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ABSTRACT
Evolutionary algorithms are cost-effective for solving real-world
optimization problems, such as NP-hard and black-box problems.
Before an evolutionary algorithm can be put into real-world appli-
cations, it is desirable that the algorithm was tested on a number
of benchmark problems. On the other hand, performance measure
on benchmarks can reflect if the benchmark suite is representative.
In this paper, benchmarks are generated based on the performance
comparison among a set of established algorithms. For each algo-
rithm, its uniquely easy (or uniquely difficult) problem instances
can be generated by an evolutionary algorithm. The unique diffi-
culty nature of a problem instance to an algorithm is ensured by the
Kruskal-Wallis H -test, assisted by a hierarchical fitness assignment
method. Experimental results show that an algorithm performs the
best (worst) consistently on its uniquely easy (difficult) problem.
The testing results are repeatable. Some possible applications of
this work include: 1) to compose an alternative benchmark suite;
2) to give a novel method for accessing novel algorithms; and 3)
to generate a set of meaningful training and testing problems for
evolutionary algorithm selectors and portfolios.
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1 INTRODUCTION
Benchmark test problems are important for performance measure
of evolutionary algorithms (EAs). Usually, users can decide whether
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an EA should be applied, or which EA should be applied, to real-
world optimization problems based on the historical performance
in comprehensive benchmark testing studies. Strengths and weak-
nesses of EAs are empirically studied by testing on many problem
instances [16, 18, 19], since theoretical investigations are difficult if
not possible. A good benchmark suite is required to be representa-
tive of real-world problems, which is also a difficult task for testing.
Practically, benchmark suites are proposed to partially cover cer-
tain target portions of the entire real-world problem domain. For
example, [15] gives a set of multi-modal benchmark problems, to
mimic the intrinsic multi-modality in engineering optimization
problems.

Generally, there are four categories of benchmark problems that
are frequently used: 1) annually proposed competition benchmarks,
e.g. the black box optimization benchmarking (BBOB) [1]; 2) well-
known benchmark problems used in influential articles, e.g. [25];
3) tunable benchmark generators, e.g. the max-set of Gaussian
(MSG) generator [5]; and 4) real-world problems [3]. The first three
categories are simulation problems. Though successfully working
on real-world applications is the ultimate goal for EAs to achieve,
artificial simulation data play an important role in understanding
the real-world data, of which the ground truth is unknown [14].
The no free lunch (NFL) theorem [24] suggests that no algorithm is
better than any other when all possible black box type problems
are equally likely to occur. The NFL theorem also warns us about
the risk in generalization of EA performance, e.g. the risk that an
EA is efficient on human-designed benchmarks, but poor on real-
world problems. Since different problem categories are not mutually
exclusive, and one cannot investigate all problems, there is always
a chance to find a subset of problems on which one can declare an
algorithm performs significantly better than another.

Tunable generators are flexible and are able to cover a wide
range of problems, but parameter tuning is a problem that hin-
ders the wide use of tunable generators. Random parameters are
not encouraged, since the resulting problems lack diversity [7].
Generating benchmark instances using evolutionary computation
[2, 6, 10, 17, 22] allows one to obtain problem instances with re-
quired features.

A single EA is employed in [22] for generating combinational
benchmark problems that are more difficult than commonly used
test suites. The difficulty of a problem is measured by the single-
run search effort (i.e., the number of search operations) for the
algorithm to obtain a result with the user-defined precision.

Genetic programming is used to evolve discretized problem in-
stances in [10], where the performance of two EAs are compared.
Novel benchmark instances are generated by maximizing the per-
formance difference between the two EAs.
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Performance comparison among multiple (i.e., three or more)
algorithms is considered a multi-objective optimization problem
in [17], with each objective representing a pairwise comparison as
in [10]. In [10], results are averaged from five independent runs to
filter out randomness.

EA performance is stochastic, rather than deterministic. Previ-
ous benchmarking generation works scarcely consider algorithm
performance as a statistical problem, however.

