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ABSTRACT

With the rise of networked multi-core machines, we have
seen an increased emphasis on parallel and distributed pro-
gramming. In this paper we describe an implementation of
Factored Evolutionary Algorithms (FEA) and Distributed
Factored Evolutionary Algorithms (DFEA) using the Actor
model. FEA and DFEA are multi-population algorithms,
which make them good candidates for distributed imple-
mentation. The Actor model is a robust architecture for
implementing distributed, reactive programs. After walking
through the translation of the serial pseudocode into an Actor
implementation, we run validation experiments against an
FEA baseline. The evidence supports the claim that the Actor
versions preserve the semantics and operational performance
of the FEA baseline. We also discuss some of the nuances
of translating serial pseudocode into an actual distributed
implementation.
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1 INTRODUCTION

Evolutionary algorithms of all stripes can be computation-
ally intensive and expensive. This computational cost can
come from either the actual evolutionary algorithm or fit-
ness/objective function evaluations. However, because these
operations are all CPU-bound, they are not likely to get
much help from mere concurrency. And with the apparent
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demise of Moore’s Law, we find ourselves in the same po-
sition as everyone else in software engineering: how do we
take advantage of more cores (either on a single machine or
across multiple machines). One solution to this problem is
distributed parallelism, but there is more than one way to
implement distributed parallelism.

There is also the question of which evolutionary algorithm
to implement. If we try to implement, say, particle swarm
optimization (PSO) in a distributed parallel fashion, do we
assign a single particle to each core? This seems impractical if
solving the problem requires 100 particles and thus 100 cores.
If we only have 10 cores, we could batch our work and parcel
it out to all the cores, but this adds incidental complexity
we would like to avoid. One alternative would be to use a
multi-population evolutionary algorithm as such algorithms
would have the “batches” designed into them at the start.

In this paper we describe an Actor model implementation
of Factored Evolutionary Algorithms (FEA) and Distributed
Factored Evolutionary Algorithms (DFEA). We start by de-
scribing the Actor model in Section 2. We then describe
FEA and DFEA and the translation of the their serial ver-
sions into the Actor model (Section 3). We then subject our
implementations to a validation test against 19 benchmark
optimization functions, the results of which are presented in
Section 4. In the final section, we describe key insights based
on our implementation process and thoughts for future work.

2 ACTOR MODEL

The Actor model was originally proposed by Hewitt et al. as a
modular computational architecture for artificial intelligence
[10]. The architecture was developed further by Agha into a
metalinguistic model of the potentially concurrent execution
of processes [1]. Later, Ericsson built the the Actor model
into the OTP (originally “Open Telecom Platform”), part of
the runtime of the Erlang programming language. Leveraging
Erland and the OTP, the AXD301 project was able to achieve
“nine nine’s” (i.e., 99.9999999%) reliability [2]. As a metalin-
guistic construct, there are Actor libraries available for many
programming languages such as Akka [3] (for JVM languages
such as Java and Scala) and Thespian [16] for Python. In the
following, we will focus mostly on the Akka/Thespian-style
implementations of the Actor model.

Although implementations vary [5], the key properties of
an actor are:

(1) they may only communicate via asynchronous mes-
sages;
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(2) messages may be received at anytime and are queued
in an inbox; and

(3) upon reading a message, the actor may perform a
computation.

These properties have interesting implications. First, there is
no way to access the state of an actor without sending it an
asychronous message. This differs from the Object model as
we have generally come to know it, where “messages” are now
synchronous method calls. It has been reported apocryphally
that Alan Kay—who coined “object oriented”— stated the
Actor model is the closest to what he originally meant by
the term. While the statement cannot be verified, Kay has
repeated that message passing was the key idea of object
oriented programming, and not inheritance or types [13]:

OOP to me means only messaging, local retention
and protection and hiding of state-process, and
extreme late-binding of all things.

which, although not an explicit endorsement of the Actor
model, is a fairly good description of it.

