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ABSTRACT
Successful attacks on computer networks today do not often owe
their victory to directly overcoming strong security measures set up
by the defender. Rather, most attacks succeed because the number
of possible vulnerabilities are too large for humans to fully protect
without making a mistake. Regardless of the security elsewhere,
a skilled attacker can exploit a single vulnerability in a defensive
system and negate the benefits of those security measures. This
paper presents an evolutionary framework for evolving attacker
agents in a real, emulated network environment using genetic pro-
gramming, as a foundation for coevolutionary systems which can
automatically discover and mitigate network security flaws. We
examine network enumeration, an initial network reconnaissance
step, through our framework and present results demonstrating its
success, indicating a broader applicability to further cyber-security
tasks.

CCS CONCEPTS
• Security and privacy → Network security; • Computing
methodologies→ Genetic programming;
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1 INTRODUCTION
As computer networks have grown to encompass increasingly large
quantities of sensitive applications, data, and critical infrastructure,
their security has become increasingly paramount [22]. Investigati-
ons of high-profile breaches frequently report that the cause was
a serious flaw or oversight in some aspect of security [21]. Conse-
quently, offensive security in the form of penetration testing has
become a six hundred million dollar industry [13], demonstrating
that modern network defense strategies must be proactive. Unfor-
tunately, the attack surface area and thus the number of attack
strategies is extremely high for a large computer network, and or-
ganizations are temporally and financially resource restricted. To
combat these restrictions, we propose a framework to facilitate au-
tomated, intelligent network penetration testing and vulnerability
discovery to be used in addition to professional penetration testing.

One possible method for automating this is through coevolution
of strategies for attacker and defender agents on a copy of the
network. Our framework allows strategies for attacking a computer
network to be evolved, letting attacker agents adapt to exploit
weaknesses in a network or in a defensive strategy. Similarly, a
population of defender agents could be evolved to develop strategies
to modify the network and make it more secure, or make active
responses during an attack. Work such as that of Rush et al. [20] has
previously attempted this on simulated networks, but the reduction
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in fidelity that a simulation has compared to the complex behavior
of a real network means that any results might not transfer well
to the real world. Further, different simulations focus on different
aspects of computer networks, and there is no standard simulator
for cybersecurity scenarios, which limits the comparability of any
published results. Ideally, then, such coevolution should take place
on a real network, or at least an emulation of a real network, to
ensure that behavior on the network provides an accurate test of
agent strategies, and so that experiments are directly comparable
to anything else using a real or emulated network.

The purpose of this paper is to demonstrate a proof-of-concept
framework for the evolution of attacker agents in an emulated net-
work on the task of network enumeration, a small subproblem of
the larger task of attacking a network. Network enumeration is a
reconnaissance task dealing with discovering the resources present
on the network. We implement our framework through the use
of strongly-typed genetic programming, allowing the evolution of
strategies which generate sets of candidate IP addresses to scan for
on the network based on addresses known through listening to net-
work traffic or from previous scans. These scans allow the agents
to efficiently discover a large proportion of the machines running
on the network, information which a higher-level strategy would
then use to inform its future actions. By developing infrastructure
to run evolutionary algorithms (EAs) on emulated networks and
demonstrating the evolution of strategies in this difficult environ-
ment, this work shows the feasibility of expanding these methods
towards coevolving full attacker and defender strategies.

2 RELATEDWORK
Evolutionary algorithms have previously been applied to the secu-
rity domain in simulated environments. Mrugala et al. [16] used
genetic programming to evolve attacker agents within simulated wi-
reless sensor networks, intended to disrupt communications while
remaining undetected by static defensive strategies. Attacker agents
were able to improve individually upon packet suppression rates
and detection rates by the defender compared to a handmade agent,
but not both at once. By studying the strategies that the attackers
were evolving, the authors were able to significantly improve the
performance of the detection strategy.

In work by Garcia et al. [8], the authors coevolve attacker strate-
gies and defender strategy selections on a simulated peer-to-peer
network, where the attacker agents perform denial of service at-
tacks against a set of nodes at different times as defined in the
genotype. The defender selects one of three routing strategies. Se-
veral different variant forms of coevolution were evaluated. The
authors found the best performance in a form of coevolution that
treats each fitness the set of opposing strategies as a multiobjective
problem, and selects individuals for the next generation based on
the non-dominating front. The defenders were found to pick the
most robust of the three strategies, which was unbeatable by the
attackers on sufficiently large networks.

