
Evo-ROS: Integrating Evolution and the Robot Operating System
Glen A. Simon∗

Department of Computer Science and Engineering
Michigan State University

East Lansing, Michigan, USA
simongle@msu.edu

Jared M. Moore
School of Computing and Information Systems

Grand Valley State University
Grand Rapids, Michigan, USA

moorejar@gvsu.edu

Anthony J. Clark
Computer Science Department

Missouri State University
Springfield, Missouri, USA

AnthonyClark@MissouriState.edu

Philip K. McKinley
Department of Computer Science and Engineering

Michigan State University
East Lansing, Michigan, USA

mckinley@cse.msu.edu

ABSTRACT
In this paper, we describe the Evo-ROS framework, which is in-
tended to help bridge the gap between the evolutionary and tradi-
tional robotics communities. Evo-ROS combines an evolutionary
algorithm with individual physics-based evaluations conducted
using the Robot Operating System (ROS) and the Gazebo simu-
lation environment. Our goals in developing Evo-ROS are to (1)
provide researchers in evolutionary robotics with access to the
extensive support for real-world components and capabilities de-
veloped by the ROS community and (2) enable ROS developers, and
more broadly robotics researchers, to take advantage of evolution-
ary search during design and testing. We describe the details of the
Evo-ROS structure and operation, followed by presentation of a
case study using Evo-ROS to optimize placement of sonar sensors
on unmanned ground vehicles that can experience reduced sensing
capability due to component failures and physical damage. The case
study provides insights into the current capabilities and identifies
areas for future enhancements.

CCS CONCEPTS
• Computer systems organization→ Evolutionary robotics;

KEYWORDS
Evolutionary robotics, autonomous vehicle, sonar, sensor place-
ment, fault tolerance, Robot Operating System, Gazebo, Ardupilot.

1 INTRODUCTION
Mobile robotic systems are increasingly being deployed in a wide
variety of applications, such as public safety, agriculture, manufac-
turing, and supply chain. Traditionally such systems were operated

∗Glen Simon is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5764-7/18/07. . . $15.00
https://doi.org/10.1145/3205651.3208269

by remote control, however, advances in machine learning technolo-
gies are making it possible to build robots that are either partially
or fully autonomous. Such systems are often required to operate in
the face of uncertainty: e.g., noisy communication, poor weather,
unexpected human input, faulty or damaged sensors and actua-
tors. To successfully complete tasks despite adverse events and
conditions, systems must adapt to those situations. How can we
design the physical robot and its control software so that it can
operate effectively in such environments? The solution space for
this problem is enormous, making exhaustive search impractical.

The field of evolutionary robotics (ER) [13] attempts to address
this challenging problem by harnessing the open-ended search ca-
pabilities of evolutionary algorithms. An artificial genome specifies
the robot’s control system and possibly aspects of its morphology.
Individuals in a population are evaluated with respect to one or
more tasks, with the best performing individuals selected to pass
their genes to the next generation. Evolutionary approaches have
yielded effective controllers and physical designs for a variety of
crawling, swimming, and flying robots [4, 16]. Our own research
has applied evolutionary algorithms to optimize both morphology
and control in aquatic and terrestrial robots [8, 17]. From an engi-
neering perspective, a major advantage of evolutionary search is
the possible discovery of solutions (as well as potential problems)
that the engineer might not otherwise have considered.

Simulation is an essential component of ER, greatly reducing the
time to evolve solutions while avoiding possible damage to physical
robots. The ER community typically creates one-off simulation
environments by selecting from a few different physics engines (e.g.,
ODE, Bullet, VoxCAD, Simulink, DART) to evaluate a candidate
solution. Environments are sparse, generally featuring the robot
and possibly a few obstacles. Tasks typically comprise locomotion,
navigation, and basic problem solving. Robots themselves contain
only a few sensors, most often custom developed for the specific
experiment being conducted. Hence, ER tasks are often limited by
the scope of the simulation environment and how much time a
developer has to code obstacles, sensors, and the platform itself.
Models are not necessarily shareable between developers due to a
lack of standardization. While many research questions can, and
have, been answered by simple simulations, it becomes difficult to
address more complex questions in these environments.

https://doi.org/10.1145/3205651.3208269

GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan Glen A. Simon, Jared M. Moore, Anthony J. Clark, and Philip K. McKinley

In contrast, the broader robotics community can address very
complicated tasks, utilizing multiple sensors and actuators to inter-
pret and navigate complex and often adverse environments. The
Robot Operating System (ROS) [20] was developed to facilitate
reuse of control software across projects, and it has gained a large
following in recent years. Together with the Gazebo physics simula-
tor [14], these tools provide tested models of commercially available
hardware, enabling study of high-level behaviors while saving de-
veloper time during the design phase. Our early experiments [7]
demonstrated the potential benefits of integrating ROS/Gazebowith
evolutionary search, but the customized nature of the simulation
environment illustrated the need for a more general platform.

