
Exploration of the Effect of Uncertainty in Homogeneous and 
Heterogeneous Multi-agent Societies 

With Regard to their Average Characteristics 

ABSTRACT 
In electrical engineering, the deviation from average values of a 
signal is viewed as noise to the useful measurement. In human 
societies, however, the diversity of the exhibited characteristics 
are a sign of individuality and personal worth. We investigate the 
effect of uncertainty variables in the environment on multi-agent 
societies (MAS) and the consequences of the deviation, from the 
average features of the modeled agents. We show the performance 
of heterogeneous MAS of agents in comparison to 
morphologically identical homogeneous systems, preserving the 
same average physical and sensory abilities for the system as a 
whole, in a dynamic environment. We are employing a form of 
the predator-prey pursuit problem in attempt to measure the 
different performance of homogeneous MAS with average 
parameters and its heterogeneous counterpart. The effects of 
uncertainty in our work is investigated from the viewpoint of (i) 
employing a limited number of initial situations to evolve the 
team of predator agents, (ii) generality to unforeseen initial 
situations, and (iii) robustness to perception noise. Key statistics 
are the efficiency of evolution of the successful behavior of 
predator agents, effectiveness of their behavior and its degradation 
because of newly introduced situation or noise. Preliminary 
results indicate that a heterogeneous system can be at least as 
good as its homogeneous average equivalent, in solution quality at 
the expense of the runtime of evolution. 1 
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1 INTRODUCTION 
Due to the various constraints (e.g. consensus problem, inter-

agent credit- assignment problem, computationally heavy 
evolution due to the large search space, etc.) pertinent to the 
development of heterogeneous multi-agent systems (MAS) as a 
distributed problem-solving approach [1], the research on them is 
underrepresented compared to the alternative homogeneous 
implementations [2]. The main motivation of our current work is 
that, to the best of our knowledge, the comparative analysis of the 
effects of uncertainty and noise in the environment of 
heterogeneous and homogeneous multi-agent systems is not 
studied extensively enough. An additional motivation of our 
research is, consonant with the concept of the “end of average” 
that appreciates the difference from the (often – mediocre, and 
sometimes – even non-existing, statistically calculated) average in 
human societies [3], to investigate the importance (if any) of the 
diversity of individual capabilities of heterogeneous agents 
featuring the same average as the (identical) agents in analogous 
homogeneous systems.  

As a model of the typical human being, its performance and 
efficiency in society, the most common image is characterized by 
a simple value – the value of the average of abilities of its 
respective members [3]. The concept is borrowed from electrical 
engineering where the average usually manifests the useful signal 
while any fluctuations from it are a result of random noise. For 
human societies, however, the average (of a given ability of the 
members of society) is not necessarily seen as a useful signal, but 
rather as a synthetic, and often – meaningless, value, that is not 
actually exhibited by the vast majority of the members of society. 
Similarly, the fluctuations from the average value (of a given 
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ability) are far from noise, but rather – specific variations that 
characterize the identity and personality of these members and a 
trait that, in many cases, may contribute to solving challenging 
new, previously unknown problems. 

The objective of our research is to investigate the importance 
(if any) of the average for the efficiency of multi-agent systems as 
a model (yet, to very a limited extent) of human societies, in 
uncertain environments. In addition, we should investigate 
whether the diversity (even at the expense of reduced average) of 
abilities rather than their average plays an important role in 
building better-performing multi-agent systems. 

The main application areas of MAS are problem solving, 
simulation, collective robotics, software engineering and 
modeling of synthetic worlds [4]. For this purpose, we developed 
heterogeneous MAS that models some of the important aspect of 
human societies, such as cooperation, collaboration, 
communication, and division of labor. We are also implemented 
an evolutionary computing framework – e.g., genetic 
programming (GP), that could be used to evolve such a behavior 
of agents that results in best effectiveness (performance) of the 
multi-agent system as a whole. The use of genetically evolved 
solutions will make our work more realistic than commonly 
considered previous work [5] [6]. Further, we will evolve this 
multi-agent system for various combinations of the individual 
abilities of the agents (and for various results of the average of 
these abilities) and investigate the obtained optimal performance 
of the whole system. 

