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ABSTRACT
Accuracy based Learning Classifier System (XCS) prefers to gener-
alize the classifiers that always acquire the same reward, because
theymake accurate reward predictions. However, real-world prob-
lems have noise, which means that classifiers may not receive the
same reward even if they always take the correct action. For this
case, since all classifiers acquire multiple values as the reward, XCS
cannot identify accurate classifiers. In this paper, we study a single
step environment with action noise, where XCS’s action is some-
times changed at random. To overcome this problem, this paper
proposes XCS based on Collective weighted Reward (XCS-CR) to
identify the accurate classifiers. In XCS each rule predicts its next
reward by averaging its past rewards. Instead, XCS-CR predicts its
next reward by selecting a reward from the set of past rewards, by
comparing the past rewards to the collective weighted average re-
ward of the rules matching the current input for each action. This
comparison helps XCS-CR identify rewards that result from action
noise. In experiments, XCS-CR acquired the optimal generalized
classifier subset in 6-Multiplexer problems with action noise, sim-
ilar to the environment without noise, and judged those optimal
generalized classifiers correctly accurate.
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1 INTRODUCTION
It is useful to understand the characteristics of data by expressing
data as if-then rules and revealing important elements within each
data element. If-then rules using data elements as a condition part
are easy to understand. There is the rule generalization as a way
to clarify important elements. The rule generalization can ignore
the data elements that do not affect the evaluation of the if-then
rule and retain the data elements that affect the evaluation.

Learning Classifier Systems (LCSs) [4] are a family of evolu-
tionary machine learning techniques that can generalize if-then
rules that are called classifiers. LCSs find the optimal combina-
tion to generalize rules by genetic algorithm (GA) [3] and eval-
uate the generalized rules by reinforcement learning (RL) [8]. The
generalized classifier is highly interpretable for humans, compared
with other machine learning methods such as support vector ma-
chine and neural networks [13]. Among LCSs, XCS (Accuracy-
based LCS) [12] is the current mainstream classifier system. XCS
generalizes classifiers from the accurate classifiers by the GA and
by the generalization mechanism called subsumption. In XCS, a
classifier that always obtains a consistent reward is defined as an
accurate classifier.

In real-world problems, however, it is difficult for XCS to acquire
such accurate classifiers because the given input does not necessar-
ily represent the situation correctly. For example, bad sensor per-
formance or mistyping of data may be considered. Since the incor-
rect input given to XCS is different from the state of the environ-
ment, the acquired rewards may be significantly different. In order
to make XCS applicable to various problems, it is necessary to re-
alize stable rule generalization even in the above environments. In
such a situation, it is very hard for XCS to generalize classifiers
by subsuming the classifiers because many classifiers are not ac-
curate due to the unstable inputs. This indicates that it is also hard
for XCS to reduce the number of the low generality classifiers by
the subsumption mechanism in XCS. From this difficulty, we need
a new XCS that can acquire the generalized classifier rules in the
environments with uncertain inputs.

As a first step toward achieving the above objectives, this pa-
per assumes the environments with action noise, that is the envi-
ronments where XCS’s actions (also called outputs) are sometimes
changed.When the input is changed, the degree of influence on the
reward differs depending on the input value and changed element.
This paper simplifies the noise model by changing the output in-
stead of the input, because changing the output is guaranteed to
have an effect on the reward. Regardless of whether noise is added
to inputs or outputs, classifiers acquire rewards when the provide
an answer to an input. In this paper, we study problems with 2
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Figure 1: Action noise

actions and we use a reward of 1000 for correct answers and 0
for incorrect answers. We control the amount of action noise with
σA, the probability of changing the output of the learner. Figure 1
shows the reward that is acquired by the accurate classifier with
the action noise σA. The accurate classifier acquires the original
reward (1000) with the probability 1−σA, and acquires the reward
different from the original reward (0) with the probability σA. Note
that because accurate classifiers sometimes acquire the reward for
incorrect answers, it is difficult to find the classifiers that should be
judged the accurate when the noise is removed. Even when noise
is added to both the input and the output, since the influence of
the noises on acquired reward are the same, the simplification of
this paper (using only action noise) is appropriate.