The main contribution of this paper is to describe Evo-ROS,
a software framework integrating evolutionary search, ROS, and
Gazebo. The current design provides a genetic-algorithm front-
end and distributes evaluations across many ROS/Gazebo worker
instances. To our knowledge Evo-ROS is the first ER system that in-
cludes simulation tools regularly employed by the broader robotics
community. Evo-ROS internals are described in Section 3. Evo-ROS
is open-source; a github link is available at the end of the paper. To
demonstrate the operation of Evo-ROS, we conducted a case study
to optimize the placement and configuration of sonar sensors on
unmanned ground vehicles (UGVs) that may experience random
sensor failures and loss of multiple sensors due to physical damage.
The target platform is the Erle-Rover [11], a commercial terrestrial
robot which we have tasked with waypoint following under sensor
uncertainty. Figure 1 shows the Erle-Rover, its simulation model,
and a physical rover equipped with additional sensors. Sections 4
and 5, respectively, describe the experiments and results of the case
study. Finally, in Section 6, we identify areas for improvement by
discussing issues that arose during the case study.

2 BACKGROUND AND RELATEDWORK
As with natural evolution, results of many ER studies exhibit a
tight coupling between aspects of morphology, such as sensor po-
sitioning, and the controller [5]. Moreover, the resilience of natu-
ral organisms has led researchers to apply evolutionary search in
order to enhance engineered systems. Bongard et al. [4] demon-
strated the potential of evolution in self-modeling terrestrial robots,
where the system maintains an internal “mental image” of itself
and can evolve compensatory behaviors to mitigate damage; their
estimation-exploration algorithm has also been applied to aquatic
robots [18]. Cully et al. [9] improved and extended this general
approach to enable robots to adapt locomotion strategies in real
time, based on sensory feedback.

Despite impressive results from the ER community, however,
there remains a disconnect with the mainstream robotics commu-
nity, which has also seen major advances in recent years. As noted
above, ER simulations are typically developed in-house and are sim-
ple relative to commercial robots. Silva et al. [19] recently pointed
out these shortcomings and suggested possible advantages of adopt-
ing tools frommainstream robotics for ER simulations. In particular,
ROS and Gazebo provide tested models of commercially available
actuators and sensors, saving the ER researcher time in construct-
ing target platforms for evolutionary runs. Additionally, results
have been shown to transfer to real robots, helping to address the

“reality-gap” often encountered in ER [15]. The primary drawback
of using high-fidelity simulation in an evolutionary algorithm is
the overhead needed for evaluations. Our view is that this issue can
be partially addressed through relatively small-scale parallelization
and can eventually be marginalized with continuing advances in
processing capability and larger-scale parallelization.

We have realized this approach with the Evo-ROS platform. The
particular problem we address in the subsequent case study is op-
timal placement of sonar sensors while accounting for possible
failures. Although these issues are of considerable interest to both
the ER and mainstream robotics communities [3, 10, 21], most
studies have focused on fault tolerance and not on sensor place-
ment [22]. Evolutionary algorithms are particularly well suited
to such problems, as they can search large solution spaces, unbi-
ased by human preconception. Moreover, evolution can discover
“unlikely-but-possible” situations that might otherwise result in
system failure.

3 EVO-ROS FRAMEWORK
The Evo-ROS framework is intended as a bridge between the evo-
lutionary robotics community and the broader field of robotics.
Evo-ROS integrates evolutionary algorithms with evaluations con-
structed using popular software tools: ROS, Gazebo and, for the case
study here, Ardupilot. ROS [20] is a publisher/subscriber framework
for writing robot control software and includes a large collection
of libraries realizing complex interactions among communicating
components. Here, ROS is used to implement an obstacle avoid-
ance algorithm for the UGV. The Gazebo simulator [14] includes
models for a wide variety of commercial devices and enables the
same control code to be used in both simulated and physical robots.
Ardupilot [1] is an open-source autopilot stack capable of control-
ling terrestrial, aquatic and aerial vehicles. Ardupilot has built-in
algorithms for the waypoint following task addressed in this study.

Together, ROS, Gazebo, and Ardupilot can produce a simulation
of commercial robots operating in complex physical environments.
However, these software packages are traditionally used during
robot development to test new designs manually configured by the
experimenter. Moreover, they typically simulate the target platform
at real-time speed, often interacting with a user through a remote
control interface identical to that used with the corresponding
physical platform. Such a process is unsuitable for evolutionary
search, where large numbers of simulations need to be conducted
in an automated manner and, typically, much faster than real time.