The hierarchical-fitness-based evolving benchmark generator
(HFEBG) proposed in [12, 13] gives an approach to generate uniquely
easy (UE) benchmark suites for EAs. The difficulty of a problem
is defined by performance, and a UE problem with respect to an
EA is defined by performance comparison among the employed
EAs. Thus, for any algorithm Ai (i = 1, ... ,N ), a problem is UE to
Ai if and only if Ai outperforms any other algorithm Aj (j = 1, ...
,N , j , i) in solving this problem, and their performance difference
is statistically significant. Similarly, a uniquely difficult (UD) prob-
lem for Ai means that Ai performs significantly worse than any
other algorithm Aj (j = 1, ... ,N , j , i) in solving this problem.

A set of established algorithms are employed in HFEBG. For
each algorithm, a UE problem instance is generated by evolution.
The resulting instances consist of a novel benchmark test suite.
Each EA outperforms any other EA statistically significantly on its
UE problem. Therefore, a relatively unbiased benchmark suite is
composed. The statistical significance is guaranteed by the Mann-
WhitneyU -test [4].

In this paper, we propose an alternative way of statistical guar-
antee in HFEBG, by using the Kruskal-Wallis H -test [9] instead of
the Mann-WhitneyU -test. The H -test offers a non-parametric sta-
tistical test multiple-sample-wise, while theU -test is for pairwise
comparison. The performance comparisons of multiple EAs are con-
verted to the comparison of two EAs in [13], i.e., the target EA and
the other EAs. The other EAs compose a metaheuristic portfolio,
which represents the best performance of all the other EAs. If the
target EA outperforms the portfolio on a problem instance, then this
instance is considered a UE problem for the target EA. In this paper,
since the performance of multiple EAs is compared directly using
H -test, there is no need to compose a metaheuristic portfolio. The
proposed method is named as HFEBG-H (hierarchical-fitness-based
evolving benchmark generator with the Kruskal-Wallis H -test).
Also, in [13], even if each pair of algorithms pass theU -test, it does
not mean that the target EA is superior to the other algorithms as
a whole. This mathematical inaccuracy is corrected by employing
the Kruskal-Wallis H -test.

The rest of the paper is organized as follows: Section 2 reviews
HFEBG and describes the details of the proposed work. In Section
3, simulation results are presented. Section 4 concludes the paper.

2 THE BENCHMARK GENERATOR
2.1 General Framework
Without loss of generality, we consider optimization as minimiza-
tion in this paper, so we will use the two terms interchangeably if no
confusion would arise. We also use problem and problem instance
interchangeably, since in this work a (benchmark) problem for an
algorithm is also an instance in the tunable problem space.
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Figure 1: The flowchart of HFEBG generating a uniquely
easy/difficult problem for an EA within an EA set.

The general HFEBG framework of evolutionary problem instance
generator is shown in Fig. 1. The input includes: 1) A set of N
algorithms, SA = {A1,A2, ... ,AN } (a boldmeans a vector ormatrix);
2) a tunable benchmark instance generator (TBG); and 3) an EA for
evolving problem instances (EAPI).

The EAPI workspace is the main loop for generating problems.
In this work, we employ differential evolution (DE) [21] as EAPI.
The output of HFEBG is the required problem, i.e., a UE or UD
problem.

HFEBG-H follows the framework of HFEBG and uses the same
definition of UE/UD problems as defined in [12, 13]. However, the
proposed HFEBG-H uses a different fitness assignment method,
which is based on multiple comparison.

2.2 Hierarchical Fitness with H-test Results
Suppose algorithm Ai is the current target EA, meaning that the
HFEBG-H is generating a UE/UD problem forAi (re-denoted byAT ).
The other algorithms in SA are re-denoted by BA = SA−AT = {B1,
... ,BN−1}. BA can be considered as a set of algorithms to be beaten
by AT (for the UE-AT case), or to beat AT (for the UD-AT case).