XCS judges the classifier whose range of the acquired rewards
is smaller than a certain range (threshold) as accurate. But, as de-
scribed above, even the accurate classifier acquires multiple value
rewards in the environment where noise is added to the action, so
all classifiers are determined as inaccurate. Since the subsumption
does not occur, the number of the classifiers does not decrease.
XCSµ is proposed by Lanzi et al. [6] as XCS applicable to the sto-
chastic environment which is a type of noisy action environment.
The stochastic environment is the maze environment with slip.
Since the agent that searches for the maze slips at a certain proba-
bility, there are cases where the agent cannot go in the direction he
wants to go. XCSµ subtracts the prediction error of all classifiers
by the minimum value of prediction error among the classifier set.
XCSµ eliminates uncertainty and makes it possible to identify the
accurate classifiers. Since the stochastic environment is a multi-
step problem, we do not know whether XCSµ is effective in the
single-step problem covered in this paper. In the XCSµ paper, the
evaluation of XCSµ was only the number of steps up to the goal
and there was no mention of the generalization of the classifier.

To overcome this problem, this paper proposes a newXCS, XCS-
CR (XCS based on Collective Reward) that can reduce the number
of classifiers even in the noisy action environment. Unlike XCS,
XCS-CR does not judge the accuracy of the classifier directly from
the actual reward acquired by the classifier. Instead, XCS-CR judges
the accuracy using an estimate of reward. If the action has been
changed by noise, the actual reward will be the wrong reward for
this input and action. However, the estimated reward may be the
correct reward for this input and action. That is, the estimated re-
ward can correct noise in the reward.

The estimated reward is determined by comparing the collec-
tive reward for each action. The collective reward is calculated for
an action from the classifiers that match the current input. The

estimated reward is the reward whose action has the highest col-
lective reward. If a small amount of action noise biases the reward
acquired by a classifier, XCS-CR can still accurately judged the ac-
curacy of the classifier by using the estimated reward.

The rest of this paper is organized as follows. Section 2 intro-
duces other XCSs that can handle the environments with uncer-
tainty in input, action, or reward. Section 3, 4, and 5 explain the
mechanism of XCS, XCSµ, and XCS-CR, respectively. Section 6
provides the noisy multiplexer problem. Section 7 conducts the
experiments. Section 8 discusses the experimental results. Finally,
our conclusion is given in Section 9.

2 RELATEDWORK
Various works have tackled to improve the performance of XCS in
several uncertain environments previously.

The first uncertainty is related to an “input” from an environ-
ment. An example includes a Partially Observable Markov Deci-
sion Process (POMDP) environment. In POMDP, an environmen-
tal input is uncertain and missing parts of the information are re-
quired to distinguish states instantly. To tackle this type of envi-
ronment, Lanzi et al. [7] and Webb et al. [11] proposed XCS with
memory to solve the POMDP maze problems. It is necessary to
know in advance how many previous internal states are needed.

The second uncertainty is related to an “action” to an environ-
ment. A representative study is XCSµ, but details are described in
Section 4.

The final uncertainty is related to a “reward” from an environ-
ment. An example includes the environmentwhere a reward varies
such as evaluations by a human in Interactive Evolutionary Com-
putation [9]. In such an environment, the consistent reward is not
guaranteed to be obtained even if the same action is performed as
the action for the same input. Due to this feature, all classifiers are
determined to be inaccurate, which prevents XCS from general-
ize the classifiers. To tackle this type of environment, we proposed
XCS-MR [10] that dynamically determines the accuracy criterion
from the sample standard deviation of the obtained rewards.

Reinforcement learning includes part of supervised learning.
There are studies that corresponded with UCS which extended
XCS to supervised learning, but this research focuses on reinforce-
ment learning and is not treated the supervised learning methods.

3 ACCURACY-BASED LEARNING CLASSIFIER
SYSTEM (XCS)

3.1 Overview
XCS is composed of 1) performance component, 2) reinforcement
component, and 3) rule-discovery component as shown in Figure
2. These components evolve a set of classifiers in [P].