Evo-ROS Structure. Evo-ROS comprises a set of ROS processes
capable of spawning, managing, and changing simulations carried
out by the software tools described above. Specifically, Evo-ROS
defines the interface between an external evolutionary algorithm (a
GA in the present study) and the simulation environment, enabling
individuals from the GA population to be evaluated within the
ROS/Gazebo/Ardupilot stack. A user would need to construct the
genome for their specific problem, and integrate with the provided
GA code. In a typical evolutionary run, multiple Evo-ROS instances
are executed in parallel across virtual machines (VMs). This con-
figuration enables the large number of simulations required for a
typical evolutionary run.

github

Evo-ROS: Integrating Evolution and ROS GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan

(a) Physical Erle-Rover frame (b) Gazebo simulated Erle-Rover (c) Physical rover frame equipped with sensor
board, sensors, and a roll cage

Figure 1: The unmanned ground vehicle platform used in this study.

Figure 2 depicts the main components of Evo-ROS and their in-
teraction for an individual evaluation. The Evo-ROS “core” consists
of three main components: the transporter, software manager, and
the simulation manager. The transporter is responsible for main-
taining communication between an instance of Evo-ROS and the
external GA via TCP sockets. The software manager is responsible
for spawning and managing the processes within Evo-ROS, includ-
ing control (ROS) and simulation (Gazebo) software. A user only
has to start the software manager process which then instantiates
all the necessary software (ROS, Gazebo, Ardupilot, etc.). The sim-
ulation manager monitors various aspects of an individual Gazebo
simulation, as discussed below. The rover is equipped with a ROS-
based navigation controller that includes waypoint following and
obstacle avoidance modes as well as a mechanism for triggering
transitions between these modes. These modes are covered in detail
in Section 4. For the case study, commands generated by ROS-based
controllers are sent via MAVROS to the Ardupilot software run-
ning on the rover. They are then transmitted over a TCP link to
the vehicle using the MAVProxy protocol. Note: The Ardupilot and
MAVROS components can be easily swapped out for other low-level
control libraries.

Figure 2: Main processes and communication channels Evo-
ROSmanagement of an individual simulation environment.

As shown in Figure 2, an additional component, the sensor filter,
has been added to Evo-ROS for this study. One of our design goals
with Evo-ROS is to allow simple integration of specific components.
The sensor filter is a lightweight process that intercepts raw sensor
data from Gazebo and applies filters to the data before forwarding
it to the UGV controller. This filtering could involve injecting noise
into sensor readings, introducing delay between when the data

is read in Gazebo and delivered to the controller, or selectively
neglecting to forward data so that the controller does not receive
the readings from specified sensors. Filtering enables simulating
sensor failures in the case study described later.

Evo-ROS Workflow. Figure 3 depicts the workflow of evaluating
an individual. First, the GA encodes the attributes of the individual
in a genome. Attributes of an individual could be either behav-
ioral, such as parameter values for various controllers, or physical,
such as the number, type, or location of sensors with which this
individual is equipped. The genome is transferred via a TCP con-
nection to the transporter process within a single Evo-ROS instance.
Once received, controller parameters and physical traits from the
genome are transformed into corresponding ROS parameters. The
transporter then sends a ready flag, via the appropriate ROS topic
interface, to the software manager process. The software manager
determines whether a new simulation environment needs to be
spawned or if the previous one can simply be reset. (To reduce
overhead, when evolving controller parameters with unchanging
physical traits, the simulation process is persistent and only needs
to be reset before starting a new evaluation. However, when physi-
cal traits of the robot are being changed, such as evolving sensor
placements, the software manager must tear down the simulation
environment and modify the robot’s unified robot description for-
mat (URDF) model file to reflect the changes.) The software man-
ager then spawns the various simulation components, as described
above, as well as a simulation manager process, and waits for each
to initialize. It then hands control to the simulation manager and
waits until the simulation session completes.

The simulation manager handles an individual evaluation in the
physics simulation. It monitors information within both ROS and
Gazebo, including several metrics describing the state of the simu-
lation. In this study, such metrics include the speed of travel, pro-
gression through the mission, distance to each waypoint, collisions
with any objects, termination conditions (successful completion of
the mission, reaching the end of the allotted evaluation time). At
the conclusion of an evaluation, the simulation manager reports the
performance of the individual to the software manager. The soft-
ware manager forwards the performance report to the transporter,
which relays it to the GA for calculating fitness. The software
manager then cleans up the simulation environment. This process
is repeated for each individual sent to the Evo-ROS instance.