In research by Rush et al. [20] [19], the author coevolves attacker
and defender strategies in a simulated network graph, in which
the attacker agents, using strategies encoded by decision trees, are
tasked with exploring and taking control of a network, and exploi-
ting value from compromised machines. The defender has a fixed

strategy during the attack, responding to alerts from intrusion de-
tection systems by disconnecting nodes, and instead is tasked with
evolving the structure of the network, along with augmentations
such as intrusion detection systems. A large number of different
parameters were tested for how they impacted coevolution, and
evolutionary results were compared against those of a hill climber.
Results found that defender strategies were difficult to evolve, and
that the defenders performed best when they were tasked with
making small modifications to an already functional network. At-
tacker strategies tended to be easier to evolve, and were found to
get particular benefit from being able to make decisions based on
their previous actions. Experiments with the hill climber showed
that the use of coevolutionary algorithm was justified, since the
search space was found to be highly multimodal.

3 BACKGROUND
3.1 Network Enumeration
Network Enumeration, often known as network reconnaissance,
is the act of obtaining network information by sending IP packets
and observing the responses. It is often the first step in any cyber
attack as it provides critical information and the layout of the de-
sired network [1]. Network Enumeration is often broken into the
following stages: Host Discovery, or locating computer IP addres-
ses; Port Discovery, or identifying networking port information
about a specific host; and Service Detection, or determining which
version of a software is running on the host. Following network
enumeration, known vulnerabilities can be identified and exploited.

3.2 Strongly-Typed Genetic Programming
Genetic programming is a form of evolutionary computation which
works on genotypes structured to represent a “program”, a broad
word which encompasses anything from algorithms to mathemati-
cal functions to circuit designs. Genetic programming represents
these programs using structures of primitive nodes which receive
input from and output to other such nodes. The oldest and most
common way of structuring these genotypes is as a tree [11], where
each vertex in the tree represents a function taking input from its
child nodes, producing output either from the root node or through
side effects of the functions. In this tree-based genetic programming,
mutation and recombination operations occur based on subtrees:
mutation replaces a subtree of the genotype with a new random
subtree, and recombination replaces a subtree of one parent with
another subtree transplanted from the second parent. In traditional
forms of genetic programming, these primitive nodes are designed
such that the output from any node serves as a valid input for any
other node, such that the evolutionary operators can be applied
arbitrarily. Many other forms of genetic programming exist, gene-
rally defined by using different genotype structures, such as linear
genetic programming [2] which uses linear arrays of instructions
interacting with registers, and Cartesian genetic programming [14]
which holds a directed graph on a 2D grid of fixed size.

Strongly-typed genetic programming [15] is a variant of tree-
based genetic programming which introduces a typing system into
its tree structure, allowing for constraints on which primitive nodes
are valid inputs for other primitive nodes, in line with the idea
of type in programming languages. This removes the restriction
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that ordinary tree-based genetic programming has that primitive
functions must be carefully designed to all work on the same data
type, even when that might be unintuitive. Strongly-typed genetic
programming as a result provides greater flexibility for the user
in designing genotypes, and also allows the search space to be
restricted to prevent function inputs which are clearly nonsensical.
As a consequence, the evolutionary operators are more complicated,
as they need to prevent type violations.

4 METHODOLOGY
4.1 Evolution

4.1.1 Agent behavior. Agents performing the network enume-
ration task have the ability to listen to traffic on their host machine,
and to select specific sets of IP addresses to test using the network
scanning tool Nmap [12]. The core idea of the agent strategy is that,
short of a brute-force search, guessing IP addresses on a network
involves making predictions about the structure of the network
based on IP addresses which are already known. A 10.1.1.15 ad-
dress with a 10.1.1.255 broadcast address suggests that there might
be other addresses on the 10.1.1.0/24 subnet in use. The agents
confirm the existence of a new IP address, found either by listening
to network traffic or as a result of a previous scan, and use it to
generate a new set of IP addresses according to a certain strategy,
encoded as a genetic programming tree, to scan for. This is detailed
in Algorithm 1.

