
Genetic Configuration Sampling
Learning a Sampling Strategy for Fault Detection of Configurable Systems

Jifeng Xuan
School of Computer Science

Wuhan University
Wuhan, China

jxuan@whu.edu.cn

Yongfeng Gu
School of Computer Science

Wuhan University
Wuhan, China

yongfenggu@whu.edu.cn

Zhilei Ren
School of Software

Dalian University of Technology
Dalian, China

zren@dlut.edu.cn

Xiangyang Jia
School of Computer Science

Wuhan University
Wuhan, China
jxy@whu.edu.cn

Qingna Fan

HY Cross-Domain
Wuhan, China

fanqn@crossdomain.cn

ABSTRACT
A highly-configurable system provides many configuration options
to diversify application scenarios. The combination of these con-
figuration options results in a large search space of configurations.
This makes the detection of configuration-related faults extremely
hard. Since it is infeasible to exhaust every configuration, several
methods are proposed to sample a subset of all configurations to
detect hidden faults. Configuration sampling can be viewed as a
process of repeating a pre-defined sampling action to the whole
search space, such as the one-enabled or pair-wise strategy.

In this paper, we propose genetic configuration sampling, a new
method of learning a sampling strategy for configuration-related
faults. Genetic configuration sampling encodes a sequence of sam-
pling actions as a chromosome in the genetic algorithm. Given a
set of known configuration-related faults, genetic configuration
sampling evolves the sequence of sampling actions and applies
the learnt sequence to new configuration data. A pilot study on
three highly-configurable systems shows that genetic configura-
tion sampling performs well among nine sampling strategies in
comparison.

CCS CONCEPTS
• Software and its engineering→ Software configurationman-
agement and version control systems; Search-based software
engineering; Empirical software validation;

KEYWORDS
Configuration sampling, fault detection, highly-configurable sys-
tems, genetic improvement, software configurations

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5764-7/18/07.
https://doi.org/10.1145/3205651.3208267

ACM Reference Format:
Jifeng Xuan, Yongfeng Gu, Zhilei Ren, Xiangyang Jia, and Qingna Fan. 2018.
Genetic Configuration Sampling: Learning a Sampling Strategy for Fault
Detection of Configurable Systems. In GECCO ’18 Companion: Genetic and
Evolutionary Computation Conference Companion, July 15–19, 2018, Kyoto,
Japan. ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3205651.
3208267

1 INTRODUCTION
Highly-configurable systems are widely deployed in our daily life.
System designers provide many configuration options to meet the
diverse requirements: an operating system (e.g., Linux) is required
to adapt various types of hardware; a compiler (e.g., Gcc) is re-
quired to support multiple language features; a video decoder (e.g.,
Mpeg) is required to process different kinds of video streaming. The
number of configuration options can reach several thousands. For
instance, the C language compiler Gcc 7.3 contains 2,472 configura-
tion options, which mainly focus on language features, compiling
optimizations, and hardware setups [9]. In the command line of
Gcc, each configuration option starts with -, such as -ansi for
satisfying the C90 language standard or -floop-nest-optimize
for the loop nest optimization. A user can quickly configure the
compiler by choosing usable configuration options. In C programs,
most of configuration options are implemented with the macro
definition, such as #ifdef-#else-#endif.

Given a configurable system, a selection of configuration options
is called a configuration, i.e., a combination of choices for configura-
tion options. Many configuration-related faults are hidden behind
the large number of feasible configurations. A combination of two
seldom-checked configuration options may result in a system crash
[29], or even a compiling error (considering the configuration op-
tions are encoded in the C macro definition) [18]. A straightforward
way for fault detection is to exhaustively check all possible con-
figurations. However, this leads to the problem of “combinatorial
explosion”. For a system with 100 binary configuration options,
1.27 × 1030 (i.e., 2100) configurations exist. Meanwhile, checking
many configurations is time-consuming. Even starting an operating
system once takes several minutes.

https://doi.org/10.1145/3205651.3208267
https://doi.org/10.1145/3205651.3208267
https://doi.org/10.1145/3205651.3208267

GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan J. Xuan et al.

To address the problem of finding configuration-related faults,
researchers have designed strategies to sample a subset of configu-
rations rather than the whole set [12, 25]. Many sampling strategies
for fault detection are studied, including t-wise [22], one-enabled
[1], random. A sampling strategy can be viewed as a process of
repeating a sampling action. For instance, the pair-wise (t-wise
with t = 2) strategy aims to cover all combinations of pairs of
configuration options: the process of pair-wise is a sequence of
actions and each action is one combination of the values of two
configuration options. Consider two binary configuration options
a and b in a system, a sampling action of pair-wise can choose
one configuration from (. . . ,a,b, . . .), (. . . ,a, !b, . . .), (. . . , !a,b, . . .),
and (. . . , !a, !b, . . .). For a sampling strategy, the effectiveness of
fault detection and the effort of sampling cannot be satisfied simul-
taneously. A comparative study by Medeiros et al. [18] shows that
there exists a trade-off between the number of detected faults and
the number of sampled configurations.

In this paper, we develop genetic optimization techniques to im-
prove software configurations, which directly relate to the quality
and the performance of highly-configurable systems. We propose
genetic configuration sampling, a new method of evolving a sam-
pling strategy for configurations. The evolved sampling strategy
is not a sequence of uniform sampling actions like in t-wise, but
a sequence of multiple sampling actions. For instance, an evolved
strategy can interchangeably sample configurations via t-wise and
one-disabled. Genetic configuration sampling encodes a sequence of
sampling actions as a chromosome in the genetic algorithm. Given
a set of known configuration-related faults, genetic configuration
sampling learns a sequence of sampling actions and applies the
learnt sequence to new configuration data. The idea of genetic con-
figuration sampling is motivated by the algorithm family of hyper-
heuristics [3]. We attempt to optimize the sequence of sampling
actions rather than directly optimize the sampled configurations.