Current Limitations. A limiting factor of the Evo-ROS framework
using the Ardupilot control framework is the fact that simulations
must be capped at near real-time due to the integral 400Hz update

GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan Glen A. Simon, Jared M. Moore, Anthony J. Clark, and Philip K. McKinley

Figure 3: The workflow of evaluating an individual genome using an Evo-ROS instance.

loop in the Ardupilot stack. Furthermore, due to the distributed
nature of the ROS system, individual processes within a single
ROS instance communicate through a socket-based architecture.
Typically, this means that only a single ROS/Gazebo instance can
be run on one physical machine. We address this issue by creating
an individual virtual machine (VM) for each ROS/Gazebo instance
and extend the communication “fabric” to include a pool of VMs
running on a cluster of physical nodes.

Figure 4 illustrates our parallelization strategy. Each Evo-ROS
instance communicates with the external GA through the trans-
porter process. Instances of Evo-ROS are spawned on multiple VMs
spread across several physical machines. This configuration allows
the population of the GA to be distributed across many identical
simulation environments, greatly reducing the overall evaluation
time per generation. The limiting factor is the number of individual
VMs that can be spawned across a compute cluster.

Figure 4: Parallelization of evaluations in Evo-ROS.

4 CASE STUDY: UGV SENSOR RESILIENCE
To demonstrate Evo-ROS on a problem of current research interest,
we conducted a case study to optimize sensor placement on a com-
mercially available UGV using prebuilt control/sensor algorithms
from the ROS/Gazebo community. Figure 1a shows the target UGV,
the Erle-Rover, a car-like robot controlled by ROS [11]. Erle Robot-
ics has made available a simulated model of this platform, shown
in Figure 1b. The simulated model matches the dimensions and
mechanical capabilities of the physical rover, which is is 32.5 X 46.5
X 14.5cm with a wheel base of 33.4cm. As shown in Figure 1c, we
have augmented our rover with a mounting board to hold sensors,
instruments, and battery packs. To protect the on-board electron-
ics from impact, a roll cage has also been installed. This platform
enables the investigation of several questions related to resiliency,
including optimal sensor placement, discovery of execution modes
for different conditions, and unwanted feature interaction.

Sensor Placement. We conducted several preliminary experiments
where we allowed the number of sensors and their locations to
evolve; initially, placement and orientation were not required to be
symmetric. However, we observed little convergence in those runs,
and so we enforced symmetry in all subsequent runs. Given space
limitations, we present a subset of those results here. Specifically,
all individuals are equipped with six sonar sensors and symmetry
is enforced on the their evolved locations and orientations, that is,
they evolve as three symmetric pairs.

Figure 5 shows the valid regions of the vehicle where sensors can
be placed, limited by the physical configuration of the existing Erle-
Rover. Sensors are constrained to the outer 5cm on the front half of
the rover. For this study, the controller does not drive in reverse so
we do not consider placement on the rear half of the rover. Sensor
orientation is also constrained to orient sensing regions to the front
or sides of the rover. Failure models for sensors are described below.

Figure 5: Sensors can be placed on the outer 5cm on the front
half of the robot in the shaded region.

Control Hardware. Rover control is handled through a combina-
tion of Ardupilot waypoint navigation and an override when obsta-
cle avoidance is required. Incorporating Ardupilot requires adding
the arupilot_sitl_gazebo_plugin [6] to the simulation envi-
ronment. Doing so ensures proper interaction between a Gazebo
simulation and the Ardupilot autopilot, but forces simulations to
run at Ardupilot’s fixed 400Hz update rate. Evo-ROS implements a
step-lock mechanism at each simulation timestep, synchronizing
the Gazebo simulation and Ardupilot by pausing the simulation
until a new movement command is received. Evo-ROS then steps
the simulation by 2.5ms and returns new sensor measurements to

Evo-ROS: Integrating Evolution and ROS GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan

Ardupilot. Unlike typical Gazebo simulations where the simulator
runs without waiting for commands, Ardupilot is the master of the
simulation clock [12]. The availability of the simulated Erle-Rover
model and the Ardupilot plugin provides an accurate representa-
tion of the physical rover and portability of evolved controller code
between simulated and physical rovers. We emphasize, however,
that Ardupilot is not integral to Evo-ROS. As discussed later, we
are currently conducting studies that replace Ardupilot with other
control software.