Algorithm 1: Algorithm for network enumeration agents
input :GPTree(), which takes an IP address as input and

outputs a priority queue
Queued ← ∅ (A priority queue forbidding duplicates);
Searched ← ∅ (A set);
Found ← ∅ (A set);
while evaluation time < time limit do

if new address IP found by listening then
add IP to Found ;
add first 256 elements of GPTree(IP) not in Searched
to Queued ;

if Queued is not empty then
ScanIPs ← first 256 elements of Queued ;
remove the first 256 elements of Queued ;
NewIPs ← Scan(ScanIPs);
add all NewIPs to Found ;
for IP in NewIPs do

add first 256 elements of GPTree(IP) not in
Searched to Queued ;

if Queued contains fewer than 256 elements then
for IP in Found do

add first 256 elements of GPTree(IP) not in
Searched to Queued with low priority;

output :Found , the set of discovered IP addresses

4.1.2 Genetic Programming Trees. Our genetic programming
trees function by taking an input IP address and generating a set

Table 1: Genetic programming primitives used

Name Output type Input types
addIPs VOID IP_LIST, SMALL_INT, VOID
Add the IPs to the queue with given priority
end VOID
Terminates execution
buildIPs IP_LIST BYTE_RANGE × 4
Generates all IPs within the ranges
constant BYTE_RANGE BYTE
A range containing a single constant value
inputValue BYTE_RANGE
A range with only the corresponding input octet
interval BYTE_RANGE SMALL_INT
An interval of given radius around the input octet
anyValue BYTE_RANGE
A range containing all possible values (0-255)
weightedByte BYTE
A byte literal created near 0 or 255 normally
smallInt SMALL_INT
An integer value created between 0 and 10

of new IP addresses based on the original, each given a certain
priority. These new addresses are selected based on the octets pre-
sent in the original, modified by the associated nodes in the tree.
Four such primitive functions exist: using the corresponding va-
lue from the input, using the full range of 256 values, generating
an interval of a given radius around the input value, and using a
constant value initially generated by normal distribution around
0 or 255, representing the intuition that certain special addresses
are often located at very low or very high addresses. On execution
of the genetic programming tree during the course of the agent
algorithm, this will add all IP addresses for which the selected
pattern holds to the queue. For example, a generation pattern of
[inputValue, inputValue, interval(1),anyValue] with an input of
10.1.1.15 will add all addresses in the range 10.1.[0 − 2].[0 − 255].
The expansion strategy consists of several of these genotypes, each
assigned a priority. A key principle of this design is that any possi-
ble tree should represent an at least minimally effective strategy,
so that genetic operators can not render a strategy nonfunctional
and the EA is able to easily find an initial gradient. The full set of
genetic programming primitives are listed in Table 1. Example trees
are shown and discussed in Section 6.4.

4.2 Infrastructure
4.2.1 Virtual Environment. For each evaluation, the attacker

agent operates within a completely virtual network topology. This
topology consists of virtual machines acting as user nodes, fire-
walls, routers, and various other services as well as virtual bridges
that allow high fidelity network switching between the nodes. Real
network fidelity ensures that the evolved agent in a virtual topo-
logy stays applicable in real networks. More importantly, a virtual
topology allows us control over every aspect of an evaluation pro-
viding us the ability to limit the network flow within the topology
or collect diagnostic data from the nodes while the evaluation runs.
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Figure 1: Design of the overarching infrastructure

4.2.2 Infrastructure Design. Figure 1 shows a high-level graphi-
cal depiction of the infrastructure’s three core microservices.

The first layer is comprised of the host computer. Every service in
this layer runs directly on the host computer’s hardware. This layer
primarily manages the running and coordination of evaluations by
hosting the main administrative components of the infrastructure.
Mothership hosts all network enumeration results and metadata
the infrastructure and the evolutionary algorithm require to or-
chestrate each evaluation and generate new genetic programming
trees, respectively. Moreover,Mothership is responsible for queuing
evaluations to be run on the virtual network. The UFO runs the
evaluations by interacting with the virtual machines using a vir-
tualization API, libvirt [18], and communicates with the attacker
agent on the virtual machines. For each evaluation, a UFO loads the
genetic programming tree onto the node the attacker is on, starts
the attacker agent, and resets the virtual machine after 60 seconds.