We conducted a pilot study on the configuration-related faults of
three real-world systems, Apache, BusyBox and Linux. To evaluate
the performance of genetic configuration sampling, we evolved a
sampling strategy on the fault data of one system and apply the
evolved strategy on another system. The result shows that genetic
configuration sampling can perform well for fault detection of
configurable systems, compared with existing sampling strategies.

This paper makes the following major contributions:
1. We proposed genetic configuration sampling, a new method of

learning a sampling strategy for fault detection of highly-configurable
systems. This method considers configuration sampling as a se-
quence of sampling actions and learns this sequence based on
known configuration-related fault data. To the best of our knowl-
edge, this is the first work that evolves a sampling strategy for fault
detection of configurable systems.

2. We conducted a pilot study on three real-world configurable
systems, Apache, Busybox and Linux. This study shows that ge-
netic configuration sampling performs well among nine sampling
strategies in comparison.

The remainder of this paper is organized as follows. Section 2
presents the background and motivation. Section 3 presents the
proposed method, genetic configuration sampling. Section 4 shows
a pilot study on three configurable systems. Section 5 discusses the

#ifdef a

/* ... */

#endif

#ifdef b

/* ... */

#endif

#ifdef c

/* ... */

#endif

a b c

!a !b !c

!a !b c

!a b !c

!a b c

 a !b !c

 a !b c

 a b !c

 a b c

✔

✔

✔

✘

✔

✔

✔

✔

Configuration spaceCode snippet

Figure 1: Example of a configuration-related fault that is
caused by a combinaion of three configuration options.

extension and technical details. Section 6 lists the related work and
Section 7 concludes.

2 BACKGROUND AND MOTIVATION
We present the background of fault detection of configurable sys-
tems and hyper-heuristics, as well as the motivation of our work.

2.1 Fault Detection of Configurable Systems
In configurable systems, a crash or fault caused by interactions
among configuration options is called a configuration-related fault
[1, 18]. A specific combination of configuration options can expose
configuration-related faults, such as violating compiling rules or
triggering unexpected exceptions. Figure 1 lists an example of a
configuration-related fault. Three candidate configuration options,
a,b, and c , constitute a search space of eight combinations, i.e., eight
configurations. In Figure 1, a and !a indicate that a configuration
option a is enabled and disabled, respectively. After checking all
eight configurations, we find that only the configuration of disabling
a and enabling b and c causes a fault.

To find a configuration-related fault, testers have to check each
feasible configuration. A brute force strategy can guarantee the
detection of all the configuration-related faults but its large search
space of configurations cannot be covered in practice [10]. Even
checking only one configuration, testers need to install and start
the system. The process of checking a single configuration is time-
consuming [24, 27]. To address the problem of configuration-related
fault detection, various sampling strategies have been proposed.
The insight of these strategies is to sample a subset of all con-
figurations from the whole search space, i.e., detecting faults via
representative configurations instead of all possible configurations.

We list four types of strategies of configuration sampling as
follows.

(1) The one-enabled strategy [18] enables one configuration op-
tion and disables the remaining one in each configuration.
In the case of Figure 1, this strategy can obtain three config-
urations, (a, !b, !c), (!a,b, !c), and (!a, !b,c).

Genetic Configuration Sampling GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan

(2) The one-disabled strategy [1], which is the contrary to One-
enabled, disables one configuration option and enables the
remaining one in each configuration. This strategy can also
provide three configurations, (!a,b,c), (a, !b,c), and (a,b, !c).

(3) The t-wise strategy [22] enables or disables configuration
options to cover all the combinations of each t options, where
t is pre-defined (t = 2,3, . . .). Assuming t = 2, also called
pair-wise, the sampled configurations are required to cover
all the combinations of any pair of configuration options.
Pair-wise requires at least four configurations; an example
by pair-wise is (!a, !b, !c), (!a,b,c), (a, !b,c), and (a,b, !c).

(4) The random strategy is a straightforward way, which ran-
domly enables or disables configuration options to obtain
feasible configurations. The sampling result by random is
unstable; an example is (a,b,c), (!a, !b,c), and (a,b, !c).

Note that in t-wise, a larger t requires a larger number of sampled
configurations and can detect more faults. However, considering
the scenario of a limited number of samples, a larger t may lose the
opportunity of finding more faults.

2.2 Hyper-Heuristics
Hyper-heuristics are a family of heuristics, which leverages high-
level heuristic framework to optimize low-level operators [3]. Dif-
ferent from directly optimizing solutions in meta-heuristics, hyper-
heuristics onlymanipulate operators, such as two-swap or crossover;
meanwhile, operators play the role of directly processing solutions.
The mechanism of a high-level framework and its low-level opera-
tors in hyper-heuristics provides a hierarchical way to separate the
optimization process with particular solutions. Following the devel-
opment of meta-heuristics, many hyper-heuristics have emerged as
solvers to complex optimization problems, such as hyper-heuristics
based on hill-climbing by Özcan et al. [21], tabu search by Burke
et al. [5], genetic programming by Nguyen et al. [20], and ant algo-
rithms by Burke et al. [4].

2.3 Motivation
Existing sampling strategies are designed according to the expe-
rience of system designers or testers. Given a specific system, a
configuration-related fault may not be detected by a particular
strategy. For instance, the one-disabled strategy cannot cover the
configuration (!a,b, !c) in Figure 1. Meanwhile, the t-wise strategy
may generate different subsets to satisfy the covering request; an
off-the-shelf tool of t-wise follows pre-defined rules and cannot
cover all possible configurations of t-wise, e.g., pair-wise in Section
2.1 cannot cover the configuration (a,b,c). On one hand, a small
subset of sampling can reduce the cost of checking configurations
but can lose the detected faults; on the other hand, a large subset
can detect many faults but results in an enormous running cost.