Within the considered context, we will be employing the 
predator-prey pursuit problem (PPPP) to investigate the effect of 
the average and diversity on the MAS in evolution of the behavior 
and performance in an unforeseen, randomly generated 
environment. 

The efficiency of the multi-agent systems will be measured 
using a few factors – the number of different test scenarios that 
leads to a positive outcome (capturing the prey), overall fitness of 
the solution, found through genetic programming, and speed of 
evolution (the time needed to find an optimal solution for the 
specified number of test cases). Additionally we will investigate 
the robustness of the evolved team of agents to newly presented, 
previously unknown initial situations. 

2 PROPOSED APPROACH 
In this section, we will describe, in detail, the implementation 

of the predator and prey agents in the proposed PPPP, as well as 
the implementation of the world. 

The implementation of the proposed PPPP features a team of 
superior in terms of perceptions, but inferior in terms of moving 
abilities agents - predators, attempting to capture a single prey.  

The simulated environment is a two-dimensional infinite 
toroidal world. We expect that the changes introduced into the 
heterogeneous system will encourage the agents to evolve a more 
complex behavior and more complex (yet implicit) interactions 
between the predator agents in order to solve the more difficult 
task. 

2.1 Predator Agents 
The team of predators consists of four agents with inferior 

moving abilities, compared to the prey. We do not consider the 
case in which the agents are superior in terms of speed, as 
capturing the prey in that condition seems to be trivial and a single 
agent will be able to accomplish it. In addition, if the prey agent is 
absolutely superior, it will be very hard or even impossible for our 
team of predators to capture it. Therefore, to give the chasing 
predators a chance to complete the given task, we equip them with 
vision sensors featuring a greater range than the prey. Unlike the 
prey agent, the behavior of the predators is not fixed, but evolved, 
which would allow an emergence of collective strategies of the 
team of predators as a result of evolution of their behavior. The 
agents can adjust their speed to 0, 0.25, 0.5, 0.75 and 1.0 of their 
maximum speed. We have chosen an arbitrary value of 450 for the 
average view range and 16 for the average speed. The 
homogeneous system will be serving as our control group and 
take on the average values, while the homogeneous system will be 
tested with different values for the range of the view sensor. The 
main features of the predator agents are shown in Table 1, for the 
homogeneous system, and in Table 2, for the heterogeneous one. 
The heterogeneous system features two groups of two, 
morphologically identical agents. Each of them will have a value 
of sensor range, such as to keep the average of all four agents of 
450 – equal to the range of sensors of predators in homogeneous 
MAS. 

 
Table 1: Features of predators in homogeneous MAS 

Feature Value 

Number of predator agents 4 

Diameter, mm  50 

Max speed of predator agents, mm/s 16 

Type of sensor Omnidirectional vision 

Range of visibility of the sensor, mm  450 

 
Table 2: Features of predators in heterogeneous MAS 

Feature Value 

Number of predator agents 4 

Diameter, mm  50 

Max speed of predator agents, mm/s 16 

Type of sensor Omnidirectional vision 

Range of visibility of the sensor of the 
two agents in Group 1, mm 

300-400 

Range of visibility of the sensor of the 
two agents in Group 2, mm 

500-600 

2.2 Prey 
The prey is a single agent with fixed behavior using a 

handcrafted escaping strategy [7] when a predator agent is visible 
and random wandering when there is not imminent threat. The 
maximum moving speed of the prey is higher than the maximum 
speed of the predators. The movement of the prey is continuous; it 
can turn left or right at any angle from its current direction. When 
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chased, the prey is able to run at full speed, until its adversary is 
no longer in perception range. Features of the prey agent can be 
seen in Table 3. 