Second, although actors are not operating system or green
threads, they do represent a mechanism of concurrent pro-
gramming. The actual details are handled by the Actor Sys-
tem, which is responsible for spawning actors, maintaining
their addresses, monitoring inboxes and delivering messages,
restarting failed actors, and making sure every actor gets
a chance to execute. The last point is handled by a thread
pooling mechanism and load balancing. The default imple-
mentation is something like a “round robin” approach where
every actor has a chance to act on a single message in its
inbox. We must note, however, that an Actor implementation
can still experience deadlock if messages and state transitions
are not properly designed.

Third, an actor can be run anywhere. An actor has local
state and an interface defined by the messages it understands.
When an actor sends a message to another actor, it sends it
to the actor’s address maintained by the Actor System. The
receiving actor may be on the same core, a different core, or
even a different machine.

In object oriented languages like Java and Python, actors
are generally implemented as a subclass of some Actor base
class. The instance fields of the Actor become its state and
the subclass overrides something like a receive method with
formal parameters messaдe and sender . When it is the actor’s
turn to execute, the Actor System will call the actor’s receive
method if there is a message on in the actor’s inbox. The actor
may also implement instance methods for code organization
but clients may only interact with an actor instance via
messages through the actor’s address. Algorithm 1 shows a
simple example of such a receive method.

Actor A accepts two messages: IncrementCount and Retrieve−
Count . If an instance of Actor A receives an IncrementCount
message (Line 1), the count is incremented by the value indi-
cated (Line 2). If, instead, the instance of Actor A receives a
RetrieveCount message (Line 3), a new message CurrentCount
is sent back to the sender containing the current count, count

Algorithm 1 Actor A - receive

Input: message messaдe, sender sender
Output: None

1: if messaдe instanceOf IncrementCount then
2: count ← count +messaдe .increment
3: else if messaдe instanceOf RetrieveCount then
4: tell(sender ,CurrentCount(count))
5: end if

(Line 4). This is a common pattern for implementing an Ac-
tor’s receive method and in many respects acts like a finite
state machine. For example, an actor may receive a message
and update its state, and then optionally send a message.

Most actors are instantiated by other actors and thus all
messages between them are asynchronous. However, at the
serial boundary, we require an ability to “inject” messages to
get this mostly reactive system rolling and facilities for this
are usually provided by the Actor System.

3 IMPLEMENTATION

In this section, we discuss the translation of FEA and DFEA
from a serial version to an Actor model version. We will start
with FEA and give an overview of the main components of
the algorithm. Following that discussion, we will explain a
corresponding Actor model implementation. We will then do
the same thing for DFEA.

3.1 FEA and Actor FEA

Factored Evolutionary Algorithms [17] are a family of algo-
rithms shown to be effective for many optimization problems,
including weights of neural networks [9, 15] and abductive
inference in Bayesian networks [7, 8]. FEA decomposes the
variables of an optimization problem into possibly overlap-
ping subsets, called “factors,” to each of which an evolution-
ary algorithm is assigned. Through a process of updating,
competing, and sharing, the partial solutions discovered in
the subpopulations are combined into a full solution that
is then shared with the subpopulations. Any evolutionary
algorithm can be used as an optimizer in FEA, including
algorithms such as Particle Swarm Optimization (PSO) [14]
or Genetic Algorithms (GA) [11]. Research into FEA has
demonstrated that they perform better than their single pop-
ulation counterparts; although, factor architecture—problem
decomposition—has been shown to affect performance [17].

The serial implementation of FEA is described in Algo-
rithms 2–4. The main algorithm is composed of three steps:
Update, Compete and Share. During the Update Step (Algo-
rithm 2, Lines 6–10), each individual factor (S) updates until
the stopping criteria are met. In general, stopping criteria
could be quite sophisticated. For example, we might want to
stop if five iterations have passed or the average fitness of
the population has stopped changing by some ϵ. In all the
validation experiments, we have chosen to stop after a fixed
number of iterations.
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Algorithm 2 Factored Evolutionary Algorithms

Input: Function f , Evolutionary Algorithm ea
Output: Context c as candidate solution x

1: X ← f actorize(X)
2: S← ea.initialize(f ,X)
3: c← initialize-context(S)
4: O← identify-optimizers(X)
5: repeat
6: repeat
7: for S in S do
8: S ← ea.update(S)
9: end for

10: until stopping criteria
11: c← compete(f , S,O, c)
12: share(f , S, ea, c)
13: until stopping criteria
14: return c

