructions based on its knowledge of the environment, so that the
system can interact with the subject. The combination of Internet
of Things (IoT) and Augmented Reality (AR) gives us the power to
achieve this goal. IoT builds the network of subjects, test environ-
ment and the doctor’s surgery, thereby enabling these Things to
connect and exchange data. AR technology enhanced the current
perception of reality where the real-world test environments are
augmented with the operation instructions and the visualized data.
The system is expected to improve the rehabilitation experience of
the patient and reduce the burden of doctors.

The paper is organized as follows: after giving detailed explana-
tions of conceptual framework of the proposed system (Section 2),
we present details of the developed system prototype (Section 3)
and describe the experiment and its results (Section 4). We then
draw some conclusions and outline the future work in Section 5.

2 CONCEPTUAL FRAMEWORK
The conceptual framework of the evaluation system for upper limb
function is shown in Fig. 1. The system connects the patient, test
environment and doctor’s surgery through network. They all con-
sidered as Things in the network. Information is gathered, used and
exchanged among the Things. With the help of AR technology, the
system creates an immersive test environment where the patient
can interact with it and observe the visualized the data acquired
from the Things. IoT is the data foundation of the system while AR
is a tool to present the data in an elegant easy-to-understand fash-
ion. The combination of IoT and AR improves the experiences for
both doctors and patients when compared with the conventional
evaluation system for upper limb function.

2.1 Information From Things
Information from the patient and test environment basically plays
two important roles: 1) To help the system attain comprehensive
knowledge that are necessary for function assessment and recovery

Database serverPatient

Start

Goal

Doctor’s surgery

Figure 1: System conceptual diagram

evaluation in rehabilitation; 2) To provide enough information for
interactions between the patient and test environment.

In the �rst case, the comprehensive knowledge that helps in
functional assessment and recovery evaluation generally includes
grasping force, timing of muscle activation, hand movement trajec-
tory and other factors related to the dexterity of manipulation ac-
tivities. They can be acquired by measuring the bioelectrical signals
and biomechanical signals of the patient’s upper limb. For exam-
ple, grasping force and timing of muscle activation are estimated
from the electrical activity of muscle tissue and they are detected
using electrodes attached to the skin (electromyography). The hand
movement trajectory is determined by the position and orientation
of the upper limb which are measured by the accelerometer and
gyroscope, respectively.

In the other case, the interactions between patients and test
environment are based on the full understanding of the system to
the test environment. They include but not limited to the automatic
scoring and the instructions given by the system. The scoring di�ers
in various evaluation system. For example, the BBT is scored by
counting the number of blocks carried over the partition from one
compartment to the other in 60 seconds [9], the STEF calculates
the scores according to the time to pick up a certain number of
objects from a storage space and move them into a target space.
Most of the scorings can be automatically calculated by knowing
the instant location of the object. The access to the position of the
objects can take advantage of the light dependent resistor (LDR)
sensor which detects the intensity of light or darkness. If the objects
are in their right place as instructed, the intensity of light sensed
by the LDR sensors set in the corresponding place would vary, thus
providing the evidence to determine the instant location of the
objects. To distinguish between objects in di�erent size and shapes,
we can mark each object with Radio Frequency Identi�cation (RFID)
tags. The tags contain electronically-stored information, which
allows the system to automatically identify and track objects. The
instructions play an important role in the evaluation system. It tells
the patient what to do next and warns on the wrong motion as
what a doctor does in the evaluation process. The system gives
instructions on the movement of the patient and the progress of the
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Figure 2: Information from Things

test. Such information could be acquired by the solutions mentioned
above.

The data from the sensors embedded in the Things are collected
and transmitted by gateway nodes and sent to a database server
via networking devices (See Fig. 2). There are several di�erent
connectivity options, such as Bluetooth and Wi-Fi [7]. The network
must be constructed with a proper architecture and communication
technology to meet the requirements [3]. AR scene is generated in
the server based on the data acquired and sent back to the display
device (e.g. head-mounted display). The doctor can also retrieve
the data from the database server to monitor the condition of the
patient.