The second layer contains the virtual network. This layer encap-
sulates the network topology and everything which runs within
a virtual machine. The control bridge (control-br) is an important
virtual bridge on the host machine which allows point-to-point
(or exclusive) communication between the host and each virtual
machine in the virtual network. Results and metadata communica-
tion must use this communication channel to ensure agents stay
isolated in the emulated environment.

Each virtual machine runs the Drone service. Drone provides
metrics about the virtual machine’s network connectivity which
will be used in future experiments.

4.3 Network Layout
4.3.1 Building the Network. The underlying idea behind the

network building process is to ensure statelessness between evalu-
ations and experiments. Any action the attacker agent performs on
the network alters the state of the network that the action affects
with regards to system logs or system memory. In future work,
a defender could utilize this change in state if not reset to more
quickly identify an attacker than would otherwise possible, skewing
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Figure 2: Network Topology used for All Experiments

subsequent evaluations. To mitigate these problems, the network is
build using the following procedure:

(1) The network building tool reads from a configuration di-
rectory which describes the network topology.

(2) The builder feeds these configurations into vmbetter, a tool
designed to work in Sandia National Laboratories’ mini-
mega [5] project, which builds a custom virtual machine
images.

(3) These virtual machine images are registered with the vir-
tualization library libvirt [18] and connected using virtual
bridges specified in the configuration.

(4) A snapshot is created which can be later reverted to for a
fresh machine state.

4.3.2 Network Design. The network design simulates a basic
small scale enterprise network with three main enclaves.

The administrative enclave contains the machine a network
administrator would use to access the network. Currently, there is
no difference between an administrative machine and a regular user
machine, but future experiments will require this administrative
machine to access certain services. A website administrator agent
runs on this machine and generates SSH traffic to the two servers
located in the servers enclave.

The servers’ enclave hosts internal services an enterprise needs
to run. In this specific instance, two servers are running HTTP
and HTTPS servers, respectively. This domain provides a target
for generated traffic which increases the fidelity of the network by
providing the “white noise” of normal network users.

Lastly, the users enclave encapsulates all of the users subnets
located in the enterprise. These user nodes would include things
like guests accessing internal services, employees working on the
network, and other normal network usages. On each of these nodes,
a web crawler agent generates traffic to the HTTP and HTTPS
servers to further increase the “white noise” on the network.

The core router infrastructure in our network is static, mimicking
an enterprise environment. All non-routing nodes are dynamically
served network information through internal DHCP servers sitting
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on each domain’s firewall node. At the beginning of an evaluation
each node is given a new IP address to prevent agents from learning
static addresses.

We have intentionally started our attacker agent in the admi-
nistrative domain allowing the agent to see the traffic from the
website administrator but not the user agents. Our attacker must
then evolve to detect these unknown nodes. For the purposes of this
experiment, being located on the admin node provides no special
advantage to the attacker beyond seeing its traffic.

4.4 API
Our Application Programming Interface (API) abstracts low-level
implementation into high-level easy-to-use actions for attacker,
defender, user agents, and their programmers. Agents require the
ability to manipulate network structures, gather network and host
forensics, review logs, among other sensory actions in order to
execute high-level strategies and objectives over the course of both
development and evolution. The main features currently implemen-
ted leverage Libnmap [17] and Pyshark [9] for interacting with raw
data from hosts.

5 EXPERIMENTS
5.1 Experimental Procedure
To begin an experiment, we build the virtual network on specified
host computers using Ansible [6]. Upon completion, the evolutio-
nary algorithm can then submit sets of evaluations to the infrastruc-
ture to be run. The infrastructure takes each genetic programming
tree and runs the attacker agent with that tree on an available
virtual network, executing in parallel with evaluations on other
virtual networks. The evaluation runs for sixty seconds, reports the
results to the infrastructure, and then the network is reset for the
next evaluation.

The attacker strategy is assigned a fitness equal to the number
of discovered IP addresses during evaluation. After all evaluations
have been run for the current generation, the EA collects the results
from the infrastructure, generates a new generation of individuals,
and again submits them to be run. This procedure repeats until
termination of the EA.