Algorithm 3 FEA Compete

Input: Objective function f , Subpopulations S, Optimizers
O, Global context c
Output: Global context c

1: for j = 1 to d do
2: f itness ← f (c)
3: value ← c[j]
4: for i in Oj do
5: candidate ← S[i].best
6: c[i] ← candidate .x[i]
7: if f (c) ≤ f itness then
8: value ← candidate .x[i]
9: f itness ← f (c)

10: end if
11: end for
12: c[i] ← value
13: end for
14: return c

After the Update Step is done, the Compete Step resolves
differences between the existing context, c or candidate solu-
tion, and the newly discovered constituents in each subpop-
ulation, S. The Compete Step is described in Algorithm 3.
The goal of the Compete Step is to pick the best value for
each X j , whether it might be the current value, cj, or one of
the values, x j , in one of the optimizers, O ∈ O, of X j . This
is accomplished by an outer loop that iterates through the
variables (Lines 1–13) and an inner loop that iterates over
the optimizers of X j (Lines 4–11).

After the context has been updated, the Share Step (Al-
gorithm 4) begins. The Share Step is a bookkeeping step
where the newly updated context is applied to each swarm.
Each subpopulation only optimizes the variables of its factor,
X , which is a subset of the full set of variables being opti-
mized, X. In order to evaluate X , the subpopulation needs to
know the values of c that are not for X . Their variables are

Algorithm 4 FEA Share

Input: Objective function f , Subpopulations S, Evolutionary
Algorithm ea, Context c
Output: Subpopulations S

1: for S in S do
2: r← c \ S .X
3: fr ← partial(f , r)
4: p ← ae .worse(S)
5: p.x← c \ r
6: S . f ← fr
7: ae .reevaluate(S)
8: end for

called the residuals. Additionally, we apply a form of elitism
by replacing the worst individual in the subpopulation by
the appropriate values of X from c. Finally, individuals in
the subpopulation must be re-evaluated based on the new
residuals.

We now turn to the Actor model implementation of FEA.
A common pattern in Actor model implementations is a
manager/workers pattern where a job is divided into units
of work, and each unit is given to a worker to complete.
The results are then aggregated back together and returned
to the original client. We can use a similar pattern for the
Actor implementation of the FEA. The main challenge here
is that the “disperse and collect” cycle is repeated until some
stopping criterion is met. We will break the algorithm into
two actors: the FEA Actor (Algorithm 5, and the FEA Factor
Actor (Algorithm 6).

The FEA actor responds to two messages: InitFEA (Line 1)
and NewValue (Line 14). Additionally, it will send InitFactor
(Line 10), Update (Lines 12 and 21), NewSolution (Line 20),
and CandidateSolution (Line 23) messages. Whereas an object
oriented solution might have a synchronous method call solve
as an interface, the FEA actor’s interface is the asynchronous
messages InitFEA and CandidateSolution.

Upon receipt of the InitFEA message, the FEA actor
proceeds almost identically to the first part of Algorithm 2.
The main difference is in Lines 2–3 and Lines 8–13. In Line
2 we save the client who sent the FEA actor the InitFEA
message so that we can respond later. We also save the
problem record, which encapsulates information both about
the problem and parameters for the algorithm. In Lines 8–13
we create the workers, FEA Factor actors, sending them both
an InitFactor message and a Update message, after saving
the reference to each worker’s address. Before continuing with
the FEA actor and the NewValue message, we describe the
FEA Factor actor (Algorithm 6).

The FEA Factor actor responds to three messages: Init-
Factor (Line 1), Update (Line 4), and NewSolution (Line 9).
When the FEA Factor actor receives the InitFactor message
it saves the problem from the message and then initializes
the subpopulation based on the particular evolutionary al-
gorithm, optimization problem, and factor. When it receives
the Update method, the actor updates the subpopulation for i
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Algorithm 5 FEA Actor - receive

Input: message messaдe, sender sender
Output: None

1: if messaдe instanceOf InitFEA then
2: client ← sender
3: problem ←messaдe .problem
4: X ← f actorize(X)
5: S← ea.initialize(f ,X)
6: c← initialize-context(S)
7: O← identify-optimizers(X)
8: for X in X do
9: worker ← actorO f (FEAFactor ())