In this paper, we view an existing sampling strategy as a se-
quence of repeating a single sampling action. Taking the pair-wise
strategy as an example, its sampling action is to choose two configu-
ration options at the same time and set their values. Then pair-wise
repeats this action until all possible combinations of choosing two
configuration options are covered. However, repeating a single ac-
tion may lead to the lack of diversification. Several sampling actions
can offset the weakness of each other.

...

C
r
a
sh

 (
S

ta
c
k

 t
r
a
c
e)

Subject program

CraTailPath condition
analysis Instrumented subject program

Initial test generation of fTrace tail
Test case expansion

Instantiation or seeding

from f to st or t

Local search for st Test execution, for t Fitness Calculation, for t

Top test selection, for t
Invocation increasement

 from t to f
Is zero-fitness found?

Test case
clean

Test re-execution

Final test case

YN

One-enabled One-disabled
Existing

sampling strategy
Pair-wise Three-wise

Sampling action

Chromosome
i.e., a sequence of
sampling actions

Population initialization

Selection

Crossover

Mutation

Evaluation Genetic algorithm

Known

configuration-

related fault data

Genetic algorithm

The best chromosome
i.e., a learnt sequence
of sampling actions

Configurations

in a new system

Sampled configurations

Figure 2: Overview of genetic configuration sampling.

In our work, the proposed method, genetic configuration sam-
pling aims to learn a new sequence of multiple sampling actions,
which come from existing sampling strategies, such as one-enabled
and pair-wise. From the perspective of heuristics, genetic configura-
tion sampling can be viewed as a hyper-heuristic, whose high-level
framework is a genetic algorithm and low-level operators are sam-
pling actions for configurations.

3 GENETIC CONFIGURATION SAMPLING
Genetic configuration sampling is a hyper-heuristic based on the
genetic algorithm for detecting faults of configurable systems. The
goal of genetic configuration sampling is to learn a sampling strat-
egy by combining and evolving multiple existing sampling strate-
gies. The sampling strategy is dynamically evolved in the frame-
work of the genetic algorithm and updated according to the fitness
value, i.e., the number of detected faults. We detail our method in
this section.

3.1 Overview
Figure 2 shows the overview of our proposed method, genetic
configuration sampling. The major difference between genetic con-
figuration sampling and other sampling strategies is that genetic
configuration sampling does not only consider one single sampling
action; instead, several existing sampling actions are combined as a
new sampling strategy, i.e., a sequence of sampling actions. Genetic
configuration sampling adapts the framework of general genetic
algorithms and encodes a sequence of sampling actions as a chro-
mosome. A learnt sequence of sampling actions can be applied to
the configuration options to generate a list of configurations. Due
to the random factor, a given sequence of sampling actions may
generate many different lists of configurations.

GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan J. Xuan et al.

Table 1: Dataset of Three Real-World Systems, Apache, BusyBox and Linux

System Domain # Files LoC Configuration options Faults

Apache Web server application 362 144,768 700 12
BusyBox Unix utility application 805 189,722 1,418 10
Linux Operation system 37,520 12,594,584 26,427 37

To achieve an optimized (or near-optimized) sequence of sam-
pling actions, genetic configuration sampling relies on a fitness
function and a set of known configuration-related fault data. Given
a particular chromosome, genetic configuration sampling repeats
generating a list of sampled configurations to reduce the impact of
randomization. The fitness function for evaluating a chromosome
is to minimize the number of undetected faults by the sampled
configurations. We define the fitness function as follows,

f itness (chromosome) =
1
m

m∑
i=1

undetectedi

wherem is the number of different trials of generated lists of con-
figurations by one chromosome and undetectedi is the number of
undetected faults in the ith trial, i.e., the number of uncovered faults
by the sampled configurations.

As shown in Figure 2, genetic configuration sampling learns
a sampling strategy via the genetic algorithm on chromosomes.
The best chromosome regarding the fitness value is selected as the
learnt sequence of sampling actions. Then this sequence is applied
to detect faults in potential configurations of a new system.

The genetic algorithm in genetic configuration sampling initial-
izes a pool of chromosomes via randomization. Then the pool of
chromosomes goes into the loop of four major steps in the genetic
algorithm. First, in the selection step, top chromosomes with the
best fitness values are selected as the current pool; second, in the
crossover step, every two chosen chromosomes are mixed into two
new chromosomes via a single-point crossover operator; third, in
the mutation step, a part of chromosome is replaced by other sam-
pling actions; fourth, in the evaluation step, all chromosomes are
evaluated with a given fitness function. The four steps repeat until
the pre-defined terminal condition; in genetic configuration sam-
pling, the terminal condition is a given number of the maximum
loops.

3.2 Sequence of Sampling Actions
In genetic configuration sampling, we employ seven sampling
actions from existing and widely-used sampling strategies: one-
enabled, one-disabled, pair-wise, three-wise, four-wise, five-wise, and
six-wise. All these strategies have been empirically compared in a
recent study by Medeiros et al. [18]. We briefly describe the seven
sampling actions as follows. To facilitate the genetic algorithm,
each sampling action in our work initializes from a random config-
uration. The one-enabled or one-disabled action randomly chooses
one configuration option and enable or disable the configuration
option. The pair-wise, three-wise, four-wise, five-wise, and six-wise
actions can be unified as a t-wise, where t denotes 2, 3, 4, 5, and 6,

respectively. A t-wise action randomly chooses t configuration op-
tions and sets the values of chosen configuration options to satisfy
the t-wise sampling strategy.

