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ABSTRACT

Many abstract security measurements are based on characteristics
of a graph that represents the network. These are typically simple
and quick to compute but are often of little practical use in making
real-world predictions. Practical network security is often measured
using simulation or real-world exercises. These approaches better
represent realistic outcomes but can be costly and time-consuming.
This work aims to combine the strengths of these two approaches,
developing efficient heuristics that accurately predict attack success.
Hyper-heuristic machine learning techniques, trained on network
attack simulation training data, are used to produce novel graph-
based security metrics. These low-cost metrics serve as an approx-
imation for simulation when measuring network security in real
time. The approach is tested and verified using a simulation based
on activity from an actual large enterprise network. The results
demonstrate the potential of using hyper-heuristic techniques to
rapidly evolve and react to emerging cybersecurity threats.

CCS CONCEPTS

« Security and privacy — Network security; « Software and
its engineering — Genetic programming; - Mathematics of
computing — Graph algorithms; Approximation algorithms;

KEYWORDS

Network security, genetic programming

ACM Reference Format:

Aaron Scott Pope, Robert Morning, Daniel R. Tauritz, and Alexander D.
Kent. 2018. Automated Design of Network Security Metrics. In GECCO ’18
Companion: Genetic and Evolutionary Computation Conference Companion,
July 15-19, 2018, Kyoto, Japan. ACM, New York, NY, USA, 8 pages. https:
//doi.org/10.1145/3205651.3208266

ACM acknowledges that this contribution was authored or co-authored by an employee,
contractor, or affiliate of the United States government. As such, the United States
government retains a nonexclusive, royalty-free right to publish or reproduce this
article, or to allow others to do so, for government purposes only.

GECCO ’18 Companion, July 15-19, 2018, Kyoto, Japan

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5764-7/18/07...$15.00
https://doi.org/10.1145/3205651.3208266

Robert Morning
Los Alamos National Laboratory
Los Alamos, New Mexico
rmorning@lanl.gov

Alexander D. Kent
Medtronic
Minneapolis, Minnesota
alex kent@medtronic.com

1 INTRODUCTION

In an age where new software vulnerabilities are discovered and
exploited on a daily basis, best practices and fast response are in-
sufficient to secure a large computer network. Administrators need
to be able to understand, analyze, and track the level of security
in networks they manage. As enterprise computer networks con-
tinue to grow in size and complexity, manual methods of analyzing
network security are increasingly infeasible. Automated analysis
tools are needed to highlight vulnerabilities and allow a pro-active
defense strategy.

A common approach to analyzing computer networks is to
model the network with a graph representation. Graphs can be
used to model the physical or logical connectivity between com-
puters on a network [3]. Alternatively, a graph might be used to
represent the communication between networked machines [12].
Attack graphs are an example of a graph-based representation spe-
cific to security [24]. These graphs illustrate the potential paths an
adversary can take to reach some compromise objective. Authenti-
cation graphs are a type of attack graph that can be used to identify
the regions of a network an intruder can reach using stolen creden-
tials [27]. Since graphs provide such a natural representation for
networks, many network analysis techniques rely on graph-based
heuristics.

This work demonstrates the feasibility of using hyper-heuristic
techniques to automate the development of novel graph-based net-
work security metrics. User activity data from a large real-world
network is used to simulate network attacks that model adversaries
traversing the network with stolen user credentials. These simula-
tion results are used to guide the evolution of new graph heuristics
that accurately predict attack success. The rest of this paper is
organized as follows: Sections 2 and 3 introduce some related back-
ground concepts. Related work is discussed in Section 4. Details of
the methodology and experimental design is described in sections 5
and 6, respectively. Results are presented and discussed in Section 7.
Section 8 offers some conclusions and Section 9 discusses possible
future work.
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2 NETWORK AUTHENTICATION

Centralized single-sign-on systems, such as Kerberos [21], allow
organizations to manage access control on a large scale. The cre-
dentials used to access a computer are often stored in a specialized
cache on that machine. A variety of methods exist which allow an
adversary to retrieve these credentials from a compromised com-
puter [5]. Once the credentials have been obtained, they can be
used to access and compromise other computers on the network.
This entire process can be applied repeatedly, allowing an intruder
to continue to traverse a growing portion of the network. The most
notorious example of exploiting stolen credentials, known as pass-
the-hash, abuses the weakness of reusable password hashes in older
networks using Windows NT LAN Manager [11]. However, simi-
lar principles make this type of replay attack possible on modern
systems as well, such as Kerberos [1].