10: worker .send(InitFactor (problem,X))
11: workers[X] ← worker
12: worker .send(Update())
13: end for
14: else if messaдe instanceOf NewValue then
15: cache[messaдe .xi ] ←messaдe .value
16: if new values received from all actors then
17: if FEA iterations not complete then
18: compete()
19: clearCache()
20: broadcast(workers,NewSolution())
21: broadcast(workers,Update())
22: else
23: client .send(CandidateSolution(c))
24: end if
25: end if
26: end if

Algorithm 6 FEA Factor Actor - receive

Input: message messaдe, sender sender
Output: None

1: if messaдe instanceOf InitFactor then
2: problem ←messaдe .problem
3: S ← ae .initialize(f ,X)
4: else if messaдe instanceOf Update then
5: for i times do
6: S ← ae .update(S)
7: end for
8: sender .send(NewValue(X, S .best)
9: else if messaдe instanceOf NewSolution then

10: applySolution(S,messaдe .c)
11: end if

iterations. This is exactly the same as the corresponding lines
in Algorithm 2. In order to make the loop in Algorithm 2 run
concurrently, we have turned the iteration loop (Algorithm
2, Line 6) into a message sending loop (Algorithm 5, Line 12
and Line 21). The inner loop from Algorithm 2 then runs on
the individual actors. When the FEA Factor actor’s part in
this distributed Update Step is done, it sends a NewValue
message back to the FEA actor.

Returning to Algorithm 5, the FEA actor responds to the
NewValue message by caching the value (Line 15). It then
tests to see if it has received all the expected new values. This
cache-and-test pattern implements the bookkeeping required
to coordinate the workers. If all the expected new values have
been received—and the desired number of FEA iterations
have been completed—the Compete Step is executed. This
Compete Step is otherwise identical to Algorithm 3 except
that, instead of extracting the values from the subpopulations,
the values have already been extracted and saved to the cache.
After this new Compete Step is finished, the cache is cleared
for the next round, and a NewSolution message is sent to all
the workers.

In the context of this paper, broadcast is just a helper
function that loops over the actor references, sending each
the same message. It is not a “fire-and-forget” broadcast or
any other type of pub/sub message passing. Actors always
send messages to specific actors. This is followed by an Update
message to everyone. If the FEA iterations have completed
(or, more generally, the stopping criteria have been met),
then the FEA actor sends a CandidateSolution message to
the original client.

3.2 DFEA and Actor DFEA

Recognizing the importance of distributed algorithms in com-
putationally intensive optimization problems, a distributed
version of FEA was developed, the Distributed FEA [4]. In
this section we discuss the conversion of DFEA (Algorithms
7 and 8) to the Actor model.

Despite DFEA having been designed with distributed state
in mind (each subpopulation maintains its own context), the
translation of the algorithm actually takes more work. The
main reason for this is that, although the state is distributed
in DFEA, the manipulation of the state is not. In the FEA
actor, the context (candidate solution) was maintained by the
supervising actor, and all the FEA Factor actors (workers)
communicated only with the supervisor. As we shall see, in
the DFEA implementation, each DFEA Factor actor has
its own context (candidate solution), and although they are
spawned by the DFEA actor as a supervisor, the supervisory
role ends there. Throughout the computation, the DFEA
Factors communicate and coordinate with each other. This
makes the implementation somewhat more complicated.

The serial implementation of DFEA is shown in Algorithm
7. In most respects, it is similar to the FEA code in Algorithm
2, with one exception. In FEA, the Compete Step acts as a
single arbiter of possibly better values of c obtained from the
optimizers of each variable. Because the context is distributed
among the factors in DFEA, we must pick some factor to be
the arbiter of each variable. Not every factor can arbitrate
X3, for example. Thus we must assign an arbiter role for each
variable to some factor (Line 5).