 
Table 3: Features of prey 

Feature Value 

Number of prey agents 1 

Diameter, mm  40 

Max speed of predator agents, mm/s 24 

Type of sensor Omnidirectional vision 

Range of visibility of the sensor, mm  200 

2.3 The World 
The world is simulated as a two dimensional surface with size 

of 1600x1040 mm (scaled). The perception range, decision 
making and resulting new state (location, orientation and speed) 
of the agents are updated with sampling interval of 500ms. 

3 EVOLVING THE PREDATOR AGENTS 
We will be using a previously developed implementation of a 

strongly-typed GP framework [7] for homogeneous MAS. We 
intend to achieve heterogeneity in the behavior of agents by 
means of exploiting their morphological – rather than their 
genotypic – differences. The possibility to exploit such a 
polymorphism to obtain a behavioral heterogeneity of genetically 
identical (homogeneous) predators allows us to employ the same 
evolutionary framework to evolve the team of predators in both – 
homogeneous and heterogeneous systems. We view this as an 
important argument in favor of the fairness of the presented 
comparative analysis of both systems.  

3.1 Genetic Representation 
The controlling program of predators is a set of IF-THEN 

stimuli-response rules. They are represented as Document Object 
Model (DOM) parse tree structures, featuring, in addition, a plain-
text XML encoding [8]. The DOM/XML representation allows us 
to perform the genetic operations using the API of an off-the-
shelf, programming-language-neutral, XML DOM parser.  

3.2 Sets of Functions and Terminals of GP 
The set of functions and terminals of the adopted GP are 

identical to the ones used in our previous work [7]. They are 
shown in Tables 4 and 5, respectively.  

The execution of the following example (in pseudocode) of a 
behavioral stimuli-response IF-THEN rule would result in turning 
the predator 22 degrees to the right and setting its speed to 0.5 of 
maximum if its distance to the prey is shorter or equal to 316:  

 
if (Prey_d<=316) then begin 
   Turn(22); 
   Go_0.5; 
end; 
 

The breeding strategy is homogeneous in such a way that the 
performance of a single chromosome, cloned to all four agents is 
evaluated. The gene pool consists of 400 chromosomes. 

 
Table 4: Function set of GP 

Designation Meaning 
IF-THEN 
LE, GE, WI, EQ, NE, +, - 

stimuli-response IF-THEN rule  
≤, ≥, Within, =, ≠, +, - 

 
Table 5: Terminal set of GP 
Category Designation Explanation 

Sensory 
abilities 

Prey_d;   
Peer_d 
Prey_a;    
Peer_a 
PreyVisible; 
PeerVisible 

Distance to the prey and to the 
closest agent, mm. 
Bearing of the prey and of the 
closest agent, degrees 
True if prey (predator) agent  is 
“visible”,  false otherwise 

State 
variable 

Speed Speed of the agent, mm/s 

Ephemeral 
constants 

Integer  

Moving 
abilities 

Turn(α) 
 
Stop, 
Go_1.0 
Go_0.25, 
Go_0.5, 
Go_0.75 

Turns relatively to α degrees 
(α>0: clockwise) 
Sets speed to 0, or to maximum, 
respectively 
Sets speed to 25%, 50%, 75% of 
maximum 

3.2 Genetic Operations 
The adopted GP employs a binary tournament selection as we 

consider it both computationally efficient and simple to 
implement. We also adopted elitism in that the four of the best 
performing chromosomes of the current generation are copied 
unconditionally and are inserted in the mating pool of the next 
generation. A strongly-typed crossover operation is defined in a 
way that only the nodes of the same data type (i.e., featuring an 
identical DOM/XML tag) from both parents can be swapped. Sub-
tree mutation is also allowed, in a strongly typed way – a 
synthetically correct subtree can replace a random node in the 
genetic program.  