Example. We use a single example to illustrate the process
of genetic configuration sampling. Given a system with known
configuration-related faults, genetic configuration sampling initial-
izes a pool of chromosomes, each of which is a random sequence of
sampling actions. After repeating four steps (selection, crossover,
mutation, and evaluation) of the genetic algorithm, a final learnt
sequence is obtained. Suppose the learnt sequence is pair-wise, one-
disabled, five-wise, i.e., the length of chromosome is three. Then
given a new system, genetic configuration sampling applies the
learnt sequence to its configuration options. The process of ap-
plying the sequence can be as follows. First, the pair-wise action
randomly selects two configuration options and selects one combi-
nation of their values (enabled or disabled) as the first configuration.
Note that the selected configuration is required to be feasible, e.g.,
according to the dataset in this paper, two configuration options
must come from the same source code file; meanwhile, the sampling
action does not select duplicate configurations, e.g., the pair-wise
action will try again if the values of two configuration options
are already covered by a previous configuration. Second, the one-
disabled action selects the second configuration to by disabling one
configuration option. Third, the five-wise action selects the third
configuration to cover a combination of values of five configuration
options. From the fourth sampled configuration, the three sampling
actions in the learnt sequence are applied repeatedly. The final
list of sampled configurations is the sampling result for the new
system.

4 A PILOT STUDY
We present a pilot study to preliminarily evaluate genetic configu-
ration sampling.

4.1 Study Setup
We conducted this study on configuration-related faults of three
real-world systems, Apache, BusyBox and Linux. Table 1 presents ba-
sic information of three systems.We followed the study byMedeiros
et al. [18] to use their collected configuration options. The config-
uration options in these systems are extracted via automatic con-
figuration tools and manual validation. As a pilot study, we have
not considered all dependencies among configuration options. For
instance, the constraints between two configuration options are
omitted. Due to the code scale of these three systems, configuration
options without constraints provide a complex application scenario
for configuration sampling.

Genetic Configuration Sampling GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan

Table 2: Sequences of 10 Sample Actions that are Learnt from Three Systems

System Sequence †

Apache three-wise, one-enabled, five-wise, pair-wise, five-wise, four-wise, one-disabled, five-wise, pair-wise, six-wise
BusyBox six-wise, four-wise, one-disabled, three-wise, four-wise, one-disabled, pair-wise, three-wise, one-enabled, one-disabled

Linux pair-wise, six-wise, one-enabled, pair-wise, one-enabled, one-enabled, three-wise, three-wise, one-enabled, four-wise
†We denote a sampling action with its sampling strategy, e.g., three-wise is short for an action of the three-wise strategy.

As shown in Section 3.1, genetic configuration sampling learns a
sequence of sampling actions based on a set of known configuration-
related fault data. In this evaluation, we considered fault data of
one system as known ones and learned the sequence via genetic
configuration sampling; then we applied the learnt sequence to
the configuration options of another system. We have not adapted
general evaluation method, such as k-fold cross validation, because
it is difficult to cut configurations into independent folds.

We implemented the method of genetic configuration sampling
in Java JDK 1.8. All experiments were run on a PC with an Intel
Core i7 3.60GHz CPU and 8 GByte memory. The package of imple-
mentation of genetic configuration sampling is online available.1.

4.2 Results
The parameter setup of genetic configuration sampling is listed
as follows. The length of chromosomes is 10; each chromosome
is conducted based on seven sampling actions, i.e., actions from
one-enabled, one-disabled, t-wise (t = 2, . . . ,6). To evaluate the
fitness of a particular chromosome, the chromosome is repeated
10 times to generate 100 sampled configurations for one system;
the evaluation of a chromosome is the average of 50 trials. In the
context of the genetic algorithm, the size of the chromosome pool
is 30; the crossover rate is 90% and the mutation rate is 10%; the
maximum generation of chromosomes is 20.

Table 2 presents the sequences of sampling actions, which genetic
configuration sampling have learnt from the configuration-related
data of three systems, Apache, BusyBox, and Linux. We have no clue
which specific pattern the learnt sequences are following. According
to our observation, it is difficult for human developers to design
similar sequences like what genetic configuration sampling has
learnt.

We compared genetic configuration sampling with eight exist-
ing sampling strategies, including the random strategy and seven
sampling strategies that contain the sampling actions in genetic
configuration sampling. All these sampling strategies can be found
in [18]. We individually ran each sampling strategy 50 times and
calculated the average.

Tables 3, 4, and 5 present the average numbers of detected faults
by genetic configuration sampling and eight sampling strategies
under comparison. We use Apache⇒BusyBox to denote learning
a sequence from the Apache data and applying to the⇒BusyBox
data. A table cell with − indicates that all potential configurations
of the sampling strategy have already been checked.

As shown in Tables 3, 4, and 5, genetic configuration sampling
performs well when sampling 100 configurations for all three sys-
tems under evaluation. In Apache, genetic configuration sampling
1Genetic configuration sampling, http://cstar.whu.edu.cn/p/gcs/.

that learns from the BusyBox data reaches 11.80, the highest num-
ber of detected faults; in BusyBox, genetic configuration sampling
that learns from the Apache data reaches 8.06, the second highest
number of detected faults; in Linux, genetic configuration sampling
that learns from the BusyBox data reaches 20.14, the second high-
est number of detected faults. In BusyBox and Linux, the pair-wise
and one-disabled strategies obtain the highest numbers of detected
faults, respectively. We found that results of these two strategies
are unstable. For instance, one-disabled for the BusyBox data detects
only 5.60 faults, which is the lowest result among all strategies un-
der evaluation. The result of genetic configuration sampling seems
stable.

Genetic configuration sampling have not obtained the best result
when sampling a small number of configurations. For instance,
sampling 10 configurations by genetic configuration sampling in
Apache is lower than seven but one existing strategies. However,
sampling a small number (like 10) of configurations highly relies
on the seeding configuration, which indicates the starting point
of the strategy. We consider that finding faults is more important.
Meanwhile, existing strategies for sampling a small number of
configurations is also unstable.