The Reconcile Step (Algorithm 8) is similar to FEA’s Com-
pete Step (Algorithm 3). The FEA Compete Step compares
the context, c, to the new values discovered by the subpopula-
tions during the previous Update Step. The DFEA Reconcile
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Algorithm 7 Distributed Factored Evolutionary Algorithm

Input: Function f , Evolutionary Algorithm ae
Output: Best context c as candidate solution x

1: X ← f actorize(X)
2: S← ae .initialize(f ,X)
3: C ← initialize-contexts(S)
4: O ← identify-optimizers(X)
5: A ← identify-arbiters(X)
6: repeat
7: repeat
8: for S in S do
9: S ← ae .update(S)

10: end for
11: until stopping criteria
12: C ← reconcile(f , S,O,A,C)
13: share(f , S, ea,C)
14: until stopping criteria
15: c← select-best-context(f ,C)
16: return c

Algorithm 8 DFEA Reconcile

Input: Function f , Subpopulations S, optimizers O, arbiters
A, Local contexts C
Output: Local contexts C
1: for j = 1 to d do
2: c← C[A(x j )]
3: f itness ← f (c)
4: value ← c[j]
5: for k in Oj do
6: candidate ← S[k].best
7: c[j] ← candidate .x[j]
8: if f (c) ≤ f itness then
9: value ← candidate .x[j]

10: f itness ← f (c)
11: end if
12: end for
13: c[j] ← value
14: for k = 1 to |S| do
15: C[k].c[j] ← c[j]
16: end for
17: end for
18: return C

Step does the same thing, except that it looks up the con-
text belonging to the arbiter of the current variable (Line
2). Additionally, the DFEA Reconcile Step must perform
a more extensive update across contexts in order to keep
the information flow semantically equivalent to FEA (Lines
14–16). The Share Step is equivalent to FEA’s Share Step
and not repeated here. Finally, DFEA returns the best of the
contexts as the candidate solution (Algorithm 7, Line 15).

In the FEA Actor model implementation, the FEA actor
was more complex than the FEA Factor actor. In the DFEA
Actor model implementation, this is reversed; the DFEA

Algorithm 9 DFEA Actor - receive

Input: message messaдe, sender sender
Output: None

1: if messaдe instanceOf InitDFEA then
2: client ← sender
3: problem ←messaдe .problem
4: X ← f actorize(X)
5: S← ae .initialize(f ,X)
6: c← initialize-context()
7: O← dfeaa:identify-optimizers(X)
8: A ← dfeaa:identify-arbiters(X)
9: for X in X do

10: workers[X] ← actorO f (DFEAFactor ())
11: end for
12: broadcast(workers, InitFactor (problem, c,X,A))
13: broadcast(workers,Update())
14: else if messaдe instanceOf CandidateSolution then
15: if all candidate solutions received then
16: c← select-best-context(f ,C)
17: client .send(CandidateSolution(c))
18: end if
19: end if

Factor actor is more complicated. This follows directly from
the nature of the algorithm, which distributes a local context
to each individual subpopulation where it is then maintained
and coordinated. However, the algorithm does not specify
a corresponding means of manipulating and coordinating
those local contexts. This is to be expected since there is no
single way to specify pseudocode appropriate for all possible
concurrency implementations and picking one could make
the translation to another equally complicated. In this case,
we at least have a clear idea of the intended semantics.

Our particular implementation uses 11 messages: InitD-
FEA, InitFactor, ArbiterOf, Update, NewValue, ReadyToAr-
bitrate, StartArbitration, ArbitedValue, ArbitrationComplete,
and CandidateSolution. Rather than list pseudocode for two
very long receive methods or 11 individual handlers for each
message, we will describe the DFEA actor and Factor actors
in terms of a specific example using the sequence diagram in
Figure 1. Assuming a problem of 4d, there will be four vari-
ables: X1, X2, X3, and X4. Factor 1 is optimizing (X1,X2) and
arbitrating X1. Factor 2 is optimizing (X2,X3) and arbitrating
X2. Factor 3 is optimizing (X3,X4) and arbitrating X3 and X4.