5.2 Parameters
One of the key difficulties with evolution in an emulated environ-
ment is combating the time constraints inherent to agents executing
commands in real-time. Additionally, the overhead of restoring the
network state between each evaluation further lengthens experi-
ment times. While work on simulated computer networks, such
as that by Rush et al. [20], can run nearly 100,000 evaluations per
experiment, a single evaluation on our emulated network takes mul-
tiple minutes, meaning that the run-time of only 1,000 evaluations
can exceed 50 hours, excluding parallelization. Future reductions
in infrastructure overhead can improve this somewhat, but there
remains the necessary requirement of running agents in real-time
in order to maintain fidelity of the experiments. This time limitation
is fundamental to the use of a real network and limits the perfor-
mance of the EA: it would be desirable to use larger populations
or to run multiple evaluations per attacker to reduce noise, but
these things would come at an extreme time cost, so evolution can

Table 2: Evolutionary parameters

Generation limit 50
Selection population (µ) 18
Child population (λ) 18
Total evaluations 900
Mutation fraction 25%
Recombination fraction 75%
Initial tree height 3-7
Parallel evaluations 6

only be given fairly limited resources. Table 2 lists the parameters
chosen for these experiments.

Fitness proportionate selection is used to select individuals for
parent selection, primarily due to certain properties of the fitness
function used. Since evaluations take place in an emulated environ-
ment, a small amount of noise can result in individual evaluations
having unusually high or low fitness scores; fitness proportionate
selection reduces the bias of this. For survivor selection, truncation
selection was chosen, since a level of elitism is needed to maintain
the relatively small integral gains late in evolution of occasional
new strategies which find only one or two more IP addresses than
their rivals.

Genetic programming trees are generated using a variant of the
grow method from strongly-typed genetic programming [15]. This
variant precomputes the possible heights that can be reached for a
subtree with a given data type as the root, and then makes sure to
select primitives such that at least one subtree reaches the desired
height. The other subtrees are generated as normal through the
grow method. No parsimony pressure was needed to control the
growth of the trees during evolution, because larger trees tend
to add more addresses to the queue for each input, and as such
an excessively large tree is usually less efficient in search than a
moderately-sized one.

5.3 Alternative Optimization Strategies
In order to gauge the effectiveness of the EA as a method of gene-
rating attacker agent strategies and justify its use for this problem,
two simpler optimization strategies were implemented: a random
generator, and a first-choice hill climber. These were each run for
the same number of evaluations that the EA was given. The random
agent generator simply generates agents at random in the same
way that the EA generates its initial population, and returns the
best generated strategy. The first-choice hill climber stores its best
strategy, and successively generates children by mutation of the
best strategy, keeping the one with the highest fitness between the
stored strategy and the children. Due to the availability of parallel
evaluation, several children are generated in parallel groups, rather
than each in sequence. This includes the initial genotype, which
selects the best of several randomly generated trees.

6 RESULTS
6.1 Evolutionary Results
Five runs of the EA were recorded. Figure 3 shows a graph of best
and average fitness over time for these runs. Evolution was usually
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Figure 3: Average and best fitness over time for the EA,
across each of five runs

rapidly able to find IP expansion strategies which could discover 74%
of the network, which corresponds to the entire network excepting
the 10.3.200.0/24 subnet, which it tended to have difficulty finding
due to the 200 octet’s distance from any others. Only one of the
five experimental runs developed a strategy able to discover that
subnet. Of particular note is that all experiments appeared to suffer
from premature convergence, often even before reaching that 74%,
indicating that they were frequently getting trapped in local optima.
This is explored further in Section 6.4.

6.2 Random Generation
900 randomly-generated strategies were analyzed to determine
the effectiveness of evolution compared to a trivial algorithm. The
average fitness of a random strategy was 20%, far less than the
average fitness of strategies generated during evolution, which rea-
ched 55% in later generations. This demonstrates that evolutionary
operators were much more effective at generating new strategies
than random chance. A histogram of the generated strategies’ fit-
nesses is provided in Figure 4. Only 8 of the 900 random strategies
were able to find more than 50% of the network, and just 1 out of
900 reached a fitness of 74%, even though such strategies were often
discovered very early on in evolution.