From the results by genetic configuration sampling, we can find
that known data from different systems lead to variable results.
In both Apache and Linux, learning from the BusyBox achieves
better results than from the other systems; in both Apache and
BusyBox, learning from the Linux achieves worse results than from
the other systems. The difference among systems will be discussed
in Section 5.

To sum up, genetic configuration sampling behaves well in the
evaluation of detected faults on three systems. The learnt strategy
in genetic configuration sampling relies on a set of known fault
data. The result in this pilot study shows that the known data of
one system can be employed to guide the configuration sampling
of another system.

5 DISCUSSION
In this paper, we propose a new method of evolving a sampling
strategy for fault detection of configurable systems. The presented
study is preliminary. We discuss our study as follows.

System data transfer. To evaluate genetic configuration sam-
pling, we learned a sequence of sampling actions from one system
and applied the learnt sequence to another system. The assumption
behind is that different systems share the same data distribution;
however, this assumption is hardly satisfied in practice. The per-
formance of a learnt sequence from one system can be hurt if the
sequence is applied to another system. The method of recovering

http://cstar.whu.edu.cn/p/gcs/

GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan J. Xuan et al.

Table 3: Average Number of Detected Faults on the Apache System

Sampling strategy Size of sampled configurations
10 20 30 40 50 60 70 80 90 100

BusyBox⇒Apache 3.88 6.64 8.68 10.34 11.08 11.34 11.46 11.58 11.72 11.80
Linux⇒Apache 4.28 7.20 9.32 10.74 11.02 11.20 11.26 11.32 11.46 11.54

One-enabled 1.32 2.44 3.52 4.24 5.28 6.44 7.52 8.22 9.00 9.70
One-disabled 6.48 7.84 8.64 9.16 9.60 9.84 10.18 10.44 10.62 10.80

Pair-wise 4.88 7.46 9.48 10.30 11.04 11.62 - - - -
Three-wise 5.12 7.32 8.66 9.36 9.84 10.02 10.38 10.52 10.64 10.76
Four-wise 4.76 6.68 7.78 8.48 9.02 9.44 9.74 9.96 10.24 10.46
Five-wise 5.14 6.70 7.56 8.02 8.52 8.76 8.90 9.12 9.26 9.42
Six-wise 4.96 6.34 6.92 7.30 7.56 7.84 8.00 8.18 8.30 8.48
Random 4.98 7.22 8.42 9.12 9.58 9.92 10.18 10.40 10.50 10.68

Table 4: Average Number of Detected Faults on the BusyBox System

Sampling strategy Size of sampled configurations
10 20 30 40 50 60 70 80 90 100

Apache⇒BusyBox 1.82 3.76 5.26 5.82 6.28 6.72 7.14 7.36 7.68 8.06
Linux⇒BusyBox 1.66 2.88 4.40 5.42 6.06 6.52 6.96 7.48 7.68 7.86

One-enabled 1.34 2.10 2.68 3.38 3.92 4.50 5.12 5.54 5.96 6.52
One-disabled 0.72 1.54 2.26 2.86 3.18 3.70 4.14 4.52 5.04 5.60

Pair-wise 2.78 4.40 5.90 7.22 8.14 - - - - -
Three-wise 1.86 3.18 3.84 4.26 4.72 5.02 5.30 5.76 5.98 6.16
Four-wise 2.02 3.20 3.96 4.44 4.92 5.36 5.72 6.12 6.34 6.50
Five-wise 2.38 3.62 4.42 4.78 5.26 5.70 6.02 6.28 6.52 6.68
Six-wise 2.26 3.62 4.18 4.62 4.92 5.24 5.46 5.62 5.82 5.98
Random 2.18 3.42 4.18 4.84 5.20 5.78 6.16 6.44 6.84 7.08

Table 5: Average Number of Detected Faults on the Linux System

Sampling strategy Size of sampled configurations
10 20 30 40 50 60 70 80 90 100

Apache⇒Linux 2.66 4.88 6.98 9.02 10.66 12.42 14.34 16.22 17.86 19.48
Busybox⇒Linux 3.00 5.32 7.36 9.76 11.30 13.32 15.22 16.68 18.50 20.14

One-enabled 2.66 4.22 5.56 6.68 7.72 8.74 9.78 10.70 11.74 12.54
One-disabled 5.18 8.34 11.00 13.20 14.90 16.42 18.00 19.42 20.72 22.14

Pair-wise 3.52 6.08 8.08 9.98 12.04 13.68 14.98 16.68 17.84 19.14
Three-wise 3.56 6.44 8.48 10.42 12.44 13.98 15.30 16.42 17.74 18.90
Four-wise 3.70 6.32 8.38 10.12 11.40 12.86 13.92 14.98 15.88 16.96
Five-wise 3.52 5.38 7.20 8.58 9.86 10.88 11.84 12.74 13.74 14.50
Six-wise 3.64 5.92 7.72 8.84 9.80 10.76 11.48 12.24 12.98 13.36
Random 3.68 6.22 8.20 9.72 11.38 12.98 13.98 14.94 16.24 17.28

Genetic Configuration Sampling GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan

the data difference between two systems is called data transfer. We
will explore the influence of data transfer in future work.

Random factor. In genetic configuration sampling, as well as
general genetic algorithms, randomization plays an important role
in searching for new chromosomes. Different from existing sam-
pling strategies, such as t-wise, genetic configuration sampling
leverages the random factor to connect pre-defined sampling ac-
tions. This leads to the high performance and also results in unstable
results. Existing meta-heuristics like instance reduction [6, 11] may
help stabilize the disturbance by the random factor; a larger study
of comparison may help understand the random factor in genetic
configuration sampling.

Running time. The process of learning a sampling strategy of
genetic configuration sampling takes two to five minutes. This leads
to larger running time than existing sampling strategies. However,
as mentioned in Section 2, the major cost of configuration sampling
is the time cost of checking one configuration and then exhausting
all configurations. The running time of learning a sequence of
sampling actions is not expensive.