3.3 Fitness Evaluation 
In order to evolve a general enough solution to the problem, 

the behavior of the team of predators is evaluated on 10 initial 
situations. This allows us to avoid overfitting of the evolved 
agents to any particular situation, and to create a more robust 
system. The population includes 400 chromosomes (representing 
400 IF-THEN stimuli-response rules), initially generated 
randomly. Each of these chromosomes is cloned to all four 
predator agents and the behavior of the team of the agents, 
controlled by the given chromosome is evaluated based on the 
efficiency of capturing (if any) the prey in each of the 10 initial 
situations.  In each of these situations, the prey is located in the 
center of the world and oriented in a random direction. The 
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predator agents are randomly placed and randomly oriented on the 
field in such a way, as to have a diverse set of situations, to avoid 
overfitting for a certain way of their disposition. Because, 
initially, the agents are unable to solve all 10 initial situations, to 
improve the computational efficiency of GP, the first trial starts 
with 2 tested initial situations and the number of tested situations 
is increased by 2, every time the agents manage to solve n-1 
situations, where n is the number of currently tested situations. 

The overall fitness for the particular chromosome is calculated 
as an average of the fitness values scored in each of the test 
situations for that run. The fitness each of the situations is the sum 
of the average distance to the prey, average energy consumption 
and elapsed time for the trial. To avoid generation of very 
complex controllers, a parsimony pressure is applied to each 
chromosome, equal to 0.1xC, where C is the complexity of the 
chromosome estimated as the number of nodes in its parse-tree 
representation. 

Lower fitness values represent better performing team of 
predator agents. The termination criteria is the fitness value lower 
than 300 and 10 successfully resolved initial situations (for 
successful runs of GP), or stagnation of fitness for 10 consecutive 
generations or 50 total generations tested (for unsuccessful runs). 
The main features of GP are shown in Table 6.  

 
Table 6: Main features of GP 

Parameter Value 

Population 
size 

400 chromosomes 

Selection Binary tournament 

Selection ratio 10% 

Elite Best 4 chromosomes 

Crossover Both single- and two-point 

Mutation Single-point 

Mutation ratio 1% 

Fitness cases 10 initial situations 

Duration of 
the fitness 
trial 

600 cycles per initial situation(300 seconds with 
500ms sampling interval) 

Fitness value 

Sum of the average distance to the prey, average 
energy consumption and elapsed time for the trial. 
In addition, parsimony pressure is applied for 
large controllers. 

Termination 
criteria 

(Fitness value<300 AND 10 successful situations) 
or (# Generations>50) or (Stagnation of fitness for 
10 consecutive generations) 

4 EXPERIMENTAL RESULTS 
Our experiments involve 40 independent runs of GP for each 

one of the test cases of PPPP. Each test case involves different 
configuration of agents, and for heterogeneous system this implies 
a different combination of ranges of sensors of predators 
belonging to the two groups of agents. We considered a change of 
the range in intervals of 50 (e.g. 400-500, 350-550, 300-600) 
while keeping the value of the average of the ranges constant (i.e., 

450). In this section we will present the features of the behaviors 
of the team of predators, obtained from the evolution of an 
average homogeneous system, compared to the solutions of each 
of the heterogeneous configurations, evolved over 50 generations 
of GP. Additionally, we will review the generality of the evolved 
predator agents, as well as their robustness to a changing 
environment. We will discuss the problems that arise from the 
proposed approach to create a heterogeneous system based on 
disparity in morphology rather than changes in genotype of the 
predator agents and how they affect the general performance in a 
noisy or uncertain environment. 

4.1 Evolution of the Homogeneous System 
On average, the homogeneous system is able to solve all 10 

initial situations only in 3 out of 40 (i.e., 7.5%) of runs. The 
evolution shows consistent development of controllers of predator 
agents, with fitness level averaging around 447 and with worst 
solution having a fitness of 465. However, best solution of the 
series ends the trial with fitness of 235 and 10 successful initial 
situations in twenty-first generation, as illustrated in Figures 1 and 
3.  