6.3 Hill Climber
Three runs of a hill climber were recorded, in order to better analyze
the fitness landscape. The results of the EA suggested that there
were problems with premature convergence to local optima. As
hill climbers do nothing but converge to a local optimum, they are
well-suited to examining these issues further. The best and average
fitness values over time for the hill climber are shown in Figure 5
and a comparison with the EA and with random search is shown
in Figure 6. While the EA produced higher-fitness individuals on
average than the hill climber as a result of recombination, both
were nearly identical on average in terms of best fitness over time.
In two of the three runs, the hill climber was in fact able to to reach
similar maximum performance to the EA, reaching local optima
with 74% fitness early on. This provides further evidence that future
research should include a focus on escaping local optima, which is
discussed in Section 6.4. However, the hill climber used was still
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Figure 5: Average and best fitness over time for the hill clim-
ber, across each of three runs

working with the same genetic programming trees, under the mu-
tation operator, so its unexpectedly high performance still supports
the effectiveness of this work’s selection of genetic programming
primitives and agent design. The hill climber relies on the smooth
gradient produced deliberately by the agent structure in order to
function as well as it does.

6.4 Individual Strategies
The most successful individuals tended to develop similar strategies.
Given an input IP address consisting of four octets, high-performing
strategies mostly responded by searching intervals on the second
and third octets in order to locate new subnets near already disco-
vered ones, as well as searching the full set of possible values on
the fourth octet in order to find the addresses randomly distributed
by DHCP in that subnet. An example of such a strategy is shown
in Figure 7.

This strategy first searches for subnets near known ones, with
the same fourth octet value as the known IP. When those have
all been searched, it then searches the entire [0–255] range for
the fourth octet on each subnet it is located. Finally, if nothing
else is found, it looks for any possible IP addresses with a 3 in
the second octet, which allows it to locate addresses on the user
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For input IP a.b.c.d:
• Queue a.[b±8].[c±1].d (Priority 2)
• Queue a.b.c.[0–255] (Priority 3)
• Queue a.3.[0–255].[0–255] (Priority 5)

Figure 7: Example strategy with fitness of 74%

subnets through brute force. Upon finding one, it will have new
higher-priority values to search again.

The hill climber was able to find similar solutions fairly quickly,
indicating that such a solution can be found by evolution using only
small, incremental improvements. However, this strategy leaves
no clear incremental improvement that would allow it to discover
the 10.3.200.0/24 subnet, which is located much further away from
the others than the use of interval expansions would be able to
cover. A strategy that can discover the 10.3.200.0/24 subnet would
instead need to be searching for shared octet 4 addresses across
different subnets on octet 3, and might particularly exploit the fact
that the user subnets all share a 10.3.*.254 address. The immediately
appealing success of the former strategy however makes it difficult
for the EA to explore different approaches due to a lack of factors
promoting population diversity.

Low population diversity can be caused by excessive selection
pressure or the properties of the fitness landscape, but also by
issues such as the low population being used in this work due to
the time constraints of evaluation. This indicates that a first step in
improving the performance of the EA should be analyzing metrics
of diversity in the population over time, such as those presented in
Burke et. al [3]. Insufficient diversity in the population need not only
be improved through adjusting parameters to encourage it, however.
It is not uncommon to directly promote diversity through various
methods, such as including it as a second objective function in a
multiobjective framework. A particular mechanism of measuring
diversity for genetic programming trees is given by Burks and
Punch [4]. By increasing diversity in the population, the EA can
be made to hold on to more novel genotypes even if they are not

as immediately lucrative to exploit, which would help with the
problems seen here.

7 CONCLUSION
Despite the remaining difficulties in need of further study, this work
serves as a proof of concept of the idea that effective strategies for a
cyber-attacker agent can be evolved on an emulated computer net-
work running in real-time. Unlike in a simulation, these emulated
agents are interacting with all the complexities of a real network,
and have to deal with problems such as unreliable network scan-
ning functions and benefits such as overhearing network control
packets, all of which might not have been implemented in a simula-
tion, and all of which allow evolved agents to be that much better
adapted to the minutia of functioning in the real world. While the
task being attempted by the agents is simple on its own, it is one of
many parts of a much larger problem, all of which can be explored
in an emulated network using similar principles in the future.