3.2 Classifier and its generalization
The classifier in XCS is composed of the condition (if) part, action
(then) part, prediction (p), prediction error (ϵ) that is the difference
between the prediction and reward (P ), fitness (F ), and numerosity
(n). An LCS acquires knowledge by evolving classifiers to fit mul-
tiple environmental conditions. When the condition part is repre-
sented by a bit string with the fixed length composed of 0 and 1,
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Figure 2: Learning mechanism of XCS

XCS generalizes the classifiers by using the symbol # representing
“don’t-care”. For example, “10###” matches eight inputs.

3.3 Mechanism of XCS
3.3.1 Performance component. XCS selects one action and ex-

ecutes it. The algorithm in this component is summarized as fol-
lows: (i) the classifiers in [P] whose condition part matches the
current input are stored in the Match Set [M]. (ii) the Prediction
Array is calculated by prediction of these classifiers and actions
in [M]. The prediction of action ai is calculated by the following
equation where cl represents a classifier.

P(ai ) =
∑
clk ∈[M ] |ai clk .p × clk .F∑

cll ∈[M ] |ai cll .F
(1)

(iii) an action is selected according to the prediction array. The clas-
sifiers in [M] that have the selected action configure the Action Set
[A], which executes the action for the environment and receives
the reward P . After receiving the reward, the reinforcement com-
ponent is executed, and the evolution component is executed after
a certain time.

3.3.2 Reinforcement component. The classifiers in [A] have their
parameters updated in this component as follows: (i) the prediction
p is updated from the obtained reward P as follows.

cl .p ← cl .p + β(P − cl .p) (2)

The variable β is the learning rate and contributes the learning
speed. (ii) the error ϵ that is the difference between P and cl .p is
updated as follows.

cl .ϵ ← cl .ϵ + β(|P − cl .p | − cl .ϵ) (3)

However, when the number of updates of the classifier (cl .exp) is
less than 1/β , Equations (2) and (3) are replaced with Equations (4)
and (5), respectively.

cl .p ← cl .p + (P − cl .p)/cl .exp (4)

cl .ϵ ← cl .ϵ + (|P − cl .p | − cl .ϵ)/cl .exp (5)
These operations increase the learning speed at the beginning of
learning. (iii) the fitness F is calculated on the basis of accuracy κ
as follows.

κ(cl) =
{

1 if ϵ < ϵ0

α
(
ϵ
ϵ0

)−ν
otherwise (6)

In this equation, ϵ0 (ϵ0 > 0) is a constant variable that indicates
the accuracy criterion. When cl .ϵ is smaller than ϵ0, the classifier

is accurate. The variable α (0 ≤ α ≤ 1) and ν (ν > 0) control the
reduction rate of the accuracy. Relative accuracy of the classifier
κ ′ is then calculated.

κ ′(cl) = κ(cl) × cl .n∑
x ∈[A] κ(x) × x .n

(7)

(iv) The fitness F is updated as follows.

cl .F ← cl .F + β(κ ′(cl) − cl .F ) (8)

3.3.3 Rule-discovery component. GA evolves the classifiers in
[A]. The algorithm in this component is summarized as follows: (i)
two parent individuals are selected according to the ratio of their
fitness as a selection probability. (ii) two child individuals are gen-
erated by crossing these parent individuals. (iii) the elements of the
condition part of these child individuals are mutated with proba-
bility µ. (iv) when the number of the classifiers in [P] exceeds the
parameter N, the low fitness classifiers are deleted preferentially.

XCS has a subsumption mechanism to integrate the classifiers
with a low generality into more generalized (more # in the condi-
tion part) classifiers. The classifiers whose experience exp exceeds
θsub and are judged to be accurate (κ(cl) = 1) can subsume classi-
fiers having their condition part included in the condition part of
the subsuming classifier. The numerosity of the subsumed classi-
fier is added to the classifier that subsumes.

4 XCSµ
4.1 Architecture of XCSµ
The classifier of XCSµ is composed of the condition part, action
part, prediction p, prediction error ϵ , fitness F , and numerosity n
as with the classifier of XCS. In addition, XCSµ classifier has a pa-
rameter µ estimating the minimum prediction error.

4.2 Mechanism of XCSµ
The most parts of the learning component of XCSµ are the same as
the mechanism of XCS (Figure 2). The difference from XCS is the
parameter updating in the reinforcement learning component. In
this section, the different part is described in detail.