Evaluation. Figure 6 depicts one of the three environments used
to evaluate individuals. Environments are specified in a Gazebo
specific file format, facilitating reuse between experiments. Each
rover carries out a pre-defined waypoint following mission, in two
phases. First, a rover navigates through the waypoints within the
environment, eventually returning to the starting location. If the
rover successfully completes the first phase, it then must navigate
the waypoints in reverse order, finally returning home again. Hav-
ing two phases is intended to avoid sensor configurations from
becoming overfit to missions favoring turns in one direction. In
addition, the direction of the first phase is selected randomly to
deter sensor configurations from “memorizing” the route.

Figure 6: A sample first phase of a mission path consisting
of four waypoints in oriented around a home location.

Fitness. Fitness reflects individual performance in three different
environments, specifically:

f it =
3∑

n=1
(1+perc_complete)2+C∗(1+perc_time_remaininд)2 (1)

where perc_compelete represents the percentage of mission com-
pleted, C is either 1 or 0 indicating whether or not the mission was
completed, and perc_time_remaininд indicates how much of the
allotted time remained at the completion of the mission.

Control. The control strategy is split into two different modes, (1)
a waypoint following mode encoded in Ardupilot and (2) a ROS-
based obstacle avoidance mode. Both modes pass commands to the
simulated rover via UDP sockets maintained by Ardupilot. By de-
fault, the waypoint following algorithm governs navigation when

no obstacles are detected by sensors [2]. Ardupilot navigates be-
tween waypoints using a serpentine driving behavior, sweeping
the front of the rover through a 60 degree arc as it moves forward,
rather than following a straight line. When at least one sensor de-
tects an obstacle within a threshold distance from the vehicle, the
obstacle avoidance mode preempts the waypoint following algo-
rithm. Obstacle avoidance is implemented by switching Ardupilot
into “Manual” mode and sending movement commands from a ROS
script. Once the obstacle is cleared, waypoint navigation resumes.

The command flow for operating in these two modes can be seen
in the bottom half of Figure 2. In the waypoint following mode,
commands are generated by the APMRover process within Ardupi-
lot. In the obstacle avoidance mode, commands are generated by
the navigation controller on the rover. These commands are passed
through the MAVROS process so that they can be translated to fol-
low the MAVLink protocol. Regardless of the source, the MAVProxy
process is responsible for the communication of the commands to
either a physical rover or, in our case, a simulated one.

Obstacle avoidance commands are generated using a weighted
voting algorithm. Each sensor that detects an obstacle casts a vote
to turn either left or right, depending on the orientation of the
sensor. For example, if a sensor on the front of the vehicle and
angled slightly left detects an obstacle, it would vote to turn right.
Each vote is weighted based on the proximity of the detected object.
After each sensor has cast its vote, the right and left totals are
calculated. A small difference, with both left and right votes above
a certain threshold, indicates that an object is directly in front
of the rover. The default response is to navigate left around the
object. Otherwise, turning direction is determined by the sign of
the difference between the left/right votes, negative indicating a
left turn and positive indicating right. The strength, or sharpness,
of the turn is determined by the following equation:

turn_strenдth = 1 −
(max_ranдe −

��∑6
i=0wi ∗ di

��)
max_ranдe

(2)

where max_ranдe is the maximum detection range for the sen-
sor, wi is the weight and di is the turn direction vote for the ith
sensor. The summation takes into account all voting sensors. If
turn_strenдth is 1.0 the rover will turn as sharply as possible. As
turn_strenдth approaches 0 the turn becomes more gradual. After
an obstacle has been avoided and no sensors report collision threats,
the autopilot returns to the waypoint following behavior.

5 EXPERIMENTS AND RESULTS
As noted above, we present only a subset of the results of our exper-
iments, where the UGV was equipped with six sonar sensors, and
left-right symmetry enforced. We conducted three treatments. First,
a greenfield (idealized) scenario establishes a baseline of perfor-
mance. In this treatment, no sensors fail during the mission and the
vehicle is able to operate under ideal conditions. In the next treat-
ment, a single sensor randomly fails during the mission, simulating
a situation where an electrical or mechanical failure arises in the
robot. The final treatment simulates physical damage to the vehicle,
wherein multiple sensors can fail based on their physical proximity
to each other. We next describe the details of the evolutionary runs,
followed by results for each treatment.

GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan Glen A. Simon, Jared M. Moore, Anthony J. Clark, and Philip K. McKinley

Figure 7: A panel image showing the winning sensor configuration for each replicate in the baseline treatment experiment.