 
Figure 1: Convergence of fitness of the homogeneous MAS 

 
The result of this experiment demonstrates that, while the best 

run is able to solve the problem with a reasonable effectiveness, 
the efficiency of evolution is rather poor, as the majority of the 
independent runs of GP could not reach the desired results. 
Moreover, as shown in Figure 2, even some of the runs could not 
resolve more than one initial situation.  

 

 
Figure 2: Dynamics of number of successfully solved initial 

situations by the homogeneous MAS.  
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We view this inconsistency as an indication that the 
homogeneous system – for the considered combinations of 
perception- and moving abilities of the entities – features a rather 
difficult, rugged fitness landscape, and the evolution often 
struggles to discover the areas of the optimal fitness in it. In 
particular, as the analysis of the evolved behaviors of the 
predators, the shorter range of sensors often hinders the formation 
of the behavior pattern (surrounding), required to capture the prey 
and this pattern is seldom discovered by the successfully evolved 
team of predators. 

4.2 Evolution of the Heterogeneous System 
In our quest to discover such a heterogeneous system that 

would result in a better efficiency of evolution compared to that of 
the homogeneous system, we conducted experiments with 
evolution of three different configurations of predator agents as 
shown in Table 7. Notice that the average of the range of visibility 
of sensors of the agents in these three configurations of the 
heterogeneous system is constant. Moreover, it is equal to the 
range of visibility of sensors of predators in the considered 
homogeneous MAS.  

 
Table 7: Three experimental configurations of the ranges of 

visibility of sensors of the agents in heterogeneous MAS 
Experimen

tal 
Configuration 

(Test 
Case) 

Range of visibility of sensors, mm 
Group 1 
(two 

agents) 

Group 2 
(two 

agents) 

Average 
of all four 

agents 

A 400 500 450 
B 350 550 450 
C 300 600 450 

 
The results are very diverse – some configurations show better 

evolution than the average (homogeneous) system, while others 
cannot compare at all. Some of the configurations manage to 
evolve better solutions than the average, with fitness values 
converging around 425 (compared to 447 for the average systems) 
and the solved initial situations converging around 5 (compared to 
4 in average MAS). Other configurations of the heterogeneous 
system show poor results in terms of successfully solved 
situations and fitness, as illustrated in Figures 3 and 4. These 
results demonstrate that the improvement of the overall 
performance of the heterogeneous MAS, in regard to the average 
value of a homogeneous MAS, vary depending on the difference 
between the average values of their perception abilities and the 
desired optimal values of the implementation of the agents (e.g. in 
general, based on financial, available resources or some other 
constraints). In the considered context, the most prominent results 
are exhibited by multi-agent systems with sensor variations 
between 10 and 20 percent of the range of visibility of the 
predators in the average (homogeneous) system. More significant 
disparities in perceptions of the heterogeneous predators seem to 
be detrimental both for the efficiency of evolution and 

effectiveness of the evolved behavior of agents in the considered 
instance of MAS. 

 
Figure 3: Convergence of the average fitness for different 

configurations of evolved MAS. On generation #50 the P-value is 
1,91x10-11<<0.05  

 

 
Figure 4: Dynamics of number of successfully solved initial 

situations. On generation #50 the P-value is 1,56x10-83<<0.05  
 

From all 4 test cases, the one of the heterogeneous MAS where 
the visibility range of predators is 350 and 550 (configuration B, 
shown in Table 7), respectively, demonstrates both (i) most 
consistent evolution and (ii) highest number of solved initial 
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predators of this heterogeneous configuration with the best 
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system. This inflation is caused by the fact that the agents are not 
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agents are the same and their position does not matter. Moreover, 
despite the increased search space, the results remain comparable 
- as shown in Table 8, the heterogeneous MAS is more successful 
in solving more than one initial situation even though the end 
results are the same – three out of four systems manage to evolve 
around 3 individuals that solve all 10 initial situations.  