2.2 AR Test Environment
AR technology create an immersive virtual space where the test
environment becomes interactive and digitally manipulable. Three
primary roles of AR in the evaluation system are listed as follows.

(1) Visualize data from IoT. Data from the patients, the objects
and the test environment is generally unreadable. It could be
visualized in a understandable way and projected to the real
world with AR technology. The AR scene depicted in Fig. 1
demonstrates an example of showing signals from patients
and objects. Visualizing data make it easy for patients to
track the scores and progress.

(2) Show instructions. The AR scene shows instructions like
"Start", "Faster" or "Remove the pegs once at a time and
return them to the container" [10]. These instructions guide
patients to �nish the test. Overlaying the instructions on the
real world is a way to do the upper limb function evaluation
without the supervising of doctors, thus reducing the doctors’
burden.

(3) Customize the test environment. Test environment can be
customized according to the requirements of the patient. If
the partition between the compartments of BBT aswell as the
slots on the board of the STEF are simulated by computer and
merged with the real world, the height of partitions or the
size of the slots can be easily altered through programming
to adjust the task di�culty.

Figure 3: Test environment

Top view Bottom view
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Figure 4: Test board and objects

The construction of AR test environment is a relative complex
problem, which needs to align sensed or measured information
exactly overlaying where they should be in space. The information
from Things should o�er enough information for constructing the
AR scene.

3 PROTOTYPE SYSTEM
We develop the prototype system according to the conceptual frame-
work. The test environment of the developed system is shown in
Fig. 3. Patients are seated at a table, facing a computer monitor that
displays the enhanced test environment. Two square boards are
put side by side on the table. The patient is instructed to move the
objects from one board to a speci�ed location in the other board as
soon as possible. It is scored by measuring the total time of perform-
ing 10 repetitive movements as instructed. Less consumed time on
the test indicates better upper limb dexterity.

3.1 Data Acquisition
The data from the patient, the test boards and the objects are the
foundation of the system and the network that connects these
Things makes the data �ow and exchange in the system. The devel-
oped system retrieves data from the embedded sensors of test board
and objects. The test board and the objects are shown in Fig. 4.
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Figure 5: AR scene

The test board can sense the objects in 16 locations which corre-
sponds to 16 small holes in the top view of the boards. The holes
are drilled for inserting LDR sensors to detect the light intensity.
The light intensity will decrease if the objects cover the holes, thus
providing the evidence for acquiring the location information of
the object. The locations of objects serve the system for o�ering
the time consumed in each movement or feedback that if the pa-
tient moves the objects as instructed. The data of sensors are read
by the client (Raspberry Pi) via a A/D converter (MCP3208-CI/P).
The communication between client with A/D converter uses Se-
rial Peripheral Interface bus (SPI) that only uses four pins on IC
packages.

The objects can sense their orientations and positions by means
of an add-on board for Raspberry Pi called Sense HAT. The Sense
Hat integrates gyroscope, accelerometer and magnetometer to-
gether, which enables the estimation of orientation and position [4].
The Sense HAT as well as the Raspberry Pi are �xed inside the ob-
jects. The data from Sense Hat can be easily accessed with a Python
library provided by the community of Raspberry Pi. It provides the
hand movement trajectory, speed and locations for the doctors to
perform further outcome assessments of the patients.

The system uses Raspberry Pi as clients to log data from the LDR
sensors, the Sense HAT and the webcam to the database server. The
clients and the database server are in the same local network and
connected through Wi-Fi. In the side of the client, we use Fluentd
as the data collector. Fluentd manages the data in JSON format and
uploads the JSON logs to the server . We also created a dashboard
using Elasticsearch in server to visualize and analyze the data from
Fluentd.