Evolutionary Parameters. Table 1 lists the parameters of the GA
used in this study. Each individual of the population represents a
viable sensor configuration. Specifically, the genome of an individ-
ual consists of six behavioral traits relating to six individual sonar
sensors. Each of these traits contain four values: a string describing
the type of sensor such as ’sonar’, the x and y position values of the
sensor on the rover as well as a z value that determines the angle
at which this sensor should face. After the population has been
evaluated in the simulation environment, tournament selection,
with a tournament size of two, creates a parent pool. Members of
the parent pool produce the children pool using crossover with a
probability of 0.25. If crossover does not occur, a child is cloned
from a parent. The original population and the new individuals
present in the children pool are combined into the candidate pool,
which is larger than the original population size. A fraction of the
members of the candidate pool will randomly undergo mutation,
where the location and/or orientation of one or more sensors can
be changed. If mutation or crossover create a new individual, it
is marked as unevaluated. All such individuals are then evaluated
via Evo-ROS before the next generation’s population is selected.
Elitism is used to maintain the highest performing individual with
the rest of the population filled by performing tournament selection.

Table 1: Genetic Algorithm Parameters.
Population Size 30
Generations 25

Mutation Probability 0.15
Crossover Probability 0.25

A controller/sensor configuration is evaluated by measuring the
performance of the UGV on waypoint following and obstacle avoid-
ance tasks in three different environments, discussed in Section 4.
Obstacles in the environments include tall walls, one meter wide
cubes, and cinder blocks that are shorter than the height of sensors
on the rover. Cinder blocks thus pose a potential challenge as they
are visible to the rover only at distances greater than 0.5 meters, due
to the cone shaped detection area of a sonar. We suspect that the
cinder blocks will force the vehicle to evolve navigation strategies
that maintain a distance threshold from obstacles in order to avoid
losing the ability to detect very close objects.

Ten replicates are conducted per experiment. While this number
is considered low for ER experiments, the simulation of each mis-
sion is computationally expensive and is limited to real time due to
the use of Ardupilot. An individual replicate takes between 16 and
24 hours of wall clock time, depending on the average performance
of individuals in the replicate. Attempting to run simulations faster
than real-time results in random behavior, as we cannot assure the
control signals are consistent across multiple simulations of the
same controller/sensor configuration. We plan to address this in
future work by replacing the Ardupilot control stack with a cus-
tom autopilot stack, enabling faster than real time simulation. That
said, a goal of this initial case study was to apply evolution to a
target system exactly matching one from the robotics community,
including the use of Ardupilot.

Baseline Experiments. The UGV is equipped with six sensors and
symmetry is enforced across experiments. In the first treatment, all
sensors perform nominally, reporting on time with accurate data.
Figure 7 shows the sensor configuration of best performing individ-
ual in each replicate. Two main configurations emerge. First is an
array of sensors spread across the front of the vehicle, with slightly
varying angles. This configuration gives the UGV full sonar cover-
age directly in front, and sightly to its sides. Second, the sensors
“drift” toward the sides of the vehicle. Neglecting frontal coverage
may seem like a weakness, but it appears that this configuration
exploits an artifact of Ardupilot’s waypoint navigation behavior.
Specifically, the UGV drives in a serpentine pattern towards each
waypoint, causing the orientation of the rover to swing in an arc of
up to 60 degrees. Sensors mounted facing the side of the rover thus
sweep through the area in front of the rover, while also providing
information to the controller about the peripheral environment.

Figure 8 overlays the results of the 10 replicates on a single rover.
Common sensing cones and placement are indicated by darker
shaded areas. As seen in Figure 7, the sensors primarily sweep the
forward viewing cone or cover the sides.

A scatter plot of the evolutionary progress of a sample run is
shown in Figure 9. Here each individual is plotted according to its
fitness score and generation. Individuals are color-coded based on
their generation, thus individuals from the same generation share
the same color. The fitness of the best fit individual and the average
fitness for the generation are also plotted. It can be seen that most
increases in fitness take place during the first 15 generations, after

Evo-ROS: Integrating Evolution and ROS GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan

Figure 8: Overlay of sensor placements and viewing areas
from 10 replicates of the baseline treatment experiment.

which fitness plateaus, and the average fitness for each generation
approaches that of the most fit individual.

Figure 9: Plots of the average and best fitnesses in the popu-
lation over 25 generations for a sample replicate of the base-
line treatment.

Random Sensor Failures. In the second treatment, a randomly
selected sensor fails between 40 and 80 seconds into an individual
simulation. The UGV is allowed 540 seconds to complete a mis-
sion, with the optimal time being between 360 and 400 seconds,
depending on the distribution of obstacles.

Sensor placement for the random failure treatment was similar to
the baseline treatment. Again two configurations emerge, the array
of sensors across the front of the vehicle and also spread along both
sides. However, the results of this treatment evolve configurations
with redundant sensors placed next to each other. In six of the ten
replicates, redundancy is built into the configuration by having
two sensors with nearly identical placement and orientation. Even
when two sensors are not nearly identical in placement, evolved

solutions tend to have multiple sensors dedicated to covering the
same area. It appears that, in the case of random failures, evolution
favors redundancy over a wider sensing capability.