2.1 Bipartite Authentication Graphs

The computers on a network and the user accounts that access them
can be naturally represented as two independent sets of nodes in
a bipartite authentication graph (BAG) [14, 15]. An edge in this
graph connects a user node to a computer node and represents an
occurrence where the user’s authentication credentials are used
to access the computer. This access can be direct (e.g., a user log-
ging into a workstation) or indirect (e.g., through SSH or a remote
desktop session). If the same account credentials are used to au-
thenticate on additional computers, as is common in environments
using centralized single-sign-on systems, then the corresponding
user node will be adjacent to multiple computer nodes.

This graph representation makes it possible to identify the por-
tions of a network which are vulnerable to credential theft at-
tacks [27]. For example, if the computer C1 in Figure 1 is com-
promised, the credentials for user U1 could be stolen. The existing
edges of the BAG indicate that the credentials for user U1 can also
be used to access computers C2, C3, and C4. As a result, an adver-
sary armed with the stolen credentials for user U1 would also be
able to gain access to these additional computers.

Under normal circumstances, a computer’s cache would only
contain a subset of the credentials used to access the machine due
to limits on the cache size or credentials being periodically removed.
If the edges of a BAG incident to a given computer represent the
authentication credentials assumed to be currently stored in that
computer’s cache, then upon compromise, the adversary can gain
access to the credentials of all adjacent user nodes in the BAG. These
new credentials could then potentially be used to access additional
computers on the network. By repeating this process, the adver-
sary can continue traversing the connected nodes, compromising a
growing portion of the network.

2.2 Graph Heuristics

Because graphs are a natural way of representing computer net-
works, there are many examples of network applications that rely
on graph heuristics. Minimal spanning tree heuristics are used to
control network routing to avoid problematic cycles [23]. Graph
partitioning methods are used to segment large computer net-
works to make it difficult for adversaries to penetrate the net-
work [5, 27]. Path analysis heuristics are used on attack graphs
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Figure 1: Example BAG with users U1, U2 and U3 and com-
puters C1, C2, C3 and C4. An edge represents an authentica-
tion event between a user and a computer.

to identify the likely routes attackers will use to compromise net-
work resources [17, 22, 24, 28].

It is possible to achieve improved algorithm performance by
using heuristics that exploit graph characteristics that are common
in an application area [25]. Machine learning techniques have been
used to automate the process of selecting the best heuristic for a
problem from a set of available heuristics with high accuracy [10].
Unfortunately, this approach is limited by the quality and variety
of the set of predefined heuristics; an optimal solution to a given
problem cannot be selected if it is not already present in the heuristic
set. Instead, domain expertise can be exploited to design novel
customized heuristics tailored to a specific application. The process
of designing new heuristics can be accomplished manually, but this
can be difficult and time-consuming, often leading to an incomplete
set of optimal heuristics. An alternative approach is to use hyper-
heuristic machine learning techniques to automate the design and
optimization of novel algorithms [4, 29].

3 GENETIC PROGRAMMING

Hyper-heuristics most commonly employ genetic programming
(GP) to search a problem-specific space of algorithmic primitives.
In GP, the solutions being evolved typically take the form of pro-
grams or heuristics. GP has been shown capable of automatically
generating and optimizing heuristics for problems in a variety of
domains, including graph algorithm applications [2, 8, 25, 26]. A
set of primitive operations is usually constructed by observing the
common and essential elements of algorithms which have been de-
signed to solve the intended problem. This primitive operation set
is used as algorithmic building blocks by the GP to piece together
new candidate algorithm solutions.