3.2 AR scene
The webcam captures the test environment and feeds the streams
in real time to the server via client, o�ering the current perception
of reality. With the logged data from sensors and the current per-
ception streams from webcam, the database server constructs the
AR scene using Processing, which is a �exible software sketchbook
for dealing with visual arts [12].

The monitor displays the constructed AR scene. An example
of a frame is given in Fig. 5. The upper part of the �gure shows
the information of 6 items on the progress of function evaluation,

including the current movement number, the next instruction, the
elapsed time of current movement, the total elapsed time, the aver-
age time consumed in past movements and the time consumed in
last movement. Each test board is segmented into 16 grids equally
in the AR test environment. The grids with purple and red denotes
the starting and the target, respectively. The dynamic yellow square
gives the cues on moving direction of target grid. A computer sim-
ulated partition is set between the board as obstacles. The height
of the partition can be set according to the requirements. It is used
for increasing the test di�culty. It is worth noting that a head-
mounted display could bring better experiences, but the system
uses a computer monitor with a webcam for simplicity.

4 EXPERIMENT
The experiments were conducted to verify if the developed proto-
type system functions well. Five students volunteered for this study.
All subjects were males. And their ages from 22 to 24. The subjects
were instructed to move the objects from one board to a speci�ed
location in the other board as soon as possible. Ten movements
are considered as one set of experiment and the instructions of the
movements are given one by one after the current movement is
�nished. Rest is not allowed between the movements. The average
time for each movement is recorded as the score of the subject. See
Fig. 3 for test environment.

We explored the e�ects of three variables on the dexterity of
upper limb to test the system. The �rst is the size of the object. Two
cubes in di�erent side length were prepared for the experiment.
One is 5 centimeters, the other is 10 centimeters. The weight of the
cubes are both about 200 grams with sensors inside. The second
is the existence of obstacles in the movement trajectory. A virtual
partition can be generated between the boards and used as obsta-
cles. The subjects are asked to carry the objects from one board to
the other with or without the partition. The third is the hand domi-
nance. The subjects use their dominant hands and non-dominant
hands separately to �nish the task. The control experiment involves
three variables and each variable has two patterns. Thus eight sets
of experiments are needed to investigate their relationship. The
experiential conditions are listed in Table 1. The average time of
movement in di�erent experiential conditions is shown in Table 2.
The data are organized and plotted in Fig. 6.

Table 1: Experimental conditions

Condition No. Partition Object size Hand dominance
1 With Small Dominant
2 With Small Non-dominant
3 With Large Dominant
4 With Large Non-dominant
5 Without Small Dominant
6 Without Small Non-dominant
7 Without Large Dominant
8 Without Large Non-dominant

Figure 6a shows the e�ects of obstacles on the upper limb func-
tion. The average time of movement without obstacles was 1.72
seconds while the average time of movement with obstacles was
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Table 2: Time of movement in di�erent conditions [sec]

Condition No. Subject A Subject B Subject C Subject D Subject E
1 1.544 ± 0.34 1.922 ± 0.53 1.485 ± 0.24 2.041 ± 0.40 1.787 ± 0.38
2 1.528 ± 0.26 1.800 ± 0.34 1.985 ± 0.66 1.669 ± 0.48 2.067 ± 1.95
3 1.769 ± 0.47 1.738 ± 0.30 1.816 ± 0.45 1.608 ± 0.19 1.584 ± 0.32
4 1.535 ± 0.19 1.806 ± 0.44 1.945 ± 0.70 1.485 ± 0.27 1.279 ± 0.20
5 2.685 ± 0.71 3.241 ± 0.58 3.898 ± 0.86 3.910 ± 0.91 1.233 ± 0.23
6 2.052 ± 0.28 3.722 ± 0.96 3.715 ± 0.74 3.935 ± 0.70 1.344 ± 0.36
7 2.494 ± 0.73 3.409 ± 0.51 3.183 ± 0.50 4.059 ± 0.86 1.798 ± 0.83
8 2.647 ± 0.52 3.346 ± 0.54 3.496 ± 0.32 3.618 ± 0.88 1.385 ± 0.19
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(b) E�ects of hand dominance
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(c) E�ects of object size