XCSµ calculates the minimum prediction error µ of the classi-
fiers that match the current input. The new parameter cl .µ is up-
dated as follows.

cl .µ ← cl .µ + βϵ (µ − cl .µ) (9)

The learning rate βϵ is smaller than the β used to update the other
classifier parameters. XCSµ updates the prediction error ϵ as fol-
lows instead of Equation (3).

cl .ϵ ← cl .ϵ + β(|P − cl .p | − cl .µ − cl .ϵ) (10)

XCSµ estimates the prediction error ϵ by the classifier generaliza-
tion by discounting the influence of the environmental noise.

The subsequent operation of the reinforcement component is
the same as XCS.
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Figure 3: Learning mechanism of XCS-CR

5 XCS BASED ON COLLECTIVE REWARD
(XCS-CR)

5.1 Architecture of XCS-CR
The classifier of XCS-CR has the condition part, action part, pre-
diction p, prediction error ϵ , fitness F , and numerosity n as same
as the classifier of XCS. XCS-CR has some differences from XCS.
XCS has one ϵ0 parameter that is shared by all classifiers, but in
XCS-CR every classifier has its own ϵ0. XCS-CR classifiers have
the mean of the acquired reward M (see later) which is similar to
p, but M is more stable than p. In addition, an XCS-CR classifier
has parameters to count the number of times it has received a par-
ticular reward CP and to count the number of times a particular
estimated reward has been estimated EP and the mean of the ac-
quired rewards M . The classifier has as many parameters CP and
EP as there are possible reward values. In the multiplexer prob-
lem, since there are two possible reward values, 0 and 1000, the
classifier has 4 counters CP=0, CP=1000, EP=0, and EP=1000.

5.2 Mechanism of XCS-CR
Most parts of the learning mechanism of XCS-CR are the same as
the mechanism of XCS. The main differences from XCS are (a) the
parameter updating in the reinforcement component and (b) the
subsumption condition in the rule-discovery component. Figure 3
shows the learning mechanism of XCS-CR with the different parts
that are blackened. In this section, the different parts are described
in detail.

5.2.1 Reinforcement Component. XCS-CR does not judge the
accuracy of the classifier directly using the reward acquired by the
classifier. XCS-CR judges the accuracy of the classifier based on
the estimated value of the acquired reward to be described later. A
classifier that has an estimated reward that is always one is judged
as an accurate classifier. A classifier with two or more estimated
reward values is judged as an inaccurate classifier.

XCS-CR updates the classifiers in [A] as follows. First, the classi-
fier increments the count of the number of times each reward value
has been acquiredCP . TheCP to be incremented is the one whose
value of P is same the acquired reward P (i.e., CP=0 for reward 0
and CP=1000 for reward 1000).

cl .CP=P ← cl .CP=P + 1 (11)

Second, the classifier updates themean of its acquired reward cl .M .
Third, the error ϵ of the classifier is updated as shown Figure 4. ϵ is

Figure 4: ϵ of XCS-CR

calculated as the difference between the most frequently acquired
reward cl .mf r and the mean value of the acquired reward. The
most frequently acquired reward cl .mf r is the reward value for
which cl .CP is the maximum.

cl .ϵ ← cl .ϵ + β(|cl .mf r − cl .M | − cl .ϵ) (12)

Fourth, XCS-CR tries to correct for the effect of noise by esti-
mating the correct action if there was no noise. For each action set
[A] XCS-CR calculates a Collective RewardCR using the equation:

CRA=a =

∑
cl ∈[M ] |a cl .M × cl .exp∑

C ∈[M ] |a C .exp
(13)

XCS-CR believes the action with the highest CR is the correct ac-
tion. The classifier of XCS-CR counts the number of estimations
EP for each reward. However, likeCP , EP to be incremented is the
one whose value of P is same the estimated reward P .

cl .EP=P ← cl .EP=P + 1 (14)

An example is shown in Figure 5. In the binary classification prob-
lem, this is a case when the input state is 0011. [M] is divided into
two based on the action of the classifier. On the left side is a set
of the classifiers with action 0. On the right side is a set of the
classifiers with action 1. Since the mean values of the acquired re-
ward of the left classifiers are larger than those on the right side,
CRA=0 is larger than CRA=1. cl .EP=1000 is incremented if action is
0. (When the action is 0, XCS-CR estimate the acquiring reward is
1000.) cl .EP=0 is incremented if action is 1. (When the action is 1,
XCS-CR estimate the acquiring reward is 0.)