4 RELATED WORK

There are many related works that employ graphs as an abstract
representation of networks. Network connections, both physical
and logical, can be modeled using graphs to visualize the network’s
topology [3, 23]. Communication between networked machines is
also commonly modeled using weighted graphs where the edge
weight represents the amount or frequency of communication be-
tween machines [12]. In particular, NetFlow communications lend
themselves well to graph representations [18]; these provide a high-
level, session-based view of the interaction between networked
computers. Dynamic graph models have also been used to repre-
sent the changes or activity on a network over a period of time [6].
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Graphs are particularly useful in network security applications.
Graph partitioning methods have been used to segment networks
to mitigate the damage potential of an intruder traversing the net-
work [27]. Most graph partitioning techniques minimize the number
or weight of edge removals needed to disconnect components of the
graph; this feature can be leveraged to minimize the effort needed to
segment the corresponding network or limit the impact on network
user productivity. Attack graphs are another common abstraction
method, this time for representing the avenues an adversary can
take during a multi-step intrusion process [24]. Because of their
usefulness for risk analysis and network hardening, automated
methods of generating and evaluating these attack graphs have
been developed [28].

This work builds on previous research that introduced the use
of bipartite authentication graphs (BAGs) to model network user
activity [14]. BAGs can be used in lieu of traditional attack graphs
when the attack model is focused on traversal using stolen user
credentials. An advantage of using BAGs over other attack graphs
is that they can be constructed without detailed information about
the vulnerabilities on individual networked host machines. Au-
thentication graphs can be constructed using logs from centralized
authentication systems, which are often already being collected in
enterprise networks. BAG representations have been used in pre-
vious work to identify anomalous user activity [30] and segment
networks by finding minimal access control policy changes [27].

Although there are numerous examples of graph algorithms be-
ing applied to network security problems, many of these utilize
general-purpose graph heuristics that do not exploit the specific
characteristics of graphs that represent computer networks. Hyper-
heuristics have been used to tailor heuristics to specific application
domains [4], including those involving graph algorithms. Previous
work investigated the use of hyper-heuristics to generate and opti-
mize random graph generation heuristics that produce graphs with
desirable characteristics, such as specific centrality distributions
or community structures [2, 8, 26]. Customized graph partitioning
heuristics have also been generated that improve upon the per-
formance of general-purpose algorithms for targetted classes of
graphs, including those representing computer networks [25].

5 METHODOLOGY

Network authentication events, consisting of a time stamp, a user
account, and a network hostname, are used to construct a dynamic
BAG. This graph provides the environment for a randomized creden-
tial theft and network traversal attack simulation. The simulation
has two configurable settings meant to replicate authentication
policy controls. The first parameter controls the duration a creden-
tial would be stored in a host’s cache after an authentication event
occurred. Repeated authentication events refresh this duration on
existing credentials. If a credential is not refreshed before the con-
figurable time limit is exceeded, the credential is rendered inactive,
removing it from the host’s cache. The second parameter controls
the maximum size of the credential cache stored on the hosts. If an
authentication event would add a credential to a cache that exceeds
this limit, the oldest stored credential is removed to make room.
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5.1 Lateral Movement Simulation

The attack simulation represents an adversary attempting to tra-
verse the network with compromised user credentials. An adversary
is initialized with a single compromised host. In this work, the ini-
tial host is chosen at random to represent a network computer
inadvertently installing malware, potentially as a result of a phish-
ing campaign. It is assumed that once a host is compromised, the
adversary gains access to the credentials active on that computer.