8 FUTUREWORK
8.1 Coevolution
A key component in replicating a realistic security scenario is the
presence of a defender who controls the computer network and is
attempting to keep the network secure against the attackers. The
defender agent should be able to take actions in the interests of
security both in preparation for future attacks, such as configuring
intrusion detection software and modifying the network topology,
and during the attack, such as shutting down computers or network
connections. All of these sorts of actions can have a significant cost
to the defender, in terms of cost and effort to implement, but also
in terms of impact to the user. A network can be made perfectly
secure by blocking all traffic, but this also makes it useless. The
defender, then, must learn to make a reasonable tradeoff between
security and usability.

Allowing competitive coevolution between the attacker and de-
fender agents, such that the two populations are evolved together
with combined fitness evaluations, provides for an interesting set of
possibilities. Such an arrangement would ideally result in an “arms
race” effect in which the attackers would evolve to better exploit
new vulnerabilities in the network, while the defenders would need
to evolve to defend against those new strategies. Effective coevo-
lution without cycling ensures that population members maintain
effectiveness against opponents from past generations. As a result,
attackers and defenders evolved in this way should be effective
against most attack or defense strategies that developed during
evolution. One could imagine using a replica of an existing compu-
ter network as a baseline, and evolving a set of modifications and
security strategies tailored directly to that network able to stand
up reasonably against everything the attacker was able to develop.

8.2 Benign-Human Mimicking Agents
An additional part of the network ecosystem is important for repli-
cating real network behavior is the users, who provide a variety of
benefits to the attacker. Attackers can gain information about the
structure of the network by listening to user communications with
network services. User activity also makes the state of the network
more dynamic: for example, users logging into machines might
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deposit additional credentials into memory that an attacker can use.
Finally, users provide cover for the attacker: attackers often rely
on the complexity of real users to blend in, making detection more
complicated. Therefore, the inclusion of realistic user agents will
force both attackers and defenders to learn these real-world skills.

Previous research has been mostly limited to replays of user
network traffic and creating agents by hand. Both methods are
insufficient, since agents created from replays are unresponsive to
changes in the network, and creating agents by hand can be time-
consuming and lead to overspecialization. Research is underway
to create a custom hyper-heuristic employing genetic program-
ming that evolves benign-human mimicking software agents for
cyber-security emulations. To analyze network traffic, netflows are
captured and then the entropies of the bidirectional netflows are cal-
culated over a sliding window of time. The resulting time series of
entropies are then used in supervised learning, in the form of clus-
tering algorithms and learning classifiers, to distinguish between
realistic and artificially generated traffic.

8.3 Expanded Tasks
With network enumeration serving as the first step in a much
larger problem space, our future agents will need to combine future
problems with our current work to represent broader and more
complex tasks. Initially, network enumeration should be expanded
to allow agents to pivot onto nodes with escalated permissions
and different network traffic, giving them more tools to reach the
entirety of a network.

Beyond network enumeration, the next step is to introduce ex-
ploitation tasks, including stealing credentials and locating high-
value targets to exfiltrate data from. Exploitation also introduces
further opportunities for a defender agent to detect attacker actions.
With these features implemented, the attacker agents will require
strategies spanning the full breadth of an attack scenario.

Time is a significant obstacle in the emulation of these tasks. In
addition to the necessity of executing these actions in real-time, a
common tactic for real-world attackers is positioning one’s self on
a network, and then waiting for a long time for the right conditions.
It is obviously impractical to spend weeks on a single evaluation, so
it will become necessary to find a method of skipping the networks
forward in time while minimizing loss of fidelity.

8.4 Evaluation Time
The overhead of building and resetting the test network along with
the requirement to run agents in real-time result in an extremely
long evaluation time, causing many present and future difficulties
for this work. Future expansions to the network will increase the
former, and increased complexity of the agents’ goals will increase
the latter. Further, the introduction of coevolution will multiply
the number of fitness evaluations needed. Therefore, reducing the
amount of time spent per evaluation is critical to expanding this
work beyond a proof of concept. One way of achieving this is to
simply skip a significant portion of the evaluations altogether. This
can be done through methods like fitness approximation, which
can estimate fitness based on that of other individuals. Work such
as that by Gustafson and Vanneschi [10], and by Burke et. al [3]
suggest a genotype similarity measure, while Esparcia-Alcázar and

Moravec [7] suggest measuring phenotype similarity. Further, while
the aim of this work focuses on emulated networks, simulation of
agent strategies beforehand has the potential to detect obviously
nonfunctional individuals and terminate their evaluation early.
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