The hierarchical fitness with three components is denoted by
f it = { f it .h1, f it .h2, f it .h3}, where f it .h1 has the highest priority,
and f it .h3 has the lowest. In the following, we use the process of
generating UE problems as an example to illustrate the assignment
method of the hierarchical fitness with the Kruskal-Wallis H -test.
Suppose a problem instance Ix is generated by the HFEBG-H. The
hierarchical fitness of Ix is assigned based on the multiple perfor-
mance comparison among algorithms. Each algorithm is given R
independent runs to solve Ix , and then the results are collected to
measure the relative difficulty of the problem instance Ix .

1) If the mean result obtained by AT is better than all algorithms
in BA (meaning that AT performs better than {B1, ... ,BN−1}, with-
out statistical guarantee), then f it .h1 is assigned to indicate how
much AT is better than {B1, ... ,BN−1}. The Kruskal-Wallis H -
test and the p-value correction of multiple comparison are used
to calculate the p-values: p1 = H (AT ,B1), p2 = H (AT ,B2), ... ,
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pN−1 = H (AT ,BN−1), where H (x ,y) represents the corrected p-
value between samples x and y within the context of multiple
comparison, and f it .h1 = max{p1,p2, ... ,pN−1}. Given a p-value
p (0 < p ≤ 1), if p ≤ α , the existence of significant difference
with a confidence level α is declared; otherwise, p > α , meaning
no significant difference. Therefore, by obtaining the maximum
p-value among p1,p2, ... ,pN−1, f it .h1 represents the minimum
performance difference between the target EA (AT ) and the best
performing EA inBA. In this case, the other two components (f it .h2
and f it .h3) are assigned a value of empty (Φ).

2) If the mean result obtained by AT is better than several
EAs in BA (e.g., AT performs better than {B1,B3} but worse than
{B2,B4,B5}), then f it .h2 is assigned the negative number of EAs
beaten by AT , while the other two components of f it are assigned
the value of empty (Φ). For example, AT performs better than two
algorithms {B1,B3}, then f it .h2 = −2.

3) If AT is worse than all algorithms in BA (meaning that AT
obtains worse mean result than the mean result of any algorithm in
{B1, ... ,BN−1}), then f it .h3 is assigned the residual value between
the result obtained by AT and the worst performing EA in BA.
Recall that the aim here is to generate a UE problem for AT , but
unfortunately AT performs the worst on solving Ix , thus f it .h3
represents how far AT falls behind other EAs in terms of mean
results. The other two components of f it are assigned the value of
empty (Φ).

Table 1 gives an example of hierarchical fitness values, where
f it1 represents the best solution (problem instance), while f it3 is
the worst. The hierarchical comparison is performed as follows: 1)
if two fitness values have different levels of non-empty components,
then the one with a higher level non-empty component is better;
and 2) if the two f it values have the same level of non-empty com-
ponents, then the one with a lower value wins, i.e., a minimization
problem within each component. For example, f it1 is the best, be-
cause it has the highest level non-empty component; f it4 is better
than f it2, because both have the same level non-empty component
(.h2), but f it4 has a lower value; f it3 is the worst since it has the
lowest level non-empty component.

Within the EAPI workspace shown in Fig. 1, newly generated
benchmark problems are assigned with hierarchical fitness, and
then compared in the selection step. Therefore, the required (UE/UD)
problem instances can be generated gradually by evolution.

Table 1: An example of hierarchical fitness values.