 
Table 8: Average number of successfully solved initial situations.  

Successful 
Initial 

Situations 

Configuration of MAS 

Standard 
deviation 

σ 
Homo-
geneous 

Heterogeneous 

Range of 
visibility  

350 and 550 
(Test Case B) 

Range of 
visibility 400 and 

500 
(Test Case A) 

1 10 5 5 2.88 

2 11 7 7 2.30 

3 2 5 7 2.51 

4 3 2 1 1 

5 1 5 5 2.30 

6 1 4 2 1.52 

7 4 3 5 1 

8 1 2 2 0.57 

9 4 4 4 0 

10 3 3 2 0.57 
 
In addition, we would like to note that the best behavior of 

predators is evolved in the heterogeneous MAS with range of 
visibility of predators 400 and 500, respectively, which 
corresponds to about 10% disparity compared to the average value 
of 450, used by agents in homogeneous system. Figure 6 
illustrates the dynamics of the fitness value and the number of 
successfully solved initial situations. It is interesting that the 
evolution actually manages to solve all 10 situations at generation 
7. However, because the fitness value at that point does not meet 
the termination criterion of 300, the evolution proceed further 
until, at generation 15 both the fitness value (223) and the number 
of successful situations (10) satisfy these criteria.   

5.  HETEROGENEOUS MAS FEATURING AN 
UNEQUAL SIZE OF GROUPS OF 
PREDATORS 

From what we have observed so far, the heterogeneous MAS 
shows promising results in surpassing the capabilities of the 
average homogeneous system, though the increase in performance 
is not significant. Considering the small number of agents – just 
four – the advantage of using agents with greater sensor abilities 
may not be sufficient to compensate the drawbacks of having 
more myopic agents in the same team of predators. Indeed, the 
two superior agents would not be sufficient to capture the prey in 
PPPP, as at least three predators (i.e., a “critical mass”) would be 
needed to surround the prey from all sides of the world. In an 

attempt to investigate whether the issue of critical mass of 
predators is relevant to the considered case of PPPP, we introduce 
divide the predators into two groups with unequal number of 
members as follows:  one group of three agents with increased 
(above the average) sensory capabilities and one group of one 
inferior agent with lower than average range of visibility, and vice 
versa. Tables 9 and 10 show the two variants of such grouping. 
We will conduct additional experiments with these two variants of 
configurations of MAS, and will refer to them as unbalanced 
configuration #1 and #2 from now on. 

 

 
Figure 6: Evolution of the best behavior in heterogeneous MAS 
with range of visibility of predators 400 and 500, respectively 
 

Table 9: First variant of the configuration of heterogeneous agents 
featuring an unequal size of groups  

Group # 
Number 
of agents 

Range of visibility, 
mm 

Average range, 
mm 

1 3 400 
450 

2 1 600 
 

Table 10:  Second variant of the configuration of heterogeneous 
agents featuring an unequal size of groups 

Group # 
Number 
of agents 

Range of visibility, 
mm 

Average range, 
mm 

1 3 500 
450 

2 1 300 
 
The trend of solving more of the cases with 3 to 9 initial 

situations remain, even for the MAS, where 3 of the agents have 
lower than average sensory abilities, as 20% of the runs manage to 
solve 9 initial situations, compared to 17,5% in the average MAS. 
Table 11 shows the success rate of the newly tested configurations 
of MAS.  

We would like to note that in the unbalanced configuration #2, 
the number of successfully evolved individuals that solve 10 
initial situations, significantly increases, however, at the cost of 
worse fitness values. Most of the evolved solutions for the 
improved systems were able to solve 10 initial situations and 
complete the evolution with fitness greater (worse) than 300 – one 
of the termination criteria, after which they regress to being able 
to solve less of the initial situations. In addition, for unbalanced 
configuration #2, there was an individual that stand out from the 
other solutions, which completed its evolution with great results 
by having fitness of 159 and 10 successfully solved initial 
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situations, with small regression in the first few generations. 
Figure 7 shows the evolution of that individual. 