Next, XCS-CR updates ϵ0 of the classifier. The classifier whose
estimated reward is always same, that is, whose EP is 0 for one re-
ward value, is accurate. The more # symbols there are in the condi-
tion the more inputs a classifier matches. However, in order to pre-
vent judgment by only somematched inputs, even if the number of
experience exceeds 2number of # × θRE , the classifiers that satisfy
the above condition are targeted. The parameter θRE is constant.
Let ϵ beMaxϵ , the largest ϵ among the classifiers in [A] satisfying
the above conditions. XCS-CR updates ϵ0 as follows.

cl .ϵ0 ← cl .ϵ0 + β(Maxϵ − cl .ϵ0) (15)

Last, XCS-CR updates fitness F of the classifier executing Equa-
tion (6), (7), and (8) same as XCS.

5.2.2 Subsumption condition. Since the classifiers with many #
symbols subsume many classifiers, it is necessary to judge the ac-
curacy of the classifiers carefully. XCS has the condition that the
number of evaluation times (cl .exp) of the subsuming classifier is
greater than θsub . In XCS-CR this is changed to the condition that
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Figure 5: Calculation of CRA=a of XCS-CR

it is larger than 2number of # ×θRE times. Since the values of θsub
and θRE are assumed to be the same value, the subsumption con-
dition of XCS-CR is more severe than the subsumption condition
of XCS. The other condition (κ(cl) = 1) is the same as in XCS.

6 PROBLEM DESCRIPTION
6.1 Multiplexer problem

6.1.1 Original problem. This paper compares the results of XCS,
XCSµ, and XCS-CR in the l-Multiplexer (l = 6) problem that is a
common benchmark problem of LCS [12]. In this problem, the first
k (b0b1...bk−1) bits of the input length l = k + 2k bits (b0b1...bl−1)
convert into the decimal number d , and the k + d-th bit (bk+d ) is
the correct answer. In the 6-Multiplexer problem where the input
length is 6 (i.e., k = 2), for example, b0b1 (“11”) convert into d = 3
when the input is given as “110010”, and b2+3 = b5 = 0 is the cor-
rect answer. In this problem, only the first k bits (b0b1...bk−1) and
the (k+d)-th bit (bk+d ) contribute to determining the action value,
which means that the other bits can be any value because they do
not contribute to determining the action value. XCS is expected to
acquire the generalized classifiers by replacing the bits that do not
affect the action with # as shown in the example below.

(if) 11###0 (then) 0

These are called the optimal classifiers. There are 16 optimal clas-
sifiers that are the combination of the 3 bits if part and the 1 bit
then part that obtain consistent rewards in the 6-Multiplexer. The
16 classifiers are called the optimal subset [O].

6.1.2 Modified noisy problem. As the same as the typical the
multiplexer problem, the reward is set to 1000 for the correct an-
swer and 0 for the incorrect answer. Rewards in this experiment
are determined by the following Equations (refer Figure 1). When
the answer is correct.

Reward =

{
0 probability σA
1000 otherwise (16)

When the answer is incorrect.

Reward =

{
1000 probability σA
0 otherwise (17)

7 EXPERIMENT
The experiment simulates the uncertain environments by adding
action noise σA and compares XCS, XCSµ, and XCS-CR to verify
the effectiveness of each approach.

This experiment consists of the learning phase and the evalua-
tion phase, the same as in previous studies e.g., [1]. The two phases
are executed alternately. In the learning phase, XCSs fully learn
state-action space in the environment by selecting a random ac-
tion. In the other phase, XCSs select the action that is expected to
obtain the maximum reward. The learning performance of XCSs
is determined on whether XCSs select the correct action to the in-
put. Note that the rule-discovery component is not executed in the
evaluation phase, i.e., XCSs do not generate new classifiers [5].