We start in an Initialization phase. At 1 in Figure 1,
an asynchronous InitDFEA message is sent to the DFEA
actor’s mailbox (All the messages are sent asynchronously
in this example; denoted by open arrowheads). The message
contains information about the problem being solved and the
parameters for DFEA itself such as stopping criteria. Just as
with the serial version (Algorithm 7, Lines 4, Lines6–5), the
Actor model version begins by initializing factors, optimizers,
and assigning arbiters to each factor. This is followed by the
creating a Factor actor for each factor, in this case: Factor
1, Factor 2 and Factor 3. After these actors are created,
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Figure 1: DFEA and DFEA Factor Actors Sequence Diagram

DFEA Actor Factor 1 (1,2) Factor 2 (2, 3) Factor 3 (3, 4)

InitDFEA

1 InitFactor

ArbitratorOf 2

Update 3

NewValue

ReadyToArbitrate 4

StartArbitration

5
StartArbitration

StartArbitration

ArbitedValue

ArbitedValue

ArbitedValue

ArbitrationCompleted

Update

CandidateSolution

6

7

they each receive an InitFactor message on their individual
mailboxes.

The InitFactor message signals each actor to take the in-
formation on the problem, factors, optimizers and arbitrators
contained in the message and initialize their subpopulation
using the indicated evolutionary algorithm. This corresponds
to Algorithm 7, Line 2 in the serial version of the algorithm.

After each Factor actor has initialized, 2 they send an Ar-
biterOf message to all their peers indicating the variables for
which they are the arbiter. There is a corresponding coor-
dination point (black diamond) where a Factor actor must
wait until it has heard from all the arbiters for the variables
it is optimizing. Using Factor 1 as an example, after it has
been initialized, it sends ArbiterOf message to all its peers
indicating that it is the arbiter for X1. Because Factor 1 is
optimizing X1 and X2, it waits to hear from the Factors opti-
mizing X1 and X2 before proceeding. This is a pattern that
we saw before in the FEA Actor, where a cache is used to
coordinate multiple actors and then tested to change to the
next state. We indicate this cache-and-test pattern with the
black diamond in the diagram. The difference in this case is
that when Factor 1 sent the ArbiterOf messages, it sent one
to itself. We do this to avoid special case code in the actors
which would require the actor to know who it is; as we will
see later, we were not entirely successful.

After a Factor has discovered which actors will arbitrate
each of the variables it optimizes, 3 , it sends itself an Up-
date message, which starts the Update phase. At this point,
the Factor will run its evolutionary algorithm on its subpop-
ulation until the stopping criteria are met. This corresponds
to Algorithm 7, Lines 7–11. Upon completion, the factor
will send a NewValue message for each of the variables it
optimizes to the arbiter of that variable. In the case of Factor
1, it will send a NewValue message for X1 and one for X2.
Again we see the pattern of avoiding special code: Factor 1
sends the message about X1 to itself. It does not send a new
value message to itself for X2 because it is not an arbiter of
X2.

With 4 we enter another coordination point that uses
the cache-and-test pattern. A Factor is ready to arbitrate X1
if it has heard from all the optimizers of X1. When it has, it
sends a ReadyToArbitrate message to all of the actors. Factor
3, because it is the arbiter of X3 and X4 will await messages
for both variables and send a message for each variable.

Once all of the Factor actors have received all of the Ready-

ToArbitrate messages, the Arbitration phase begins, 5 . We
have assumed that the variables will be arbitrated in order,
X1, X2, X3 then X4, for simplicity. As a result, when Factor
1 knows that all the factors are ready to arbitrate, it sends
itself a StartArbitration message. This message begins the
reconciliation process described in Algorithm 8 with a few
key differences. First, instead of iterating from the “outside”
over all the variables, in the Actor model implementation,
the actor is working from the “inside” with a specific variable
to arbitrate. Second, the Factor does not have global access
to the subpopulation information so it cannot reach into the
subpopulations of optimizers of Xi and find xi . Instead, these
were the values communicated via NewValue messages before
arbitration commenced.

When the current factor (Factor 1) is finished, it sends
ArbitedValue messages to all of its peers. This will enable
factors further down the arbitration order to use those values
during reconciliation just as with the serial version. After
sending those messages, it sends a single StartArbitration
message to the next factor in the arbitration order. We can
easily calculate this from the current information in Factor
1. If it arbitrates X1 then the next arbiter must be X2. If
a different or changing arbitration order were desired, this
would need to be communicated and coordinated as well.