Spatially Correlated Sensor Failure. Spatially correlated sensor
failure simulates physical damage to a robot. Figure 10 depicts
the spatial failure model centered on a sensor selected at random.
Sensors within the affected area are also damaged and stop report-
ing. We hypothesize that this will pressure the sensors to be more
evenly distributed across the robot and perhaps also demonstrate
redundancy of coverage among the six sensors.

Figure 10: The areas impacted by the spatially correlated fail-
ure model on a sample sensor configuration.

Figure 11 plots the sensor placement of the highest performing
individual in each of the ten replicates. As in the baseline treatment,
two primary configurations evolve. The first remains an even spread
of sensors across the front face of the rover. The second is focused on
the sides of the platform. Surprisingly, there are clusters of sensors
that would fall within the failure radius of the model. Apparently,
the position of these sensors is more important than the risk of
damage from sensor failures.

6 CONCLUSIONS AND FUTURE DIRECTIONS
Evo-ROS is intended as a bridge between the ER and traditional ro-
botics communities. Leveraging the ROS/Gazebo simulation stack,
evolutionary optimization can be applied to simulated robotic sys-
tems with pre-built and tested models of commercially available
hardware. This approach should reduce developer time require-
ments in building an accurate simulation, and also increase the
scope of available environments/platforms for the ER community.
To address the execution time needed for high-fidelity simulations,
Evo-ROS provides an interface to parallelize evolutionary runs
across multiple VMs.

In a case study, we investigated optimization of sensor placement
on the Erle-Rover, a commercially available UGV, equipped with
with pre-built sensor libraries provided by ROS/Gazebo. Evolved
solutions exhibit both expected (front facing) and unexpected (side
facing) sensor deployments. Resilience to damage is an important
need in robotic systems, but can be challenging to design into a
system. Even in the presence of sensor failure, evolved solutions
are able to complete the waypoint following tasks. Evolutionary

GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan Glen A. Simon, Jared M. Moore, Anthony J. Clark, and Philip K. McKinley

Figure 11: A panel image showing winning sensor configuration for each replicate with spatially correlated failures.

search explores the possible space and can potentially suggest novel
solutions to address this issue, as observed in this study.

While conducting the case study, we identified three areas for
improvement/ongoing development. First the Ardupilot control
software employed on the rover limits the speed of simulations
to real time. While Ardupilot-controlled commercial platforms are
readily available, this controller is intended primarily for the hob-
byist market. In ongoing work, we are removing Ardupilot from
the control stack of the rover, and will instead utilize a purely ROS-
based controller. Doing so enables faster simulations and should
not limit the available software stacks for control and sensing, as
many other ROS/Gazebo software libraries are available.

Second, the use of Ardupilot and its associated MAVProxy com-
ponent limited our initial experiment to a single robot per environ-
ment. Large-scale robotics problems might involve many robots per
simulation. Our ongoing work eliminates the Ardupilot/MAVProxy
dependency, allowing Evo-ROS to be used with simulations con-
taining multiple robotic agents.

Finally, the ROS/Gazebo software stack can have a high initial
investment in terms of start-up and configuration. We are currently
assembling a virtual machine, preconfigured with Evo-ROS and
corresponding tutorials, greatly reducing the time for new users to
install and use Evo-ROS. Rather than requiring individual installa-
tion of the many needed software packages, the VM will contain all
necessary software, ready to run. A user can download and deploy
a VM on their own system, or distribute many instances across
a computing cluster and begin parallelized runs immediately. By
eliminating many of the time-consuming challenges we encoun-
tered in developing Evo-ROS, we hope to facilitate use of Evo-ROS
by both the ER and mainstream robotics communities.

ACKNOWLEDGMENTS
This work was supported in part by grants from the U.S. National
Science Foundation and the Air Force Research Laboratory. Addi-
tional support was provided by Grand Valley State University.

REFERENCES
[1] ArduPilot. Developer website. http://ardupilot.org/about, 2018. Online; accessed

31 January 2018.
[2] ArduPilot Dev Team. Auto Mode. http://ardupilot.org/copter/docs/auto-mode.

html, 2016. Online; accessed 30 January 2018.

[3] K. Balakrishnan and V. Honavar. On sensor evolution in robotics. In Proceedings
of the 1st Annual Conference on Genetic Programming, pages 455–460, Stanford,
California, 1996. MIT Press.