Whatmakes genetic configuration sampling performwell.
In genetic configuration sampling, we optimize the sequence of
sampling actions rather than directly optimize the sampled config-
urations. This design separates the optimization framework with
particular sampling actions. That is, a chromosome directly relates
to sampling not to configurations. Beyond genetic configuration
sampling, it is possible to further optimize a sampling action; this
may find a better learnt sequence than only optimizing the sequence
of sampling actions.

Involving constraints for configuration options. Our study
has not evaluated sampling strategies on all datasets. In practice,
configuration options have many complex dependencies, e.g., con-
straints, global dependencies, and building scenarios [18]. These
complex features of configuration options can result in more po-
tential research questions for sampling strategies.

6 RELATEDWORK
Sampling strategies are common methods to solve the faults detec-
tion problem in configurable systems. The t-wise sampling strategy,
which derives from the domain of combinatorial testing [15], as-
sumes that most of faults are caused by specific combinations of
configuration options. This assumption has been confirmed by
many empirical studies [13, 14, 28]. Cohen et al. [7] first imple-
mented the AETG tool to solve the t-wise test cases generation
problem. AETG greedily generates combinations to cover the most
uncovered t options each time, until the selected combinations can
satisfy the t-wise request. Borazjany et al. [2] proposed the ACTS
tool by modeling a suitable input space. ACTS extends existing
tools by adding several greedy algorithms, such as IPOG [16] and
IPOGD [17]. Recently, Garciarena and Santana [8] have optimized
the selection of compiler flags via learning and exploiting flag in-
teractions. Beside the t-wise strategies, one-enabled by Medeiros
et al. [18] and one-disabled by Abal et al. [1] are two intuitive sam-
pling strategies. Both strategies focus on the system status that only
one configuration option is enabled or disabled. Existing studies
like [18] show that one-enabled and one-disabled can trigger many
configuration-related faults.

Apart from detecting faults, the problem of performance predic-
tion is widely-studied for configurable systems. Performance pre-
diction aims to infer the system performance (i.e., a non-functional
property, such as response time,memory consumption, and through-
put) based on selected configurations [24, 27]. Guo et al. [10] pro-
posed a learnable model based on a decision tree algorithm, CART.
Their model predicts the performance of unmeasured configura-
tions by revealing the correlation between known configurations
and their performance. Their experiments on six real-world projects
demonstrated that the CART model reaches an average of 94% ac-
curacy. Their following work [26] shows that incorporating the
Bagging method can achieve better results of learnable models,
such as CART, Random Forest, and SVM.

Sarkar et al. [23] compared the efficiency between two typical
sampling strategies, progressive and projective, on performance pre-
diction. They improved the projective sampling method with a
novel feature-frequency heuristic method, which outperforms the
traditional t-wise method. Recently, Nair et al. [19] proposed rank-
based performance prediction, which transforms the numerical
regression problem into a practical problem, i.e., ranking. Valov
et al. [27] trained a transfer model of performance prediction on
cross machine platforms. They built a prediction model on one
platform and then used linear transformation techniques to predict
the performance on other platforms. Experiments on three systems
across 23 platforms showed that the transfer model can achieve
less than 10% mean relative error on cross-platform performance
prediction.

7 CONCLUSIONS
We propose genetic configuration sampling, a new method of learn-
ing a sampling strategy for fault detection of highly-configurable
systems. Genetic configuration sampling aims to evolve a sequence
of sampling actions based on known configuration-related faults
of one system and apply to configurations of another system. This
evolved sequence can leverage the sampling actions of several ex-
isting sampling strategies, such as one-enabled and pair-wise. In
genetic configuration sampling, a genetic algorithm is used to di-
rect these sampling actions, rather than search or optimize a list of
specific sampled configurations. We employ genetic improvement
techniques to optimize software configurations, which can improve
the quality and the performance of highly-configurable systems.

In future work, we plan to design a new method to make ge-
netic configuration sampling apply its learnt sequence to the same
system; that is, we expect that learning and applying genetic config-
uration sampling share different configurations of the same system.
We also would like to conduct a large study to explore the perfor-
mance of genetic configuration sampling in different systems.

ACKNOWLEDGMENTS
The authors would like to thank Flávio Medeiros, Christian Kästner,
Márcio Ribeiro, Rohit Gheyi, and Sven Apel for sharing the data of
configuration-related faults.

The work is partly supported by the National Natural Science
Foundation of China under Grant No.: 61502345 and 61772107, the
Young Elite Scientists Sponsorship Program By CAST under Grant

GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan J. Xuan et al.

No.: 2015QNRC001, and the Technological Innovation Projects of
Hubei Province under Grant No.: 2017AAA125.

REFERENCES
[1] Iago Abal, Claus Brabrand, and Andrzej Wasowski. 2014. 42 variability bugs in

the Linux kernel: A qualitative analysis. In ACM/IEEE International Conference
on Automated Software Engineering, ASE ’14, Vasteras, Sweden - September 15 - 19,
2014. 421–432. https://doi.org/10.1145/2642937.2642990

[2] Mehra N. Borazjany, Linbin Yu, Yu Lei, Raghu Kacker, and Rick Kuhn. 2012. Com-
binatorial Testing of ACTS: A Case Study. In Fifth IEEE International Conference
on Software Testing, Verification and Validation, ICST 2012, Montreal, QC, Canada,
April 17-21, 2012. 591–600. https://doi.org/10.1109/ICST.2012.146

[3] Edmund K Burke, Michel Gendreau, Matthew Hyde, Graham Kendall, Gabriela
Ochoa, Ender Özcan, and Rong Qu. 2013. Hyper-heuristics: a survey of the state
of the art. Journal of the Operational Research Society 64, 12 (2013), 1695–1724.