Figure 6: E�ects of three experimental variables on the upper limb function

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

1 2 3 4 5 6 7 8 9 10

Ti
m

e 
[s

ec
]

Repetitions

Figure 7: Time of movement in each repetition

2.96 seconds. If the computer simulated partition is set between the
test board, the subjects have to consider the height of the partition
when carrying the object going across it, thus the movement path
becomes longer. It is easy to understand that the di�erences in
movement time between two cases (with or without obstacles). In
addition, we also found that the obstacles make it easier for sub-
jects to move the objects to a wrong grid on the board. It can be
considered that the existence of the obstacles make the movement
more complex, which leads the possibilities of making mistakes.
The results prove that the obstacle generated by AR is e�ective.

Figure 6b shows the e�ects of hand dominance on the upper
limb function. The average time of movement using dominant hand
was 2.36 seconds while the average time of movement with non-
dominant hand was 2.31 seconds. Dominant hand in general has
better, faster, or more precise performance than the non-dominant
hand, but the result shows that only little di�erences between the
dominant hand and non-dominant hand are observed. It is because
that the e�ects of hand dominance on the upper limb function may
not be observed if the task is too easy, especially all the subjects
are healthy without any upper limb impairment. If the subjects
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have upper limb disorders or elderly people, the e�ects of hand
dominance may be observed.

Figure 6c shows the e�ects of object size on the upper limb
function. The average time of movement with small size object is
2.37 seconds while the average time of movement with large size
object is 2.30 seconds. We used two cubes with the side length of 5
centimeters and 10 centimeters in the experiment separately and
almost the same results were acquired. Since all the subjects are
healthy and young, the e�ects of the object size on upper limb
function may not be observed easily. It is worth noting that the
locations of objects are sensed by the LDR sensors embedded in
the test board. The area of the objects that covers the test board
a�ects the sensing results. The cube in large size has more chances
to cover the LDR sensor than the small size, so it may get higher
score than the small size. But this is not found in the results.

For each experimental conditions in Table 1, the subjects per-
formed 10 repetitions of movement. We calculate the average time
of performing eight object-moving tasks in each repetition and plot
the results in Fig. 7. This experiment was conducted to check the
stability of the developed system. The movement that takes the
shortest time is the second repetition which takes 2.07 seconds,
while the movement that takes the longest time is the �fth rep-
etition that takes 2.64 seconds. The di�erence between the two
repetitions is 0.6 second. Since each repetition carries the objects
to the di�erent place as instructed, the length of movement path
will be also di�erent. It seems reasonable that the movement time
di�ers among repetitions.

We used the developed system to test the e�ects of the obstacles,
hand dominance and object size on the dexterity of upper limb
as well as the stability of the system. We successfully gathered
the information from the test boards, objects and subjects. At the
same time, the information was presented using AR technology.
The experiments veri�ed that the system works well. However, the
subjects chosen in the experiments had no upper limb disorders, it
is hard to validate the medical e�ect of the system.

5 CONCLUSIONS
This study developed a prototype evaluation system for upper limb
function using IoT and AR technology. The developed system could
acquire abundant information from patients and test environment
with the help of IoT. The real-world test environment is overlaid
with the information from IoT using AR, such as the instructions
from doctors, the progress of evaluation, the current scores and so
on. The combination of IoT and AR makes the test environment

immersive and interactive. In addition, the detailed motion infor-
mation of the patients provided by the system supports a further
assessments. The developed system improves the rehabilitation
experience of the patient and reduces the burden of doctors. The
experiments veri�ed the validity of the developed system. In the fu-
ture, the experiments will be conducted not only among the healthy
people but also the patients with upper limb disorders to check
the e�ectiveness of the system in medical perspective. In addition,
the system will provide more detailed information about the upper
limb movement.
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