At each subsequent time-step, the adversary will use any cre-
dentials they have accumulated to access additional hosts on the
network. The simulation assumes the credential must be active on
the additional hosts as a result of a legitimate authentication event
for the adversary to compromise those computers. This behavior
resembles a passive adversary attempting to hide their movement
amongst legitimate activity in an effort to avoid detection. If an
adversary chose to attempt access to a host not typically used by
the impersonated user, the access is more likely to trigger a network
intrusion alarm [20].

Whenever a new host is compromised by the adversary, any cre-
dentials on that host are added to the adversary’s collection. This
process is immediate, assuming the adversary is employing scripted
exploit methods. Since the adversary is assumed to be automated,
their traversal is not limited to a single host at a time. The adver-
sary continuously harvests credentials from all compromised hosts
simultaneously, seeking to compromise an ever-growing portion
of the network. See Figure 2 for an example of lateral movement to
additional network hosts. Once the configurable simulation time
limit has expired, the set of compromised hosts is returned as an
indication of attack success.

5.2 Compact Graph Representation

In order for the machine learning process to interact with reason-
ably sized graph representations, the dynamic bipartite authenti-
cation graph is used to produce a series of compact graphs that
summarize the activity for 24 hour periods. This compressed rep-
resentation assigns a weight to each authentication edge that is
the count of the number of timesteps that authentication is active
during a day. This representation is chosen because it presents the
evolutionary process with two interpretation options. The edge
weight can be ignored, which would only consider the existence of
authentication edges. Alternatively, the weights can be compared
to differentiate between edges by their relative probability to be
active.

5.3 Hyper-Heuristic Approach

A population of graph heuristics is evolved to predict the chance
of simulated attack success given a compact authentication graph
model.

Representation: Candidate solution algorithms are represented
using strongly-typed genetic programming (GP) parse trees [19].

Initialization: An initial population of parse tree solutions is
randomly constructed from the available input and operation nodes.
A configurable maximum height parameter is used to limit the size
of the initial parse tree solutions. Ramped half-and-half solution
generation is used, which produces full parse trees of maximum
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Figure 2: Lateral movement simulation example. Circles rep-
resent user credential nodes and triangles represent hosts.
Compromised hosts and credentials are indicated by shaded
nodes.

height for half the population and variable height trees (up to the
maximum) for the remainder.

Evaluation: Solutions are evaluated by comparing their output
to the attack simulation results. For each day of activity, the attack
simulation result is compared to the return value of the individual
heuristic. The absolute percentage differences between these values
are summed and normalized by the number of days to find the
error rate of the prediction heuristic. This error rate is negated and
used as the fitness for the solution, as shown in Equation 1. The
evolutionary process attempts to maximize these fitness scores,
producing solutions with low error rates. Solutions that fail to
return a result within a configurable time limit have their fitness
values set to negative infinity to discourage inefficient solutions.

Z simulated_result—predicted_result

. dedays simulated_result

fitness = — (1)
days|

Parent Selection: Parents are selected by taking a random sam-
ple of size k from the population and choosing the solution from
the sample with the best fitness. This is known as k-tournament
selection.

Recombination: Due to the destructive nature of parse tree
variation operators, offspring are generated using either recom-
bination or mutation, not both [16]. If a pair of parent solutions
are selected for recombination, two offspring are produced using
random subtree crossover.
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Mutation: If recombination is not selected, an offspring is cre-
ated by cloning a single parent, then performing random subtree
replacement.

Survival Selection: Elitist truncation is used for survival selec-
tion, simply selecting the solutions with the best fitness.

Termination: Execution of the GP is terminated when a con-
figurable number of generations have passed without any improve-
ment in the average population fitness (convergence threshold).

Parameters: The parameters for the GP can be seen in Table 1.
Aside from the convergence threshold, these values were program-
matically tuned by a random-restart hill-climbing search attempting
to optimize the best fitness found during evolution. This tuning
process was also used to choose the parent and survival selection
techniques. Other selection methods considered include fitness pro-
portional and uniform random selection. The possible values for
these parameters were inspired by previous work evolving graph
algorithms [25, 26]. The convergence threshold was hand tuned to
ensure termination in the time available.

