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ABSTRACT

Given the advances in areas such as home automation, agricultural

networks, smart cities, designers often need to design protocols

that utilize the features of that network while dealing with its limi-

tations. Utilizing standardized protocols for such networks may not

be appropriate as they may not address limitations of the network

such as heterogeneous nodes or limited capability of some nodes.

While designing a customized protocol for that network would be

desirable, it is extremely time-consuming unless we can automate

the development of the required protocol. In this paper, we present

NetSynth, a GP based mechanism to develop customized routing

protocol for the given network. NetSynth lets us conveniently de-

scribe a network using an XML ile, and it synthesizes a routing

protocol that suits the input network by considering the character-

istics speciic to the given network. We show how NetSynth creates

protocols that perform comparably to best-known protocols for the

case where we want to broadcast a set of messages to all nodes in a

grid. We also show how NetSynth helps us design protocols that

provide a tradeof between throughput and energy.
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1 INTRODUCTION

The quality of the communication over a network is directly af-

fected by the protocol that the network nodes use to communicate

with each other. Existing work on network protocols generally

focuses on, among other things, general cases where nodes can

dynamically join or leave the network, the topology can change and

link characteristics may vary. This has several advantages. Most
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importantly, the protocols do not need to be redesigned and are

easily deployable. However, this has reduced lexibility in terms of

not being able to cater to the speciic requirements of the network.

For example, if some devices are battery powered and some devices

are mains powered, it is desirable to have mains powered devices

assist battery powered nodes to save energy by assisting them in

routing, MAC, and other layers.

This issue is of a signiicant interest as we venture into new

areas such as smart cities, agricultural networks, home networks

and oice automation. A key characteristic of such networks is that

they consist of several devices that need to collaborate with each

other. For example, in an agricultural network, nodes may consist

of sensors that monitor moisture, humidity, and temperature to

determine when sprinklers should be turned on. Home automation

may consist of devices streaming audio/video, or security-related

devices such as cameras, or alarms associated with the home intru-

sion. Each of these devices has diferent service requirements in

terms of acceptable latency or jitter, desired throughput, etc. Some

of these devices may be battery powered whereas some are con-

nected to AC power. Thus, an application designer is tasked with

deciding how these nodes should talk with each other to achieve

their tasks under the given constraints.

A common approach in these cases is to ignore underlying sys-

tem constraints and utilize a standardized protocol such as 802.11

or 802.15.4. The advantage of this approach is that it is the easiest

to implement. However, this may introduce undesirable issues such

as draining the battery of battery powered devices too quickly.

An alternate approach is to use non-standard specialized proto-

cols such as S-MAC, Ariadne, DSR [8, 10, 14, 15] that are designed

for optimizing a desired metric (e.g., energy usage). This approach

increases the time to build a network, as the designer must optimize

the parameters involved in such a protocol for the given network.

This has the potential to optimize some known performance require-

ment (e.g., energy). However, it is not easily predictable whether

the optimization of the given protocol will apply or scale to the

speciic given network.

These limitations can be overcome by the extreme approach of

handcrafting a set of protocols at diferent protocol layers for a

given network with speciic properties and performance expecta-

tions. This approach has the potential to achieve the best tradeof

in terms of energy, throughput, etc. However, handcrafting such

protocols manually is extremely time-consuming. Thus, if we want

to handcraft a protocol that is targeted towards the given network,

we must utilize automation to obtain the desired protocol. We focus

on designing such handcrafted protocol with the help of Genetic

Programming (GP).

We introduce our framework NetSynth as a way of designing

and implementing communication network protocols by leveraging
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automated protocol synthesis via GP. NetSynth permits a network

engineer to utilize the features and limitations of a given network to

synthesize a routing protocol for that network. Our framework uti-

lizes techniques from Genetic Algorithm (GA). Depending upon the

context, it permits usage of single objective GP or multi-objective

GP with NSGA-II [4].

NetSynth takes as input the underlying topology of the network.