When the final factor finishes arbitration, 6 , it sends
an ArbitrationCompleted message to all of its peers. Factor
3 is able to discover that it is the final factor when it fin-
ishes arbitrating X4 and discovers there is no “next” variable
to arbitrate. At this point, we have another cache-and-test
pattern as all the factors await the message indicating that
the Arbitration phase is over. If the stopping criteria for the
DFEA is not met, all the factors will send themselves Update
messages and the Update phase begins anew (this case is
shown). If the stopping criteria has been met, each Factor

sends a CandidateSolution message to the DFEA actor, 7 .



Actor Model Implementation for FEA and DFEA GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan

Because each individual actor knows what the stopping crite-
ria are, this message does not have to be coordinated on the
Factor side.

We have not shown how the DFEA actor handles the
CandidateSolution messages. For testing, we used the cache-
and-test pattern to await all of the messages. When they
were all received, the best solution was chosen and sent back
to the driver program. However, there is no reason that the
DFEA actor cannot maintain a single best solution and revise
it as CandidateSolution messages come in. The DFEA actor
could then be queried via a message at any time for what it
thinks is the best solution so far.

4 VALIDATION

DFEA was meant to preserve the semantics of FEA in the
presence of distributed state in the form of local contexts.
Because of the similarities in the algorithms and the fact that
neither the Compete/Reconcile or Share Steps consume ran-
dom numbers, the output of each algorithm when initialized
with the same random seed is identical. We can thus see that
DFEA preserved the semantics of FEA.

The above Actor model implementations of both FEA and
DFEA are meant to preserve the semantics of the original
algorithms. However, because these are distributed algorithms
running on multiple threads, we are unable to verify the
implementations against the baseline the same way that we
did for DFEA. Instead we have turned to experimental means.

4.1 Design

In order to test the hypothesis that the Actor implementa-
tions preserved the semantics of the original algorithm, we
executed FEA (baseline), FEA Actor, and DFEA Actor im-
plementations against 19 benchmark optimization functions.
We picked benchmark optimization functions that were scal-
able to multiple dimensions from [12] and [18]. These are all
minimization problems, and most of them have a minima at
x∗ = [0, 0, ..., 0] and f (x∗) = 0. The notable exceptions are the
Exponential, Eggholder and Michalewicz functions. For these
experiments we used 32d versions of the functions.

For our evolutionary algorithm we chose PSO. The PSO
parameters were ω = 0.729 and ϕ1 = ϕ2 = 1.49618. In all
cases, there were 20 FEA iterations with 5 update iterations
per iteration. The factor architecture was the same for all
algorithms and functions: we used a “Simple Centered” factor
architecture of (xi ,xi+1), thus, the first factor was (x1,x2), the
second was (x2,x3), etc. Each subpopulation (swarm) had 10
particles.

4.2 Results

Each function was optimized by each algorithm 50 times, and
the mean minimum value found was recorded for each run.
The results were then bootstrapped 500 times to estimate 95%
confidence intervals/credible intervals [6]. Selected results for
the mean minima and confidence intervals are shown in Table
1.

In every case, the FEA Actor implementation performed
as well as the FEA baseline (serial) implementation. This was
also true for the DFEA Actor implementation. Additionally,
in almost every case except one (18 out of 19), the FEA Actor
and DFEA Actor implementations performed equally as well.
The odd function out was the Zakharov function where the
DFEA Actor implementation appears to have performed
slightly better than the FEA Actor implementation (last
row of Table 1). Given the consistent performance of the
algorithms, however, this is likely to have been a statistical
fluke. We believe the evidence supports the hypothesis that
the Actor implementations preserved the semantics of the
baseline algorithms.

5 DISCUSSION

Surprisingly, although DFEA was designed to represent dis-
tributed state, the translation of FEA into the Actor model
was easier than DFEA’s translation. This is largely because
although the Actor model is effective for concurrency, it lacks
primitives for coordinated, distributed state. It is thus eas-
ier for the FEA Actor to launch as many Factor Actors as
needed and take care of the coordination required for the
Compete and Share Steps than for the DFEA Actor to do
the same. In the case of the DFEA Actor implementation,
the DFEA Actor delegates any coordinating role to its Factor
Actors who then coordinate among themselves. Another way
to think of this is that DFEA Factor actors are cooperative
peers whereas the FEA Factor actors are solitary workers.