.h1 .h2 .h3
f it1 0.05 Φ Φ
f it2 Φ -2 Φ
f it3 Φ Φ 1.41
f it4 Φ −3 Φ

3 EXPERIMENTAL STUDIES
3.1 Experimental Settings
The max-set of Gaussian (MSG) generator [5] is employed as the
input TBG shown in Fig. 1. As in [12, 13], an MSG instance I is
defined by five parameters, i.e., problem dimension d ; number of

local optima n; standard deviation for each local optimum σ (n × 1
vector); squeeze rate on each dimension for each local optimumQ
(n × d matrix); and the ratio vector between each local optimum
and the global optimum r (n × 1 vector). Two parameters are set to
fixed values: d = d0 and n = n0, and thus I =MSG(d0,n0)(σ ,Q,r ).
Let x = {σ ,Q,r }. Then, a problem instance is denoted by

I = MSG(d0,n0)(x) (1)
DE [21] is employed as the EAPI, with parameters following the

suggestion in [20]. The mission of DE is to find an x∗, such that I∗
is the best solution (the best required problem instance), where

I∗ = HFEBG-HDE(MSG(d0,n0)(x∗) (2)
Then, the optimized parameters x∗ = {σ∗,Q∗,r∗} can be used

to re-construct the required problem instance.

Table 2: The settings of problem dimension d0 and number
of local optima n0 in the three experiments.

d0 n0

UE Exp#1 30 2
Exp#2 20 10

UD Exp#3 30 5

Three established algorithms with different evolving principles
are employed, namely artificial bee colony (ABC) [8], composite
differential evolution (CoDE) [23], and NBIPOP-aCMAES (CMA)
[11]. Three experiments are implemented to generate both UE and
UD problems for all three EAs, denoted by Exp#1 to Exp#3, as
shown in Table 2. The maximum number of evaluations for each
EA on a problem instance is set to d0 × n0 × 500. The number of
independent runs isR = 30. The search range of generated problems
is defined to be [−1, 1]d0 . The total number of generated instances
(i.e., the maximum evaluations of DE) is set to 103.

3.2 Experimental Results
A comparison between the U -test based measure of problem diffi-
culty and the single-run based measure is performed in [13]. Exper-
imental results reveal that the single-run based method may give
inconsistent performance measure, due to the lack of statistical
guarantee. It is common that an EA performs well on a problem
in a single run but performs badly on the same problem in an-
other single run. Statistical tests (e.g.,U -test,H -test) filter out noise
due to randomness on performance measure. An EA is applied to
solve the problem repeatedly several times, and then the algorithm
performance or problem difficulty is measured statistically. In the
following, we investigate HFEBG-H on generating both UE and UD
problems for each of the three algorithms employed.

3.2.1 Generating UE Problems. Table 3 shows the experimental
results of Exp#1. Three problems, namely UE-ABC, UE-CoDE and
UE-CMA, are generated byHFEBG-H. The f it .h1 column shows the
p-value of multiple comparison between the target EA and the best
performing EA of the other EAs. The data in the columns below the
algorithm names represent the mean results the algorithm obtained
in solving the problem. For example, for the problem UE-ABC, ABC
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obtains a mean result of 1.1768E-15 (averaged from 30 independent
runs), while CoDE obtains 7.2803E-8 and CMA obtains 8.7718E-2.
Apparently, ABC performs the best on this problem. In addition,
ABC is significantly better than both CoDE and CMA, and the
H -test p-value between ABC and CoDE is 1.2126E-6.

Suppose the confidence level is set as α = 0.01. Then, 1.2126E-
6 < 0.01 declares a significant difference, and thus the resulting
problem UE-ABC is statistically uniquely easy for ABC.

Table 3: The resulting UE instances when d0 = 30, n0 = 2
(results for Exp#1).

f it .h1 ABC CoDE CMA
UE-ABC 1.2126E-6 1.1768E-15 7.2803E-8 8.7718E-2
UE-CoDE 3.4436E-6 5.2564E-1 1.3698E-6 5.4456E-1
UE-CMA 5.2649E-5 5.6668E-5 2.7705E-7 2.1039E-15

Table 4: Rank of the results in Table 3 for easy comparison.