It allows one to model typically important requirements such as

channel or node loss rate, amount of battery capacity (if any) at a

given node, and whether AC power is available at that node. It also

takes as input communication characteristics (senders, receivers,

data rates) as well as whether the communication is targeted to-

wards a speciic node or is a broadcast communication. Additionally,

as input, NetSynth takes the desired goals such as minimize power,

reduce latency, and increase throughput.

The goal of NetSynth is to generate a protocol that identiies

when and how the data should be transmitted. The when part fo-

cuses on the MAC layer, i.e., it identiies when each node should

transmit its data, when it should listen for others and when it should

be in sleep mode to save power. The which part focuses on how it

should handle possibly lost messages. Finally, the how part focuses

on routing issues. For example, it identiies how AC powered nodes

could assist in saving power of battery powered nodes.

The contributions of the paper are as follows:

• We present NetSynth, a framework for designing a protocol

for a given network which is speciied in an XML document

that speciies the following

ś Topology along with node and link characteristics

ś Traic pattern to be either (1) broadcast communication

where one node sends data to all other nodes, (2) uni-

cast communication where we have pairs of senders and

destinations.

ś Data arrival rate at the sender(s).

ś Objectives, which can be throughput, latency, or energy.

• NetSynth generates a protocol that identiies the MAC layer

protocol (when a node should transmit, listen or sleep) and

network layer protocol (how messages should be routed to

reach the destination).

• We build a network simulator that evaluates protocols de-

veloped for NetSynth to analyze throughput, latency, and

energy utilization. It can be used as a itness function evalu-

ator based on the objectives in the given input. When faced

with more than one objective, we use NSGA-II during evolu-

tion.

• We demonstrate NetSynth with the case where we have

broadcast communication and one node wants to send a set

of packets to other nodes. For such a network, we show that

NetSynth is able to synthesize the best-known protocol. Fur-

thermore, while NetSynth cannot generate the best-known

protocol in every execution, the median protocol identiied

in several runs has 85% throughput compared with the best-

known protocol.

• In the context of unicast, we demonstrate the ability of Net-

Synth to develop protocols that require it to identify the

shortest path as well as a path with low energy consump-

tion. When faced with conlicting requirements, we show

that NetSynth is able to provide a tradeof between diferent

objectives.

• We provide a graphical tool called Network Designer that

lets the network designers conveniently deine their network.

This tool automatically generates the XML document needed

by NetSynth.

Organization of the paper. The rest of the paper is organized

as follows: In Section 2, we provide an overview of the previous

work of using evolutionary techniques to synthesize/optimize net-

work protocols. Section 3 provides an overview of NetSynth. Section

4 focuses on diferent types of protocols that we can synthesize

with NetSynth. Section 5 introduces Network Designer too. Sec-

tion 6 provides the results of some our experiments with NetSynth.

Finally, Section 7 concludes the paper.

2 RELATED WORK

Several existing papers have explored evolutionary computation to

improve network protocols. Alouf et al. in [1] used GA to adjust

protocol parameters in response to the network dynamics. Specif-

ically, they focus on the Epidemic Routing [1] where each node

sends a copy of a received message to the other nodes based on

a forwarding probability. The nodes estimate itness objectives

namely, delivery time and the number of copies, that are fed to the

GA to evolve better forwarding probability. Similarly, Lewis et al.

in [13] use GP to enhance IEEE802.11 protocol. Speciically, they

explored GP to improve the behavior of the contention window by

optimizing diferent parameters used in the protocol.

Evolving inite state machines to synthesize MAC protocols is

studied in [7]. Speciically, in [7], a protocol is considered as a prob-

abilistic state machine. Each genotype speciies the probabilities of

transitions between diferent states. Results provided in [7] show

how GA is able to evolve these probabilities to achieve a perfor-

mance close to the well-known pure-ALOHA protocol. Authors

have extended [7] in [6] toward Slotted ALOHA and CSMA logic.

Like other papers mentioned in this section, [7] and [6] focus on

evolving a set of transition probabilities for a state machine shared

by all nodes. Comparing to these existing papers, our framework is

not limited to parameter optimization. Instead, it allows us to mod-

ify the structure of an existing protocol to improve its performance,

or even synthesize a new protocol from scratch.