When thinking about implementing a peer pattern using
the Actor model, the implementation often becomes confusing
because we have to think of the actor not only as the sender
of the message but also the receiver of the message. There are
a few places where this breaks down. For example, in order
to start the Arbitration phase, we have to test the current
actor to see if they are supposed to go first. Similarly, when
the Arbitration phase is over, we have to check to see if the
current actor is the last arbiter to go and then it sends out a
different message.

The reactive nature of the Actor model has interesting
implications that are not fully utilized in these experiments.
In some instances, we may have a very difficult optimization
problem for which we would want a provisional answer and
then updates to that answer. The Actor model, by virtue of its
reactive nature, would support this use case directly. Either
implementation could be reconfigured to run indefinitely
rather than for some fixed number of FEA iterations. An
API service could be launched in an Actor System that could
talk to the Actor System this running (D)FEA Actor instance.
The API service could then send a RequestSolution message to
the (D)FEA Actor instance and wait for the reply returning
it to the user. The API could be used by program requiring
the solution.

6 CONCLUSIONS

In this paper we presented an Actor model implementation of
Factored Evolutionary Algorithms and Distributed Factored
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Table 1: Results for FEA Baseline and FEA and DFEA Actor Implementations

Function FEA Baseline Actor FEA Actor DFEA

Dixon-price 2.75e+01 (2.01e+01, 3.52e+01) 3.20e+01 (2.35e+01, 4.05e+01) 3.22e+01 (2.25e+01, 4.17e+01)

Eggholder -2.13e+04 (-2.16e+04, -2.10e+04) -2.14e+04 (-2.17e+04, -2.11e+04) -2.13e+04 (-2.16e+04, -2.10e+04)

Michalewicz -3.07e+01 (-3.08e+01, -3.06e+01) -3.08e+01 (-3.10e+01, -3.07e+01) -3.08e+01 (-3.10e+01, -3.07e+01)

Sargan 3.43e+03 (1.71e+03, 5.28e+03) 1.71e+03 (6.06e+02, 3.03e+03) 2.09e+03 (9.22e+02, 3.69e+03)

Zakharov 8.09e+02 (7.82e+02, 8.34e+02) 8.21e+02 (7.92e+02, 8.51e+02) 7.56e+02 (7.29e+02, 7.83e+02)

Evolutionary Algorithms. The Actor implementation of FEA
involved a fairly straight-forward translation of the serial
pseudocode to a parallel implementation. This involved a
common pattern in Actor-based implementations where a
supervisor breaks a task into pieces and then spins up a
worker Actor for each piece. This pattern matched FEA
exactly.

Although DFEA has the same general steps as FEA, the
semantic intent is closer to that of peers rather than workers.
This made the translation of the serial pseudocode into a
parallel implementation a bit more challenging, even though
the basics had been worked out. The Actor-based implemen-
tation involved using a peer pattern, which required us to
think of each Actor as not only the sender of the message
but the receiver of the message. In some cases, this required
code to handle special cases as in the start of the Arbitration
phase.

The evidence presented by our validation experiments
strongly indicate that our implementations faithfully repro-
duce the semantic intent of the original algorithms. Using
PSO as the evolutionary algorithm, we ran experiments for
three implementations: FEA baseline, FEA Actor, and DFEA
Actor. Using 19 benchmark optimization functions, we showed
that both the FEA Actor and the DFEA Actor performed
comparably to the FEA baseline. There was one strange case
where the DFEA Actor implementation performed better
than the FEA baseline.

There are at least two areas of future work we would like
to investigate. First, one of the hallmarks of the Actor model
is resilience, and Erlang is famous for the aphorism, “let it
crash.”In the Actor model, exceptions are not caught. Instead,
the actor is crashed and its parent brings up a fresh version.
This would present challenges for our current DFEA Actor
implementation. Second, research on DFEA has suggested
that for many problems, coordination between the peers
(consensus) can be relaxed. We would like to enhance our
current DFEA Actor implementation to address both of these
areas.
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