[4] Edmund K. Burke, Graham Kendall, Dario Landa Silva, Ross O’Brien, and Eric
Soubeiga. 2005. An ant algorithm hyperheuristic for the project presenta-
tion scheduling problem. In Proceedings of the IEEE Congress on Evolution-
ary Computation, CEC 2005, 2-4 September 2005, Edinburgh, UK. 2263–2270.
https://doi.org/10.1109/CEC.2005.1554976

[5] Edmund K. Burke, Sanja Petrovic, and Rong Qu. 2006. Case-based heuristic
selection for timetabling problems. J. Scheduling 9, 2 (2006), 115–132. https:
//doi.org/10.1007/s10951-006-6775-y

[6] Zongzheng Chi, Jifeng Xuan, Zhilei Ren, Xiaoyuan Xie, and He Guo. 2017. Multi-
Level Random Walk for Software Test Suite Reduction. IEEE Comp. Int. Mag. 12,
2 (2017), 24–33. https://doi.org/10.1109/MCI.2017.2670460

[7] David M. Cohen, Siddhartha R. Dalal, Michael L. Fredman, and Gardner C. Patton.
1997. TheAETG System: AnApproach to Testing Based onCombinatiorial Design.
IEEE Trans. Software Eng. 23, 7 (1997), 437–444. https://doi.org/10.1109/32.605761

[8] Unai Garciarena and Roberto Santana. 2016. Evolutionary Optimization of
Compiler Flag Selection by Learning and Exploiting Flags Interactions. In Genetic
and Evolutionary Computation Conference, GECCO 2016, Denver, CO, USA, July
20-24, 2016, Companion Material Proceedings. 1159–1166. https://doi.org/10.1145/
2908961.2931696

[9] GNU. 2018. Using the GNU Compiler Collection (GCC). Retrieved March 28,
2018 from https://gcc.gnu.org/onlinedocs/gcc/Option-Summary.html

[10] Jianmei Guo, Krzysztof Czarnecki, Sven Apel, Norbert Siegmund, and Andrzej
Wasowski. 2013. Variability-aware performance prediction: A statistical learning
approach. In 2013 28th IEEE/ACM International Conference on Automated Software
Engineering, ASE 2013, Silicon Valley, CA, USA, November 11-15, 2013. 301–311.
https://doi.org/10.1109/ASE.2013.6693089

[11] He Jiang, Jifeng Xuan, and Zhilei Ren. 2010. Approximate backbone based
multilevel algorithm for next release problem. In Genetic and Evolutionary Com-
putation Conference, GECCO 2010, Proceedings, Portland, Oregon, USA, July 7-11,
2010. 1333–1340. https://doi.org/10.1145/1830483.1830730

[12] Martin Fagereng Johansen, Øystein Haugen, and Franck Fleurey. 2012. An
algorithm for generating t-wise covering arrays from large feature models. In
16th International Software Product Line Conference, SPLC ’12, Salvador, Brazil -
September 2-7, 2012, Volume 1. 46–55. https://doi.org/10.1145/2362536.2362547

[13] D. Richard Kuhn and Michael J. Reilly. 2002. An investigation of the applicability
of design of experiments to software testing. In Proceedings of the 27th Annual
NASA Goddard/IEEE Software Engineering Workshop. 91–95. https://doi.org/10.
1109/SEW.2002.1199454

[14] D. Richard Kuhn, Dolores R. Wallace, and Albert M. Gallo. 2004. Software Fault
Interactions and Implications for Software Testing. IEEE Trans. Software Eng. 30,
6 (2004), 418–421. https://doi.org/10.1109/TSE.2004.24

[15] Rick Kuhn, Yu Lei, and Raghu Kacker. 2008. Practical Combinatorial Testing:
Beyond Pairwise. IT Professional 10, 3 (2008), 19–23. https://doi.org/10.1109/
MITP.2008.54

[16] Yu Lei, Raghu Kacker, D. Richard Kuhn, Vadim Okun, and James Lawrence.
2007. IPOG: A General Strategy for T-Way Software Testing. In 14th Annual
IEEE International Conference and Workshop on Engineering of Computer Based
Systems (ECBS 2007), 26-29 March 2007, Tucson, Arizona, USA. 549–556. https:
//doi.org/10.1109/ECBS.2007.47

[17] Yu Lei, Raghu Kacker, D. Richard Kuhn, Vadim Okun, and James Lawrence. 2008.
IPOG/IPOG-D: efficient test generation for multi-way combinatorial testing.
Softw. Test., Verif. Reliab. 18, 3 (2008), 125–148. https://doi.org/10.1002/stvr.381

[18] Flávio Medeiros, Christian Kästner, Márcio Ribeiro, Rohit Gheyi, and Sven Apel.
2016. A comparison of 10 sampling algorithms for configurable systems. In
Proceedings of the 38th International Conference on Software Engineering, ICSE
2016, Austin, TX, USA, May 14-22, 2016. 643–654. http://doi.acm.org/10.1145/
2884781.2884793

[19] Vivek Nair, Tim Menzies, Norbert Siegmund, and Sven Apel. 2017. Using bad
learners to find good configurations. In Proceedings of the 2017 11th Joint Meeting
on Foundations of Software Engineering, ESEC/FSE 2017, Paderborn, Germany,
September 4-8, 2017. 257–267. https://doi.org/10.1145/3106237.3106238

[20] Su Nguyen, Mengjie Zhang, and Mark Johnston. 2011. A genetic programming
based hyper-heuristic approach for combinatorial optimisation. In 13th Annual
Genetic and Evolutionary Computation Conference, GECCO 2011, Dublin, Ireland,
July 12-16, 2011. 1299–1306. https://doi.org/10.1145/2001576.2001752

[21] Ender Özcan, Burak Bilgin, and Emin Erkan Korkmaz. 2006. Hill Climbers and
Mutational Heuristics in Hyperheuristics. In 9th International Conference on
Parallel Problem Solving from Nature, PPSN IX, Reykjavik, Iceland, September 9-13,
2006, Procedings. 202–211. https://doi.org/10.1007/11844297_21