3 OVERVIEW OF NETSYNTH

The goal of NetSynth is to provide the network designers with a

general tool that lets them synthesize network protocols that suits

their network the best in terms of communication performance

and energy eiciency. Figure 1 shows the overall architecture of

NetSynth. NetSynth permits the protocol designer conveniently

describe the network and its diferent characteristics using a de-

scriptor ile as the input to the tool. This descriptor ile is an XML

ile according to the NetworkDescriptor.xsd that comes with the

framework.

Internally, NetSynth relies on GP to synthesize a customized

protocol for the given network. Speciically, NetSynth uses either

a single objective GP or a multi-objective GP with NSGA-II [4]

algorithm to evolve protocols that aim to optimize design require-

ments. The network simulator plays the role of the itness function.
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Figure 1: The overall architecture of NetSynth framework

Speciically, NetSynth simulates a candidate protocol on the given

network, and uses the outputs of the simulation as the objectives

achieved by the protocol. NetSynth comes with network simulator

for broadcast and unicast communication pattern. Also, NetSynth

is extensible in that it is straightforward to expand the framework

by writing new simulators for other communication patterns and

other instructions (e.g., sense-medium, backof).

This paper focuses on using NetSynth to design protocols from

scratch. However, if wemodel existing protocols as part of the initial

protocols, it can be used to improve/combine existing protocols.

Next, we discuss how diferent aspects of a network are modeled

in NetSynth.

3.1 Modeling MAC layer

The current version of NetSynth focuses on Time-Division Mul-

tiple Access (TDMA) based protocols. In these protocols, time is

partitioned into frames and each frame consists of a ixed number

of slots. Each slot contains an instruction that executes in that slot.

NetSynth currently supports three instructions, transmit, listen

and sleep. However, the implementation of NetSynth is generic

enough to allow other types of protocols such as Carrier-Sense

Multiple Access (CSMA) protocols by adding instructions such

sense-if-medium-is-free, backof-k-slots, etc.

Thus, MAC layer in NetSynth is modeled as shown in Figure

2. In this igure, the frame consists of ive slots. The irst slots of

nodes 0, 1 and 2 are transmit, listen and sleep respectively. The size

of the frame is identical for all nodes. However, the slot assignment

of each node is potentially diferent. Since the frame is periodic in

nature, each node will repeat its program after the completion of

its frame. In other words, in Figure 2, slots 6 and 7 would be similar

to slots 1 and 2 respectively.

Node A transmits successfully to its neighbor B if there is a slot

where A is in transmit mode, B is in the listen mode and no other

neighbor of B is in transmit mode. For example, in Figure 2, in the

irst slot, node 0 will successfully send a packet to node 1. However,

in the second slot, there will be a collision at node 1 as both 0 and

2 are transmitting at the same time.

T T L L S T

Frame

Slot

Node 0 Node 1 Node 2

T: Transmit   L: Listen   S: Sleep

Collision

T T L L S T

Corresponding Genotype

Figure 2: An example of a MAC layer protocol with frame

size 5 and its corresponding genotype

1
0

T L L L L

D0 D1

0 1

Instructions Routing Table

D0 D1

T L L L L 0 1

Corresponding Genotype

A

B

Figure 3: An example of a MAC and routing layer protocol

with its corresponding genotype

3.2 Modeling Network Characteristics

Section 3.1 considers the case where messages may be lost due to

a collision. In a wireless network, however, messages can be lost

even under normal circumstances. In NetSynth, we allow one to

model such losses by associating an interference probability with

nodes and channels. If an interference probability is associated with

node A, then it implies that messages sent to node A would be lost

with given probability. Such a scenario occurs in ad-hoc networks

where nodes are sharing the same frequency with other unrelated

networks. In this case, with some probability, the other (unrelated)

network may cause collision thereby causing loss of packets.

If an interference probability is associated with link ⟨A,B⟩ then

messages sent over the link would be lost with the given probability.

Thus, we can model efects caused by nodes that are far apart, are

separated by a physical barrier causing an increase in loss of pack-

ets, asymmetric links, and so on. Finally, when both interference

probabilities are speciied, the efect is cumulative.