7.1 Cases
The magnitude of the action noise σA is determined according to
two cases.
• Case A: The action noise σA with the uniform magnitude
for all inputs is added to the rewards. The magnitude is set
as σA = 0, 0.1, and 0.2 in this case. Note that no noise is
added when σA = 0.
• Case B: The magnitude of the σA is randomly determined.
The magnitude varies every trial, but does not change dur-
ing the same trial. Themagnitude is set as sup{σA} = 0.1, 0.2
in this case. By comparing with the result of case A, we can
see whether the learning performance of each method de-
pends on the maximum value of the magnitude of the action
noise σA or on the average value of the magnitude of the ac-
tion noise σA.

7.2 Evaluation criteria and parameters
The following evaluation criteria are employed in this experiment.
All evaluations are averaged from 50 trials with different random
seeds. Note that the performance and the population size are fur-
ther averaged from 100 iterations as the moving average. Its win-
dow overlaps.
• Performance: This criterion evaluates the correct rate in
the given problem, i.e., the proportion of iterations in the
moving average window on which the correct answer was
given. A higher correct rate is better than a lower one. The
term “performance” corresponds to the correct rate in this
experiment.
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(a) Correct rate (b) Population size

Figure 6: Case A (σA = 0)

(a-1) Cor. rate (σA = 0.1) (a-2) Pop. size (σA = 0.1) (b-1) Cor. rate (σA = 0.2) (b-2) Pop. size (σA = 0.2)

Figure 7: Case A (σ = 0.1, 0.2)

(a-1) Cor. rate (sup{σA} = 0.1) (a-2) Pop. size (sup{σA} = 0.1) (b-1) Cor. rate (sup{σA} = 0.2) (b-2) Pop. size (sup{σA} = 0.2)

Figure 8: Case B (sup{σA} = 0.1, 0.2)

• Population size: This criterion evaluates the number of
the classifiers in [P] in each iteration. The smaller popula-
tion size is better than the larger one because the necessary
memory size becomes small.
• Total number of the acquired optimal subset [O]: The
6-multiplexer problem has 16 optimal classifiers and we use
twomeasures of how successfully they are learned. The first
measure is the percentage of 50 trials in which all 16 opti-
mal classifiers are in [P] at the end of the trial. XCS-type al-
gorithms tend to assign higher fitness to optimal classifiers
than other classifiers in multiplexer problems. The second
measure is the percentage of 50 trials in which the 16 opti-
mal classifiers are the fittest 16 classifiers in [P] at the end
of the trial. We call the second measure “top 16”.

The correct rate and the population size of the end of the learning
are significantly verified by Wilcoxon signed rank test. The signif-
icance level is 1% in this paper.

XCS was implemented based on [2]. XCSµ and XCS-CR were
implemented based on the XCS by adding the difference. For the

parameters setting, the following values are employed in the ex-
periments, which are the mostly standard ones in the conventional
XCS [1]: For the common parameters of XCS, XCSµ, and XCS-CR,
N = 400, ϵ0 = 10, µ = 0.04, P# = 0.35, Pexplr = 1.0, χ = 0.8,ν =
5,θGA = 25,θdel = 20,θsub = 20. XCS-CR specific parameter θRE
is set to 20. Each trial ran for 300,000 exploit steps.

7.3 Results
The results in the two case are shown in Figure 6, 7, and 8. The
horizontal axis indicates the number of the iterations, while the
vertical axis indicates the correct rate or the population size. The
square mark, the circle mark, and the triangle mark represent XCS,
XCSµ, and XCS-CR respectively. The upper and the lower of the
error bar indicate the “maximum” and “minimum” values of the
correct rate or the population size in 50 trials, respectively.

Figure 6 shows the correct rate and the population size when
the noise is not added to the rewards (Case A (σ = 0)). The correct
rate of XCS, XCSµ, andXCS-CR reached 1. Therewas no significant
difference. The population size was about 30 and there was also no
significant difference in XCS, XCSµ, and XCS-CR. Table 1 shows
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Table 1: Case A (σ = 0)

Method Acquisition [O ] Acquisition [O ] (top 16)
XCS 48 (96%) 47 (94%)
XCSµ 47 (94%) 47 (94%)
XCS-CR 50 (100%) 50 (100%)