Table 1: GP Parameter Values

Parameter Value
Population size 400
Offspring per generation 600
Parent selection tournament size 8
Minimum initial parse tree height 4
Maximum initial parse tree height 7
Recombination probability 70%
Mutation probability 30%
Convergence threshold 10

5.4 Primitive Operations

The following categories of operations make up the set of primitives
available to the GP. These operations were inspired by previous
work on authentication graph analysis [15, 27] and the automated
design of graph-based heuristics [2, 7, 25, 26].

Math operators: Basic addition, subtraction, multiplication, divi-
sion, modulus, exponentiation, additive and multiplicative inverse.
Some of these operators require special attention due to the stochas-
tic nature of the process. For example, if division would produce a
division by zero exception, it instead divides by a value very close
to zero. These include operations that reduce a set of values to a
single value, such as sum and average.

Numerical constants: Return a constant integer ({0, 1,2, ..., 10})
or probability ({0.001,0.01,0.1, 0.2,0.3,...,1.0}) value randomly
chosen once during initialization. These possible values were in-
spired by previous work evolving graph heuristics [25, 26].
Boolean nodes: True and false constant nodes, as well as a node
that randomly returns true according to an input probability.
Control flow: Standard if-then-else style conditional branching, as
well as for and while loops.

Global graph metrics: Metrics based on the entire graph, such as
average degree, number of nodes, or graph diameter.

Graph elements: Collections of graph edges and nodes.

Graph element metrics: Metrics associated with graph elements,
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Table 2: LANL Authentication Dataset Details

Unique Users 10,044

Unique Computers 15,779

Unique (User, Computer) Pairs 124,020
Total Authentication Events 101,918,344
Average Daily Authentication Events  2,547,958.6
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2,000,000

1,500,000
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Figure 3: Count of authentication events per day.

such as node centrality values or edge weights.

Maps: Map a collection of elements to their respective metrics. For
example, the betweenness centrality of a set of nodes.

Collection manipulation: Manipulate collections, such as con-
catenation or conditional filtering.

Subgraph induction: Induces a subgraph from a collection of
nodes or edges.

6 EXPERIMENT

Dynamic BAGs are constructed from the authentication data pro-
duced by Los Alamos National Laboratory (LANL) [13]. One such
BAG is produced for every day for the first forty days of activity in
the dataset. A summary of this data can be seen in Table 2. Figure 3
shows the daily number of authentication events with an obvious
weekly pattern. Presumably, the valleys correspond to weekends,
but it is interesting to note that most of the weeks only show a sin-
gle day with dramatically fewer authentication events. This could
be the result of automated processes, such as patch management
services, running on a weekly basis during employee downtime
to minimize network user impact. Unfortunately, the anonymized
dataset does not contain enough information to better explain this
pattern.

The lateral movement attack model is simulated for each day
for two possible credential policy configurations. The first assumes
a maximum cache size of ten, removing the oldest cached entries
to make room for new credentials. The second configuration re-
moves credentials from host caches after one hour. Simulations
are initialized by populating the graph with twelve hours of net-
work activity. After initialization, the simulated attack begins with
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Figure 4: Mean simulation results using 1-hour ticket life-
time policy. The vertical axis shows the percentage of the
network compromised, averaged over all adversaries, at
each time step. The boxes indicate the variation between dif-
ferent days.

a single, randomly chosen point of compromise. The simulation
proceeds for one hour and the degree of success is measured by
the percentage of the networked hosts that are compromised upon
termination. See Figure 4 for an illustration of how the the percent-
age of the network compromised tends to grow over the course of
the attack simulation. The upward trend shows how the portion of
the network compromised grows during the simulation. The high
variation and skew are a result of the inclusion of days with very
low authentication activity; this dramatically limits an adversary’s
ability to reach a large portion of the network.