ABC CoDE CMA
UE-ABC 1 2 3
UE-CoDE 2 1 3
UE-CMA 3 2 1

Table 5: The resulting UE instances when d0 = 20, n0 = 10
(results for Exp#2).

f it .h1 ABC CoDE CMA
UE-ABC 2.4868E-5 1.4439E-1 2.6983E-1 2.9747E-1
UE-CoDE 7.5791E-5 4.6965E-2 4.3937E-3 1.0975E-1
UE-CMA 8.6999E-5 4.4043E-2 4.5498E-12 2.9365E-15

Note that the H -test p-value is calculated within the context of
multiple comparison of all the three EAs, rather than a neck-to-
neck comparison between two EAs. Table 4 gives the rank for easy
comparison. Note that the ranks of non-target EAs may change
when tested in another time, but the rank for the target EA is
consistent. For example, for problem UE-ABC, if {ABC, CoDE, CMA}
are employed to solve it again, ABC will consistently win the first
rank, while for CoDE and CMA, their performance has no statistical
guarantee, and thus either CoDE or CMA may rank the second.
Table 5 shows the results of Exp#2. It confirms that the UE problems
generated in Table 3 can be repeated when the parameters d0 and
n0 are changed.

3.2.2 Generating UD Problems. UD problems can be generated
similarly (Exp#3). Tables 6 and 7 show the resulting UD problems
for algorithms and the rank, respectively.

Remaining a minimization problem within each component, the
hierarchical fitness for generating UD problem is slightly differently
assigned. In this case, the searching objective is to find a problem
that only AT finds difficult, but all other algorithms find easy.

1) If the mean result obtained byAT is worse than all algorithms
in BA, then f it .h1 = max{p1,p2, ... ,pN−1}, where p1 = H (AT ,B1),

p2 = H (AT ,B2), ... , pN−1 = H (AT ,BN−1). f it .h1 represents the
minimum performance difference between AT and the worst per-
forming EA in BA, while f it .h2 and f it .h3 are assigned a value of
empty (Φ).

2) If the mean result obtained byAT is worse than several EAs in
BA, then f it .h2 is assigned the negative number of EAs that beat
AT . The other two components are assigned the value of empty
(Φ).

3) IfAT is better than all algorithms inBA, then f it .h3 is assigned
the residual value between the mean result obtained by AT and the
best performing EA in BA. Recall that the aim here is to generate a
UD problem for AT , but unfortunately AT performs the best, thus
f it .h3 represents how muchAT lead ahead of other EAs. The other
two components of f it are assigned the value of empty (Φ).

Except for the assignment of f it , the generation of UD prob-
lems is exactly the same as generation of UE ones, following the
framework shown in Fig. 1.

Table 6: The resulting UD instances when d0 = 30, n0 = 5
(results for Exp#3).

f it .h1 ABC CoDE CMA
UD-ABC 8.2873E-4 4.7370E-15 0 0
UD-CoDE 6.3517E-4 1.7919E-4 3.2505E-1 3.6188E-2
UD-CMA 1.6568E-4 5.2633E-4 8.7439E-7 1.3463E-1

Table 7: Rank of the results in Table 6.

ABC CoDE CMA
UD-ABC 3 1.5 1.5
UD-CoDE 1 3 2
UD-CMA 2 1 3

4 CONCLUSIONS
In this paper, a systematic method for constructing performance
comparison-based benchmark problems is proposed, namely the
hierarchical-fitness-based evolving benchmark generator with the
Kruskal-Wallis H -test (HFEBG-H). Performance of evolutionary
algorithms is compared in terms of unique difficulty (specifically,
uniquely easy (UE) and uniquely difficult (UD) problems). The UE
and UD problems (to one algorithm) are obtained using a (meta-)
evolutionary algorithm to maximize the performance difference
between the algorithm and the other algorithms; meanwhile, the
statistical guarantee is ensured by the Kruskal-Wallis H -test. A set
of algorithms are employed. For each algorithm, UE/UD problems
are evolved. A hierarchical fitness assignmentmethodwithH -test is
designed to measure the unique difficulty of each problem instance.
Experimental results verify that both UE and UD problems can be
generated by the proposedmethod. The source code of the proposed
work is available in [26].
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