Table 2: Case A

Method Acquisition [O ] Acquisition [O ] (top 16)
XCS (σA = 0.1) 17 (34%) 0 (0%)
XCSµ (σA = 0.1) 13 (26%) 0 (0%)
XCS-CR (σA = 0.1) 50 (100%) 48 (96%)
XCS (σA = 0.2) 2 (4%) 0 (0%)
XCSµ (σA = 0.2) 0 (0%) 0 (0%)
XCS-CR (σA = 0.2) 49 (98%) 45 (90%)

Table 3: Case B

Method Acquisition [O ] Acquisition [O ] (top 16)
XCS (sup{σA } = 0.1) 42 (84%) 0 (0%)
XCSµ (sup{σA } = 0.1) 35 (70%) 2 (4%)
XCS-CR (sup{σA } = 0.1) 50 (100%) 49 (98%)
XCS (sup{σA } = 0.2) 20 (40%) 0 (0%)
XCSµ (sup{σA } = 0.2) 9 (18%) 0 (0%)
XCS-CR (sup{σA } = 0.2) 50 (100%) 50 (100%)

the acquisition percentage of the optimal classifier subset [O]. XCS
and XCSµ could not acquire [O] in a few trials, while XCS-CR could
acquire [O] in the top 16 in [P] for all trials.

Figure 7 shows the correct rate and the population size with the
action noise σA (Case A (σ = 0.1 and 0.2)). From this figure, the
correct rate of XCS-CR was higher than the rate of XCS and XCSµ
(p < 0.01). In three methods, the correct rates got worse as the
magnitude of the action noise σA increases. However, the correct
rate of XCS-CR inmost trials is 1. The population size is stable only
in XCS-CR regardless of themagnitude of noiseσA. The population
size of XCS increased. As the magnitude of the noise σA increased,
the number of trials where the population size became 2 increased
in XCSµ. (In these trials XCSµ overgeneralizes and the population
converges on two fully-general classifiers.) The population sizes
of the three methods were significantly different from each other
(p < 0.01). Table 2 shows the acquisition percentage of the optimal
classifier subset [O]. XCS-CR could not acquire [O] in the top 16
in [P] in a few trials while XCS and XCSµ could not acquire [O] in
most trials.

Figure 8 shows the correct rate and the population size with the
action noise σA (Case B (sup{σA} = 0.1 and 0.2)). From this fig-
ure, the correct rate of XCS-CR was higher than the rate of XCS
and XCSµ. There was no significant difference when the magni-
tude of the noise σA was 0.1, but there was a significant difference
when the magnitude of the noise σA was 0.2 (p < 0.01). In XCS and
XCSµ, the correct rates got worse as the magnitude of the action
noise σA increases. However, the correct rate of XCS-CR reached
to 1 in all trials. The population size is stable only in XCS-CR re-
gardless of the magnitude of noise σA. The population size of XCS
and XCSµ increased. The population sizes of the three methods

Figure 9: XCS-CR performance with σA = 0.2 on a good trial

Figure 10: XCS-CR performance with σA = 0.2 on a bad trial

were significantly different from each other (p < 0.01). Table 3
shows the acquisition percentage of the optimal classifier subset
[O]. XCS-CR could acquire [O] in the top 16 in [P] in most trials,
while XCS and XCSµ could not acquire [O] in most trials.

XCS-CR could generalize the classifiers properly even if themag-
nitude of the added noise σA uneven by input and can acquire the
optimal classifier subset [O].

8 DISCUSSION
8.1 XCS-CR estimation of reward
XCS-CR acquired the optimal classifier subset [O] in most trials.
XCS-CR is more effective than XCS and XCSµ in this action noise
environment. This section describes the estimated reward based on
the collective reward (Equation (13)) which is the most important
mechanism in XCS-CR.

In the initial stage of the learning where ϵ0 is set to the initial
value, all classifiers are judged as inaccurate classifiers. Since the
value of κ increases as ϵ decreases from equation 6, the classifiers
with less variance of the acquired reward are likely to remain in
[P]. There are many classifiers that are not over-generalized in [P].
XCS-CR can estimate acquisition reward correctly for each action
to equation 13. After the value of ϵ0 is stable, the accurate classifiers
and inaccurate classifiers are correctly judged. Since the accurate
classifiers remain in [P] and the inaccurate classifiers are deleted,
XCS-CR can estimate acquisition reward correctly for each action
as in the initial stage of the learning.