 
Table 11: Success rate (in %) for each initial situations count for 
the unbalanced configuration compared to average in percentage 

of total runs. 

Successful 
Initial 

Situations 

Configuration of MAS 

Homo-
Heterogeneous 

Heterogeneous 

Unbalanced 
Configuration #1 

Unbalanced 
Configuration #2 

1 100 100 100 

2 75 90 85 

3 47,5 67,5 60 

4 42,5 62,5 42,5 

5 35 50 35 

6 32,5 45 27,5 

7 30 32,5 25 

8 20 25 25 

9 17,5 12,5 20 

10 7,5 5 12,5 

 

 
Figure 7: Evolution of the best individual in unbalanced 

configuration #2. 
 

Even though unbalanced configuration #1 results in lower 
probability of success, manifested by the lower number of 
evolutionary runs that solve all 10 initial situations, it produces a 
notable individual on its own. One of the runs managed to satisfy 
the termination criteria, with fitness of 260 in only 16 generations, 
compared to 20 for the best homogeneous (average) system. The 
evolution of that run is shown in Figure 8. 

6. GENERALITY AND ROBUSTNESS 

6.1 Generality of Evolved Behavior of Predators 
We investigated the generality of the best evolved behaviors of 

predator agents in different configurations of MAS. The 
generality, in our experiments is estimated by the number of 
successfully resolved of 1,000 initial situations, containing the     
10 situations employed for the evolution of predators, plus 990 
newly introduced situations. The experimental results are shown 
in Table 12.  

 

 
Figure 8: Evolution of the sample individual in unbalanced 

configuration #1. 
 

Table 12: Generality of evolved behavior of predators to newly 
introduced 990 situations 

 
As a base for comparison, we used the number of situations, 

successfully solved by the homogeneous system (736 situations).  
Because for the same initial situation, the number of combinations 
of four heterogeneous agents divided into two groups of two 
identical agents is 4!/2!x2! = 6, theoretically the total number of 
possible initial situations in heterogeneous systems A and B is 6 
times (4 times for unbalanced situations #1 and #2) higher than 
that of homogeneous MAS. Consequently, in order to provide the 
heterogeneous agents with an equal opportunity to learn (how to 
capture the prey) as the agents in homogeneous systems, we 
should have evolved them on 6 times higher number of initial 
situations, i.e., 60 initial situations. 

Because we evolved all the systems under the same setup of 
the evolutionary framework, we, to some extent, expected the 
inferior   generality of the heterogeneous systems. Nevertheless, 
the heterogeneous systems A featuring a lower disparity of range 
of visibility of predators (400 mm and 500 mm, respectively) 
solves 90% of initial situations that are solved by homogeneous 
system. Also, it is interesting to note that the unbalanced system 
#1, with the critical mass of 3 myopic, below average (range of 
visibility 400 mm) heterogeneous agents is more general than that 
featuring three longsighted, above the average predators (range of 
visibility 500 mm). In our future work we are planning to 
investigate whether the (significantly slower) evolution on 
increased number of initial situations would result in more general 
heterogeneous teams of predator agents.  
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Configuration  
of MAS 

Range of 
Visibility of 

Predators 

# Successful 
Situations 

(out of 1000) 

Success 
rate 

Homogeneous 4 x 450 mm 736 
100%  
(base) 

Heterogeneous A 2x400 mm and 
2x500 mm 

660 90% 

Heterogeneous B 2x350 mm and 
2x550 mm 

533 72% 

Unbalanced #1 3x400 mm and 
1x600 mm 

549 75% 

Unbalanced #2 3x500 mm and 
1x300 mm 

461 63% 
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While introducing noise to the environment or hardware errors 
to the agents is the most obvious way to test for robustness of the 
evolved controller solutions, we will introduce a simpler way, first 