3.3 Modeling Routing Layer

One can hardcode the routing table based on the underlying topol-

ogy. Alternatively, the routing table can be evolved using GP. In

NetSynth, we follow the latter approach. Speciically, the genome

consists of a routing table for each node. The routing table con-

sists of one entry for each possible destination (cf. Figure 3). The

entry for node t identiies the successor node to which the packet

destined towards node t should be transmitted. For example, as

shown in Figure 3, at node A, packet intended for node D1 should

be forwarded to node B.
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To ensure that the entry in the routing table is a neighbor of

the current node, we include the neighbor-number in the routing

table. For example, in Figure 3, for node A, its neighbor 0 is node

D0, neighbor 1 is node B, and so on.

Note that keeping the routing table consistent in this fashion

does not guarantee that messages would reach their destination.

This property is evaluated by the itness functionwhichwill capture,

among other things, packets received by the destination.

4 USING NETSYNTH TO SYNTHESIZE
NETWORK PROTOCOLS

In this section, we describe how NetSynth models and evaluates

protocols for the given network. NetSynth enables synthesis of pro-

tocols where we have broadcast communication or (one or more)

unicast communication. The former is essential for network man-

agement. Here, the node that initiates the broadcast intends to

control other nodes in the network by changing their system pa-

rameters, changing how they coordinate with each other, etc. This

area is also studied in the context of network reprogramming where

the goal is to send the nodes in the network a new program (or a

patch to an existing program) [9, 11, 12].

The latter captures a vast variety of protocols that is a generaliza-

tion of the producer-consumer problem in the literature. In this case,

the senders are producers that generate data and destinations are

consumers to whom the data are targeted. As an example, senders

may be cameras in a security system. They generate data to be

analyzed by the destination, backend of the security system that de-

termines if an alarm needs to be raised. Alternatively, senders could

provide details of soil moisture and destinations are responsible for

deciding when sprinkler should start.

4.1 Synthesizing Broadcast Protocols

In this section, we discuss how NetSynth enables the design of pro-

tocols targeted towards (multi-step) broadcast. In such a network,

there is some node, called initiator, that has the data that it wants

to send to all others node.

Since the data are to be sent to all nodes, there is no need for a

routing table. NetSynth utilizes difusion as a way to get the data

to all nodes in the network. Speciically, irst, the initiator sends

the data to its neighbors. They forward it to their neighbors and so

on until all nodes receive that data.

4.1.1 Fitness evaluator for broadcast. For broadcast, in Net-

Synth, each node maintains information about packets its neigh-

bors have received. This information could be based on the fact

that the node has sent that packet before or based on the fact that

it has acknowledged that packet before. Additionally, after a node

concludes that all of its neighbors have received packet x then it

can transmit packet x + 1.

Recall that when a node A sends a packet, it would be received

by node B if (1) B is in the receive mode, (2) no other neighbor of B

is is in transmit mode and (3) message is not lost due to probabilistic

message loss at node B or link ⟨A,B⟩. Additionally, to know if neigh-

bors have received a message, we use implicit acknowledgments.

When a node transmits a message, it is used as an acknowledgment

by its predecessors. For example, consider the case where a mes-

sage is being routed from node A to B to C . When a message is

transmitted by B to C , it is also received by A (if A were to be in

listening mode at the time and there is no loss or collision) due to

the nature of the wireless medium. Hence, node A will treat it as

an acknowledgment from node B.

Since the objective in broadcast communication is throughput,

the itness evaluator provides the number of packets received by

each node. They can be combined in diferent ways to compute the

itness of the given individual. One possibility is to include the sum

of packets received by all nodes. An alternative is to keep track of

the minimum number of packets received by any node. NetSynth

lets the designer to specify this in the XML ile.

4.1.2 Evolution of Broadcast Protocols. The GP process begins

with an initial set of protocols. In experimental evaluations pre-

sented in this paper, we use only a single objective, the number of

distinct packets received by all nodes. We discuss the motivation

behind this in Section 6.