Figures 9 and 10 each show a single trial (random seed) of XCS-
CR in Case A (σA = 0.2). In Figure 9, the correct rate was reached
to 1 from the early stage of learning and it was stable. In the latter
stage of the learning, since [P] was consisted only of the optimal
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classifier subset [O] and newly created classifiers by GA, the es-
timation of acquisition reward was stable. In contrast, Figure 10
shows a trial where the correct rate did not reach to 1. One of the
cause is that overgeneralized classifiers (e.g. the condition part is
“#00###”) were judged as accurate. The overgeneralized classifiers
were generated at the beginning of learning, were judged as accu-
rate at the time the estimation of acquisition reward mechanism
was unstable and satisfied the subsumption condition of XCS-CR.
The overgeneralized classifiers subsumed the accurate classifiers
(e.g. the condition part is “000###”) and the overgeneralized classi-
fiers became the classifier with the highest experience at the input
to be matched. Since the classifier with a large number of expe-
rience is early judged as accurate from Equation (13), once it is
judged to be accurate, even an overgeneralized classifier can eas-
ily remain in [P].

8.2 Relationship between learning
performance and magnitude of the noise σA

Comparing Case A and Case B, the learning performance (the per-
formance, the population size and the acquisition percentage of
the optimal classifier subset [O]) of Case A (σA = 0.1) and Case B
(sup{σA} = 0.2) were similar. In Case B, since the uniform noise is
applied to the magnitude of the noise σA, the average of the mag-
nitude of the noise σA was 0.1. The learning performance of XCS,
XCSµ, and XCS-CR are strongly influenced by the average value
of the magnitude of the noise σA rather than the maximum value
of the magnitude of the noise σA.

8.3 Learning performance of XCSµ
From Figures 7 and 8, XCSµ can generalize classifiers better than
XCS, but there are trials in XCSµ where classifiers are overgeneral-
ized (e.g. the condition part is “######”). The cause of the overgen-
eralization is the smallness of parameter θsub . This paper set θsub
to a standard value of 20 in the 6-multiplexer problem. XCSµ uses
the minimum prediction error µ for calculating prediction error
ϵ . It is probably enough that the acquired rewards were biased to
one side even if the classifier is inaccurate until the classifier evalu-
ated θsub times after being generated. The overgeneralized classi-
fier was judged as accurate and subsumed all other classifiers. The
“######” condition part classifiers were generated for each action
and the population size was two, because there are two possible
actions.

9 CONCLUSIONS
This paper proposes a new XCS, XCS-CR (XCS based on Collective
Reward) that can acquire the optimal classifier subset [O] in noisy
action environments.

XCS-CR does not judge the accuracy of the classifier directly
from the reward acquired by the classifier. XCS-CR judges the ac-
curacy of the classifier based on the estimated value of the acquired
reward that is determined by the collective reward. The collective
reward value is calculated, for each action, from the classifiers that
match the current input. The estimated reward value is determined
from the magnitude relation of the collective rewards. XCS-CR can
accurately judge the accuracy of the classifier without being af-
fected by the bias of acquisition reward due to a small number of

evaluations by using the estimated reward. This paper shows that
XCS-CR can generalized the classifier properly even if the magni-
tude of the added noise σA is unknown and uneven by input and
can acquire the optimal classifier subset [O] through the experi-
ments. However, as shown in Table 2, XCS-CR failed to acquire
the optimal classifier subset [O] in some trials.

XCS-CR has the parameter θRE related to determining of accu-
racy criterion ϵ0 and subsumption condition. If θRE is too small,
some inaccurate classifiers are judged as accurate, and conversely
if θRE is too large, rule generalization does not occur. As the num-
ber of # symbol included in the condition part of the optimum clas-
sifier increases, it is necessary to be careful with setting θRE .

What should be noted here is that the above results have only
been shown from the noisy 6-multiplexer problem. Such important
directions must be pursued in the near future in addition to the
following future research: (1) improvement of the estimation ac-
quiring reward mechanism; (2) adaptation to the multi-class clas-
sification problem; and (3) adaptation to environments with vast
solution space with alternative reward noise.
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