6.2 Robustness to Noise 
To investigate the robustness of the team of predators, evolved 

in noiseless environment, would degrade when subjected to 
perception noise, we introduced a uniform perception noise of up 
to 5% to both the distance (perceptions Prey_d and Peer_d, shown 
in Table 5) and bearing (Prey_a and Peer_a) of the perceived 
entities in MAS. Figure 9 illustrates the variations of the number 
of solved initial 1,000 (including 10 used for evolution, and 990 
newly added) situations for different levels of perception noise. 
For most of the considered configurations of MAS, the noise 
results in anomalous increase of the number of successfully 
solved situations. Because the actions of predators (e.g., “Turn 22 
degrees to the left”, “Go with 50% of max speed”, “Turn 10 
degrees to the right”, etc.) are a result of execution of alternating 
stimuli-response rules (corresponding to the instantly perceived, 
dynamic environment), and therefore, the behavior of agents – 
seen as a sequence of actions – is rather discrete (jerky) [7], a 
possible explanation of this anomaly is in the favorable effect of 
the noise-induced dithering (smoothing) on such a behavior. We 
are planning a more in-depth investigation of why and how 
dithering facilitates a better behavior of predators in unforeseen 
situations. Moreover, we intend to investigate the conditions (if 
any), at which the generality of the multi-agent systems could be 
improved by adding a certain amount of perception noise.  

 
Figure 9: Robustness to perception noise in 1000 initial situations. 
 

Due to the trend that number of successfully solved situations 
increases with noise, we decided to make one additional test of the 
two best chromosomes – homogeneous and heterogeneous A. We 
have tested with 25% noise. The results show that the 
homogeneous system suffered a regression to only 596 solved 
situations, while the heterogeneous system managed to solve 843 
out of 1000. It shows 14% increase compared to the base of 736. 

7. CONCLUSION 
In our work we analyzed the performance of homo- and 

heterogeneous multi-agent systems modeling the predator-prey 

pursuit problem. All considered systems featured identical 
average values of the respective perception abilities of predator 
agents. The experimental results indicate that both (i) the speed of 
evolution of the successful capturing behavior of predator agents, 
and (ii) the effectiveness (i.e., its fitness value) of the best-evolved 
behavior, the heterogeneous MAS are improved, using different 
methods and techniques, in such a way that it performs better than 
its homogeneous counterpart. We have demonstrated that the 
heterogeneous system featuring a deviation of the perception 
abilities of predator agents of about 10% from the average, could 
be evolved faster and could result in a better performing team of 
agents. We also showed that by implementing a team of agent that 
is big enough to potentially solve the problem alone (i.e., critical 
mass), the evolution of even better performing team of agents 
could be achieved even faster. The homogeneous system, 
however, is more general, in that it is able to successfully resolve 
the higher number of unforeseen initial situation. The robustness 
to introduced noise, however, depends on the level of the noise. 
With high levels of noise, the heterogeneous system shows results 
that are more consistent and more efficient.  One of the reasons 
for the inferior robustness of heterogeneous systems to uncertainty 
is that the space of possible combinations of initial situations is 
significantly larger than that of the homogeneous system. 
Evolving both types of systems on the same number of initial 
situations might result in under-representation of the training 
cases for the heterogeneous system. However, increasing the 
number of initial situations used for the evolution of the latter 
would inevitably result in increase of the computational overhead 
of simulated evolution. In our future work we are planning to 
investigate the trade-off (if any) between the computational 
overhead of evolution and the robustness to uncertainty of 
heterogeneous systems. An eventual success in this direction 
would allow us to verify our hypothesis that – similarly to the 
human societies – the disparities in individual capabilities of 
agents are more important for the success of the team of agents 
than maintaining identical, “average” agents. 
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