4.2 Synthesizing Unicast Protocols

In this section, we describe how NetSynth enables synthesis of a

unicast protocol. We model the network to contain pairs (s1, t1),

(s2, t2), · · · . For each pair (si , ti ), there is a distribution function that

identiies the arrival rate at node si . The network also identiies the

topology and qualities of links/nodes.

The broad structure of a unicast protocol from sender s to des-

tination t is as follows: Node s , irst, obtains a new packet from

its application. It forwards it to some other node in the network

(as determined by the routing table), then to some other node and

so on until it reaches t . One can instantiate it for a single sender-

destination pair or multiple pairs. It is possible for a node to be part

of multiple sender-destination pairs (as a sender or a destination).

Next, we discuss, how we evaluate the itness of a given protocol/in-

dividual that is generated as part of the GP process. Subsequently,

we discuss how GP is used to evaluate the desired protocol.

4.2.1 Fitness Evaluator For Unicast Protocols . The arrival of

packets at the network layer of s is determined by the application,

i.e., it is part of characteristics of the given network. In our exper-

iments presented in this paper, we assume that the packets are

generated at a ixed rate deined in the input XML ile. NetSynth

lets other distributions (e.g., exponential).

When a new packet is available, it will be sent to other nodes

when a transmit slot is available. Speciically, when the network

layer at node s receives the packet, it sends it to one of its neighbors

so that eventually node t will receive the packet. This is achieved

with the help of a routing table.

The above discussion handles the case where there is only one

packet that the sender node wants to transmit. When there are

multiple packets to be sent, the sender must choose the packet ID

that is to be sent. We achieve this as follows: irst, we allow a node

to maintain the list of packets it should send. Second, as in case of

broadcast communication, when a node transmits a message, it is

used as an acknowledgment by its predecessors. Third, NetSynth

also provides a mechanism of explicit acknowledgment, whereby

the node sends information about packets it has received from oth-

ers. We envision that this would be achieved by including sequence

numbers in the packets and including those sequence numbers in
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the acknowledgments. Thus, acknowledgment to many packets can

be included in one message.

In unicast communication, we allow a node to send multiple

packets without requiring that each be acknowledgment immedi-

ately. Once again, we consider the case where packets are being

routed from node A to B to C . In this case, node A will send up to

W (window size) packets without receiving an explicit acknowl-

edgment. It will continue to monitor implicit acknowledgments to

determine which packets have been received. By maintaining such

sliding window, node A can continue to transmit new packets until

a loss of a packet forces it to retransmit a packet in the current

window. In our implementation, we let the sizeW be ixed. The

protocol designer can set this value in the input XML document. In

a future implementation, it would be possible to make it be part of

the genome so that it can be evolved to identify the best window

size for the given network. One side efect of this is that when the

destination node, say t , receives a message, it utilizes its transmit

slots to provide acknowledgments to packets it has already received.

We perform this analysis for up to thr slots, where thr is a

conigurable parameter. After completion of thr slots, the itness

evaluator reports the power used by each node and the number

of packets received by each node. In most of our experiments, we

combine these values to identify the total power used and the total

number of packets received. However, other combinations are also

feasible based on application requirements.

4.2.2 Evoluation of Unicast Protocols. In our experiments, we

use random protocols, i.e., protocols where each routing table entry

is set to some neighboring node and each slot is randomly assigned

to be transmit, listen or sleep. However, NetSynth is lexible in

that we can initialize the initial population to consist of known

protocols from the literature.

For each individual, we evaluate its itness. To deal with proba-

bilistic links, we compute the itness function for each individual

10 times and take the median of these. This ensures that the it-

ness function does not luctuate substantially due to probabilistic

nature of communication. In the experiments in this paper, we

combine the data provided by the itness evaluator into two objec-

tives: cumulative distinct packets received by all destinations and

cumulative energy used by battery operated nodes. Subsequently,

we use NSGA-II to evaluate the protocols in the next generation.