[22] Gilles Perrouin, Sagar Sen, Jacques Klein, Benoit Baudry, and Yves Le Traon. 2010.
Automated and Scalable T-wise Test Case Generation Strategies for Software
Product Lines. In Third International Conference on Software Testing, Verification
and Validation, ICST 2010, Paris, France, April 7-9, 2010. 459–468. https://doi.org/
10.1109/ICST.2010.43

[23] Atri Sarkar, Jianmei Guo, Norbert Siegmund, Sven Apel, and Krzysztof Czar-
necki. 2015. Cost-Efficient Sampling for Performance Prediction of Config-
urable Systems (T). In 30th IEEE/ACM International Conference on Automated
Software Engineering, ASE 2015, Lincoln, NE, USA, November 9-13, 2015. 342–352.
https://doi.org/10.1109/ASE.2015.45

[24] Norbert Siegmund, Sergiy S. Kolesnikov, Christian Kästner, Sven Apel, Don S.
Batory, Marko Rosenmüller, and Gunter Saake. 2012. Predicting performance
via automated feature-interaction detection. In 34th International Conference on
Software Engineering, ICSE 2012, June 2-9, 2012, Zurich, Switzerland. 167–177.
https://doi.org/10.1109/ICSE.2012.6227196

[25] Reinhard Tartler, Christian Dietrich, Julio Sincero, Wolfgang Schröder-Preikschat,
and Daniel Lohmann. 2014. Static Analysis of Variability in System Software:
The 90, 000 #ifdefs Issue. In 2014 USENIX Annual Technical Conference, USENIX
ATC ’14, Philadelphia, PA, USA, June 19-20, 2014. 421–432. https://www.usenix.
org/conference/atc14/technical-sessions/presentation/tartler

[26] Pavel Valov, Jianmei Guo, and Krzysztof Czarnecki. 2015. Empirical comparison of
regression methods for variability-aware performance prediction. In Proceedings
of the 19th International Conference on Software Product Line, SPLC 2015, Nashville,
TN, USA, July 20-24, 2015. 186–190. https://doi.org/10.1145/2791060.2791069

[27] Pavel Valov, Jean-Christophe Petkovich, Jianmei Guo, Sebastian Fischmeister,
and Krzysztof Czarnecki. 2017. Transferring Performance Prediction Models
Across Different Hardware Platforms. In Proceedings of the 8th ACM/SPEC on
International Conference on Performance Engineering, ICPE 2017, L’Aquila, Italy,
April 22-26, 2017. 39–50. https://doi.org/10.1145/3030207.3030216

[28] Jifeng Xuan, Benoit Cornu, Matias Martinez, Benoit Baudry, Lionel Seinturier,
and Martin Monperrus. 2016. B-Refactoring: Automatic test code refactoring to
improve dynamic analysis. Information & Software Technology 76 (2016), 65–80.
https://doi.org/10.1016/j.infsof.2016.04.016

[29] Jifeng Xuan, Xiaoyuan Xie, and Martin Monperrus. 2015. Crash reproduction via
test case mutation: let existing test cases help. In Proceedings of the 2015 10th Joint
Meeting on Foundations of Software Engineering, ESEC/FSE 2015, Bergamo, Italy,
August 30 - September 4, 2015. 910–913. https://doi.org/10.1145/2786805.2803206

https://doi.org/10.1145/2642937.2642990
https://doi.org/10.1109/ICST.2012.146
https://doi.org/10.1109/CEC.2005.1554976
https://doi.org/10.1007/s10951-006-6775-y
https://doi.org/10.1007/s10951-006-6775-y
https://doi.org/10.1109/MCI.2017.2670460
https://doi.org/10.1109/32.605761
https://doi.org/10.1145/2908961.2931696
https://doi.org/10.1145/2908961.2931696
https://gcc.gnu.org/onlinedocs/gcc/Option-Summary.html
https://doi.org/10.1109/ASE.2013.6693089
https://doi.org/10.1145/1830483.1830730
https://doi.org/10.1145/2362536.2362547
https://doi.org/10.1109/SEW.2002.1199454
https://doi.org/10.1109/SEW.2002.1199454
https://doi.org/10.1109/TSE.2004.24
https://doi.org/10.1109/MITP.2008.54
https://doi.org/10.1109/MITP.2008.54
https://doi.org/10.1109/ECBS.2007.47
https://doi.org/10.1109/ECBS.2007.47
https://doi.org/10.1002/stvr.381
http://doi.acm.org/10.1145/2884781.2884793
http://doi.acm.org/10.1145/2884781.2884793
https://doi.org/10.1145/3106237.3106238
https://doi.org/10.1145/2001576.2001752
https://doi.org/10.1007/11844297_21
https://doi.org/10.1109/ICST.2010.43
https://doi.org/10.1109/ICST.2010.43
https://doi.org/10.1109/ASE.2015.45
https://doi.org/10.1109/ICSE.2012.6227196
https://www.usenix.org/conference/atc14/technical-sessions/presentation/tartler
https://www.usenix.org/conference/atc14/technical-sessions/presentation/tartler
https://doi.org/10.1145/2791060.2791069
https://doi.org/10.1145/3030207.3030216
https://doi.org/10.1016/j.infsof.2016.04.016
https://doi.org/10.1145/2786805.2803206

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Fault Detection of Configurable Systems
	2.2 Hyper-Heuristics
	2.3 Motivation

	3 Genetic Configuration Sampling
	3.1 Overview
	3.2 Sequence of Sampling Actions

	4 A Pilot Study
	4.1 Study Setup
	4.2 Results

	5 Discussion
	6 Related Work
	7 Conclusions
	Acknowledgments
	References