This success measure for each day is averaged over one hundred
repeated simulations, each with a different initial point of compro-
mise. Figure 5 shows the final average simulation outcome for each
day and each policy configuration. Again, the weekly pattern is ob-
viously present. Compared to the ten credential limit policy, the one
hour credential expiration policy consistently reduces the success
of the adversary’s compromise percentage. Further examination
of the graphs produced by this data suggests that this is due to
authentication edges that connect computers accessed infrequently
by a small number of users; these edges tend to remain active for
long periods of time within the simulation.

The first thirty days of the dataset are used to train the GP. A
compact graph representation of each day’s activity is created as
described in Section 5.2. Figure 6 shows the distribution of authen-
tication edge activity levels for both policy configurations. Edges
near the lower end of the horizontal axis are only active for short
periods during the simulation. Alternatively, edges near the upper
end are active for the majority of the simulated period. The dramatic
difference between these distributions, especially at high edge activ-
ity levels, illustrates the impact of the policy configuration selected.
These edge activity levels are available to the evolved heuristics
as edge weights, allowing some of the temporal information to be
leveraged despite the static nature of the compact graph represen-
tation. For each policy configuration, a population of heuristics is
evolved to predict the simulation outcomes. Additionally, a third
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Figure 5: Daily simulation results for both credential poli-
cies.

population is trained to predict the simulation outcomes for both
policy configuations simultaneously. This is done to examine the
benefit of focusing on specific credential policies instead of seeking
a more generalized heuristic. The performance of the best final
evolved solutions from each population is measured against the
simulation results for the final ten days for validation.

7 RESULTS AND DISCUSSION

Although the evolved heuristics are too complex to be included
here (the smallest being over 200 lines of code), some functional
elements that commonly occur are:

(1) Induce a subgraph with the most active (highest weight)
edges

(2) Find the connected components in the induced graph

(3) Filter out the account vertices in each component vertex set

(4) Return a value based on the number of computers in each
component relative to the number of computers in the origi-
nal graph

This is not surprising, considering how the connected components
represent portions of the network which can be traversed with
lateral movement.

Table 3 shows the simulated and predicted compromise percent-
ages averaged over each day of the validation data. GP-A refers
to the best heuristic trained using the ten credential limit policy.
Similarly, GP-B indicates the heuristic produced by the one hour
expiration policy. GP-C is the heuristic evolved to predict the com-
bined simulation results. Figure 7 shows the daily comparison of
the simulation results and predicted values for both credential poli-
cies. The distance between the predictions of the evolved heuristics
and the simulation results is an indicator of the quality of the
heuristic. Superior solutions lie closer to the simulated outcomes.
In both policy configuration cases, the heuristic evolved to target
that configuration (GP-A for Figure 7a and GP-B for Figure 7b)
more accurately tracks the simulation results. The results suggest
that it is beneficial to target the particular credential policy in use
instead of seeking a more general purpose solution.
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Figure 6: Distribution of authentication edge activity levels
for compressed graphs for both credential policies. Low val-
ues (to the left) indicate edges that are rarely active in the
original dynamic graph. High values indicate edges that are
active the majority of that day. Note that the vertical axes
are log scaled.

Table 3: Comparison of Evolved Metric Heuristics

10 Credential Limit 1 Hour Expiration

Method Result Error Result Error
Simulation  29.797% N/A 17.484% N/A
GP-A 29.151% 6.15% 21.411% 60.93%
GP-B 27.093% 14.85% 17.571% 11.23%
GP-C 26.427% 28.00% 20.387% 71.79%

One interesting outcome is that GP-C, which represents a “hy-
brid” approach, tends to perform worse than both of the more
targeted heuristics; this is especially evident in Figure 7a. It is
understandable for this attempt at a generalized heuristic to be per-
forming worse than the appropriately targetted heuristic, but it is
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Figure 7: Comparison of simulated results and predictions
from each evolved solution for both credential policies.
Higher quality solutions lie closer to the simulation results.

surprising that, in many cases, it is also outperformed by the heuris-
tic targetting the wrong credential policy. One possible explanation
is that the differences between the compact graph representations
for the two policy configurations made fine-tuned exploitation of
specific graph properties difficult. Regardless of the true reason for
the degraded performance, the results demonstrate the value of
evolving heuristics tailored to the specific policy.