5 NETWORK DESIGNER TOOL

Although NetworkDescriptor.xsd allows us to lexibly deine our

networks, writing network descriptor iles can be a tedious and

error-prone task for larger networks. To solve this issue, we provide

Network Designer tool. Network Designer is a graphical tool that

allows us to deine our network visually. The tool provides an area

where we can add our battery/AC powered nodes. We can connect

nodes by lines to specify network connections. When we have

several components that need to be all connected to each other, we

can use hubs to avoid connecting them one-by-one.

Figure 4 shows the interface of Network Designer with an ex-

ample network. In this network, we have a node named Base that

wants to send packets to two destinations A0 and A1. The network

is created by connecting the Base to two subnetworks. The left

subnetwork consists of nodes B0, X0, Y0, Y1, and A0. The right

Figure 4: The interface of Network Designer

subnetwork consists of nodes B1, X1, X2, Y2, Y3, and A2. The left

subnetwork, right subnetwork, and Base are connected via a hub

component. Note that nodes with battery icon are battery powered

nodes. Other nodes are AC powered nodes. In Section 6.2, we will

see how NetSynth trades of the throughput and energy by evolving

protocols for the left and right subnetworks of Figure 4.

6 EXPERIMENTAL RESULTS

In this section, we present results with NetSynth for broadcast

(Section 6.1) and unicast (Section 6.2). In all these experiments, we

use GP (with single objective) or NSGA-II (with multi-objective)

setting. We use bit lip mutation with mutation rate of 3
genome length

,

and single-point crossover with probability 0.9.

6.1 Broadcast Results

In this section, we compare the efectiveness of NetSynth in gener-

ating protocols for broadcast in a rectangular grid. Here, the nodes

in the network are arranged in am × n rectangular grid where the

initiator is in the upper-left corner (cf. Figure 5). For the network

in Figure 5, we assume that each node can communicate with the

neighboring nodes along the row or column.

The reason we consider this network is multi-fold. For one, this

network is an abstraction of networks [2, 3, 5] deployed for moni-

toring intrusion in a physical deployment. Here, each node consists

of a sensor that detects possible intrusion in the network. The nodes

communicate with each other to ensure that any intruder is im-

mediately detected and tracked. Another reason is to evaluate the

efectiveness of NetSynth by comparing the generated protocols

with best-known protocols that are designed by hand. Speciically,

we irst describe the best-known protocol, GridPr, for this network

and compare it with protocols generated by NetSynth.

6.1.1 The Best-Known Protocol for Broadcast in Figure 5.

The best-known protocol, GridPr, for the network in Figure 5 uti-

lizes a frame size of 5 (this is independent ofm and n as long as they

are at least 3), i.e., each frame consists of 5 slots, 0..4. The initiator
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00 01 02

10 11 12

20 21 22

Initiator

[0] [1] [2]

[2] [3] [4]

[4] [0] [1]

Figure 5: A 3 × 3 grid

transmits in slot 0 of every frame. The node on the right of the ini-

tiator (node 01) transmits in slot 1 and the node below the initiator

(node 10) transmits in slot 2. This ensures that the initiator can

receive (implicit) acknowledgment from its two neighbors without

a collision. This pattern is repeated in the remaining network. In

particular, a node transmits one slot after (in modulo 5 arithmetic)

its left node and two slots after (in modulo 5 arithmetic) its top

node. All other slots are for listening either for new messages from

nodes closer to the initiator or for receiving (implicit) acknowledg-

ments from nodes farther from the initiator. The slot assignment

for the network in Figure 5 is shown in the igure with numbers

in the brackets. Speciically, the node marked with [i] in Figure 5

transmits at slot i and listens on all other slots.

The above protocol guarantees that each node can transmit one

new packet for every frame. This is the best one can do if the

frame size is 5, as a node cannot simultaneously transmit with its

neighbors and internal nodes have four neighbors each. Although

the goal of this discussion is not to argue whether such a protocol is

provably optimal, to the best of our knowledge, it is the best-known

protocol for such a network.

We can also extend this protocol for cases where the frame size

is larger. Speciically, if the frame size is 10, we can just extrapolate

this algorithm so that each node transmits twice in each frame.