[4] J. Bongard, V. Zykov, and H. Lipson. Resilient machines through continuous
self-modeling. Science, 17, November 2006.

[5] J. C. Bongard, A. Bernatskiy, K. Livingston, N. Livingston, J. Long, and M. Smith.
Evolving robot morphology facilitates the evolution of neural modularity and
evolvability. In Proceedings of the 2015 Genetic and Evolutionary Computation
Conference, pages 129–136, Madrid, Spain, 2015. ACM.

[6] Buyval, Alex. Aurélien, Roy. Maxime, Lafleur. Ardupilot SITL Gazebo Plu-
gin. https://github.com/AurelienRoy/ardupilot_sitl_gazebo_plugin/tree/master/
ardupilot_sitl_gazebo_plugin, 2015. Online; accessed 31 January 2018.

[7] A. J. Clark. Evolving Adabot: A mobile robot with adjustable wheel extensions.
In 2017 IEEE Symposium Series on Computational Intelligence (SSCI), pages 1–8,
Honolulu, HI, USA, 2017.

[8] A. J. Clark, X. Tan, and P. K. McKinley. Evolutionary multiobjective design of a
flexible caudal fin for robotic fish. Bioinspiration & Biomimetics, special issue on
Bioinspired Soft Robotics, 10(6), November 2015.

[9] A. Cully, J. Clune, and J. Mouret. Robots that can adapt like natural animals.
ArXiv Preprint, 2014.

[10] D. Duckworth, B. Shrewsbury, and R. Murphy. Run the robot backward. In
2013 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR),
pages 1–6. IEEE, 2013.

[11] Erle Robotics. Erle-Rover. http://erlerobotics.com/blog/erle-rover/, 2018. Online;
accessed 31 January 2018.

[12] Erle Robotics. Simulation Introduction. http://docs.erlerobotics.com/simulation/
intro, 2018. Online; accessed 31 January 2018.

[13] D. Floreano, P. Husbands, and S. Nolfi. Evolutionary Robotics. In Handbook of
Robotics. Springer Verlag, Berlin, 2008.

[14] N. Koenig and A. Howard. Design and use paradigms for gazebo, an open-source
multi-robot simulator, 04 2004.

[15] S. Koos, J. B. Mouret, and S. Doncieux. Crossing the reality gap in evolution-
ary robotics by promoting transferable controllers. In Proceedings of the 2010
ACM Genetic and Evolutionary Computation Conference, pages 119–126, Portland,
Oregon, USA, 2010. ACM.

[16] H. Lipson and J. B. Pollack. Automatic design andmanufacture of robotic lifeforms.
Nature, 406(6799):974–978, August 2000.

[17] J. M. Moore and P. K. McKinley. Evolution of joint-level control for quadrupedal
locomotion. Artificial Life, 23(1):58–79, January 2017.

[18] M. J. Rose, A. J. Clark, J. M. Moore, and P. K. McKinley. Just keep swimming:
Accounting for uncertainty in self-modeling aquatic robots. In Proceedings of
the 6th International Workshop on Evolutionary and Reinforcement Learning for
Autonomous Robot Systems, Taormina, Italy, September 2013.

[19] F. Silva, M. Duarte, L. Correia, S. M. Oliveira, and . A. L. Christensen. Open issues
in evolutionary robotics. Evolutionary Computation, 24(2):205–236, 2016.

[20] Tim Smith. About ROS. http://www.ros.org/about-ros/t, 2018. Online; accessed
31 January 2018.

[21] X. Wang, S. X. Yang, W. Shi, and M. Q. H. Meng. A co-evolution approach
to sensor placement and control design for robot obstacle avoidance. In 2004
International Conference on Information Acquisition, pages 107–112, Hefei, China,
2004.

[22] Y. Zhang and J. Jiang. Bibliographical review on reconfigurable fault-tolerant
control systems. Annual reviews in control, 32(2):229–252, 2008.

http://ardupilot.org/about
http://ardupilot.org/copter/docs/auto-mode.html
http://ardupilot.org/copter/docs/auto-mode.html
https://github.com/AurelienRoy/ardupilot_sitl_gazebo_plugin/tree/master/ardupilot_sitl_gazebo_plugin
https://github.com/AurelienRoy/ardupilot_sitl_gazebo_plugin/tree/master/ardupilot_sitl_gazebo_plugin
http://erlerobotics.com/blog/erle-rover/
http://docs.erlerobotics.com/simulation/intro
http://docs.erlerobotics.com/simulation/intro
http://www.ros.org/about-ros/t

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Evo-ROS Framework
	4 Case Study: UGV Sensor Resilience
	5 Experiments and Results
	6 Conclusions and Future Directions
	References