Figure 8 shows the mean population fitness for each genera-
tion, averaged over twenty repeated executions of the GP. Progress
is indicated by an upward trend. The low initial fitness for the
population of GP-A is likely the result the higher variation in
the simulation results for the 10 credential limit policy. Evolution
quickly overcomes this disadvantage, however, and both targeted
GPs converge on similar fitness values. Aside from very early gen-
erations, GP-C consistently has lower population fitness compared
to the other GPs.

The results presented here demonstrate the potential of hyper-
heuristics to automate the development of novel network security
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peated executions of the GP.

metrics. In this work, evolution was guided by an attack simulation,
but this could be replaced with data from penetration testing or
genuine compromise events. Institutions with large computer net-
works are likely already collecting the data needed to train these
heuristics. The approach presented in this work could provide sys-
tem administrators a new capability to better leverage this data
without relying on expert knowledge of the specifics of an adver-
sary’s techniques. This has the potential to reduce the time needed
to understand and react to emerging threats.

8 CONCLUSION

In the ever-evolving world of cybersecurity, system administra-
tors need new ways to understand and visualize risks and vul-
nerabilities. Manual analysis can be prohibitively expensive and
time-consuming, limiting our ability to react to new adversary tech-
niques. This work has demonstrated the potential of hyper-heuristic
techniques for the automated development of network security met-
rics. Evolved heuristics were able to accurately predict simulated
attacks on network models based on real-world data for a complex
network. Automated design can improve our security capabilities
enabling us to rapidly react to emergent threats with less reliance
on subject matter experts. Although the current results are focused
on computer networks, the approach could be easily extended to
include physical domain elements for more comprehensive security.

9 FUTURE WORK

The fidelity of the attack simulation could be improved to more
accurately model lateral movement attacks, including the addition
of physical network components. Simulated results could also be re-
placed with data from historical compromise incidents or red-team
network penetration testing. The entire approach could be applied
to additional attack models, either existing models or entirely new
attacks as they emerge. The automated nature of this approach has
the potential to dramatically reduce the response time needed to
react to new cybersecurity threats.

The final heuristics evolved in this work tend to be very large
and complex. While some of this complexity is likely needed for
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accurate solutions, manual inspection reveals several subtrees that
do not contribute to the solutions’ functionality. In [9], Helmuth et.
al. demonstrate that automated simplification of evolved algorithms
can improve their performance on unseen problem sets. While the
customized heuristics evolved in this work are not intended to be
general purpose, this approach, along with a fitness function that
promotes generalization, could improve the results when applying
these heuristics to other networks.

Although this work does examine the effect of targeting evolu-
tion on a specific credential policy configuration, there are other
factors that could impact the performance gained from such tailored
heuristics. The forty day time period used for evolution and valida-
tion is likely too short to exhibit dramatic changes in user behavior
or network structure. These more gradual changes are inevitable
over longer time periods as enterprises grow and networks increase
in complexity. It is possible such changes will alter characteristics
present in the graph representations of the network. If an evolved
heuristic relies on characteristics that change over time, it could
result in degraded accuracy. This impact should be examined by
considering longer periods of time or including ranges of time that
include more dramatic structural changes to the network. Doing
this could provide insight into how often the evolution process
should be repeated to adapt to the new environment.

This work builds on previous research that used graph-theoretic
properties to predict and limit the potential impact of adversaries
traversing the network with stolen credentials [15, 27]. The previ-
ous analytic methods could provide a baseline for comparing the
performance of the heuristics evolved in this work. To enable a fair
comparison, these methods would need to be adapted to model the
dynamic nature of the graphs considered in this work or incorporate
the necessary policy configuration details.
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