However, if the frame size is between 6..9, it is unclear how the re-

maining frames could be used to speed up delivery of messages in a

systematic fashion where the code of each node remains unchanged

across frames. In other words, to the best of our knowledge, GridPr

remains the best-known algorithm by allowing the nodes to either

sleep or listen in the extra slots in each frame.

6.1.2 Analysis of GP in Broadcast. We repeated the experiments

with GP 10 times and the analysis of each run is shown in Figure 6.

Speciically, in Figure 6a, we show the 10 runs for the case where

frame size is 5. As expected, the process of evolution causes the

itness function to increase. In 3 runs, GP was able to generate a

protocol that almost as good as GridPr. In fact, in one of the runs

(shown in solid thick blue), it produced the protocol that is identical

to GridPr. Furthermore, the red dotted graph shows the median of

relative throughputs of best individuals for diferent generations

in 10 GP runs. From this, we ind that after 300 generations, the

median relative throughput of the best protocol generated by GP

was about 85% of that of GridPr.

Figures 6b and 6c show the evolution when frame size is 6 and 7,

respectively. Note that no matter what is the size of the frame, we

run the experiments for the equal amount of time in terms of the

number of slots that we execute. As discussed earlier, even in this

case, GridPr remains the best protocol that was known to us. From

these igures, we see that GP was able to ind a protocol that was

slightly better than GridPr. Another important observation from

this is that the convergence is substantially faster with frame size

of 6 and 7.

6.2 Unicast Results

Our irst set of experiments focuses on the ability of NetSynth to

identify the shortest path based on the objectives. Towards this end,

we considered the left subnetwork of the network shown in Figure

4, where the sender is node B0 and the destination is node A0. The

data can be routed toA0 either via node X0 or via nodes Y0 and Y1.

To facilitate the development of this protocol, each node maintains

a routing table. Since A0 is the only destination, each node needs

only one entry, namely for A0. The results for this evolution are in

Figure 7a.

Our second set of experiments is to analyze the ability of Net-

Synth to develop a protocol with lower energy utilization. Towards

this end, we considered the right subnetwork of the network shown

in Figure 4. Here, node B1 has two choices: either route via X1 and

X2 or via Y2 and Y3. Nodes X1 and X2 are AC-powered whereas

Y2 and Y3 are battery powered. The results of this experiment are

in Figure 7b.

Our third set of experiments is to analyze the ability of Net-

Synth to identify the tradeof between energy conservation and

throughput. To set up this evaluation, we again considered the right

subnetwork of Figure 4. However, we change the interference (i.e.

loss) probability of nodes X1 and X2 to be 0.5. Thus, there is a

tradeof between energy and throughput. Routing via X1 and X2

saves power whereas routing via Y2 and Y3 increases throughput.

The results from this case are in Figure 7c.

6.2.1 Analysis of GP Results for Unicast. For unicast results, we

focus on identifying the tradeof identiied by GP and how the

evolution occurred over diferent generations. In our presentation,

we normalize our results with respect to the best protocol found

by GP in any run. Speciically, we normalize the throughput with

respect to the maximum throughput found in any program, and we

normalize the energy with respect to the maximum energy usage

in any program considered by GP. Since the goal is to maximize the

throughput and minimize the energy, the best solutions are those

where throughput is 1 and energy is 0.

The evolution for the left subnetwork of Figure 4 is shown in

Figure 7a. From the results in Figure 7a, we ind that initially, in the

irst generation, the energy is really high whereas the throughput

is low. In subsequent generations, throughput is maximized very

quickly and reaches its maximum value. Energy, however, continues

to reduce in subsequent generations; the least energy is obtained

(by individual marked with A in Figure 7a) in generation 240 while

preserving the maximum throughput. For this individual, GP has

successfully found the correct shorter path (via X0) to route the

packets to node A0. As we can see from Figure 7a, NetSynth also

inds two other non-dominating solutions; one of these solutions

(marked B in Figure 7a) is a trivial solution that lets a node sleep

all the time thereby saving energy although the throughput is 0.
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(c) Frame size = 7

Figure 6: Evolving protocol for the network shown in Figure 5. Each diagram shows ten diferent runs. The thick blue line is

one of the runs that founds the best solution, and the dotted red line shows the median of 10 runs.

Another solution (markedC in Figure 7a) has a slightly lower energy

than the solution that provides maximum throughput. However, its

normalized throughput is only 0.1.

We also review the solutions with an integrated objective where

energy and throughput are combined by the following formula1

weiдhted_objective = w × (1 − enerдy) + (1 −w) × throuдhput

By changing the value of w in this formula, we can consider

diferent scenarios where we consider diferent levels of importance

for throughput and energy. We show the results of diferent weights

in Figure 8. Speciically, we consider ive diferent scenarios:

• E >> T : energy is signiicantly more important (w = 0.9)

• E > T : energy is more important (w = 0.75)

• E = T : energy and throughput are equally important (w =

0.5)

• E < T : throughput is more important (w = 0.25)

• E << T : throughput is signiicantly more important (w =

0.1)

From this igure, we observe that this integrated itness function

also continues to grow across generations. Most of the improvement

occurs in the irst few iterations and subsequently, there is a slow

growth in the future generations.

Results for the second set of experiments is as shown in Figure

7b. Once again, in these experiments, the throughput gets optimized

quickly, and energy continues to evolve over subsequent genera-

tions. Similar to the irst set of experiments, we ind non-dominated

solutions as shown in Figure 7b. Of these, the solution marked A

in Figure 7b transmits the packets via X1 and X2 thereby saving

energy. Thus, for this case also, GP is successful to ind the correct

path to rout the packets. The results for combined objectives using

the same formula for weighted average is shown in Figure 8b.

Our third set of experiments provide interesting results shown

in Figure 7c. The results show that in every generation, we see

solutions that provide a tradeof between energy and throughput.

For example, in generation 300, we have a solution (marked A in

Figure 7c) that provides normalized throughput of 1 with energy

0.524. This solution corresponds to getting a higher throughput at

the cost of energy. It routes messages via battery powered nodes (i.e.

1We use 1 - energy since energy is to be minimized

Y2 and Y3) with better links. On the other hand, another solution

(marked B in Figure 7c) routes messages via AC powered nods (i.e.,

X1 and X2). It saves energy (normalized energy 0.45) but reduces

throughput (normalized throughput 0.55).

Viewing this in terms of an integrated objective (cf. Figure 8c)

solutions found by GP are biased towards scenarios where one

objective is far more important than others. When w = 0.9 and

w = 0.1, the solutions provide highest integrated objective.

7 CONCLUSION AND FUTUREWORK

We presented NetSynth, a framework for synthesizing customized

network protocols using GP. Our framework is motivated by the

need to develop protocols that meet the requirements of the given

network in terms of objectives such as energy and throughput

while accounting for the diferences in the network such as network

connectivity, loss rate, availability of AC-power. It would be possible

to design a network protocol speciically designed for that network

only if the process can be substantially automated to reduce the

overhead. NetSynth aims to achieve this with GP.

We demonstrated NetSynth for broadcast and unicast commu-

nication. For broadcast on a grid, we demonstrated that NetSynth

was able to synthesize the optimized protocol. Moreover, the best

median solution found by NetSynth had 85% throughput compared

with the best-known protocol. We demonstrated the feasibility of

NetSynth to synthesize protocol that provides the shortest path,

reduces energy or provides a tradeof between saving energy and

increasing throughput.

Our analysis was based on an initial description of random pro-

tocols. However, in NetSynth, one can set the initial population to

consist of well-known protocols. This will allow one to identify best

parameters for the given set of protocols or to combine concepts

from diferent protocols. We also provided a graphical tool that

lets the network designers graphically describe their networks and

requirement to synthesize a protocol for it.

There are several future extensions of NetSynth. For one, cur-

rently, we focused on TDMA channel access methods. One can

extend NetSynth to synthesize other types of protocols such as

CSMA. As another extension, we can consider GP with varying
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Figure 7: Objectives in diferent generations
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Figure 8: Integrated objective in diferent generations.

genome size. This lets us evolve the frame size as well as the in-

struction sequences, unlike the current NetSynth that assumes a

ixed genome size given by the input ile.
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