
Performance improvements of evolutionary algorithms in Perl 6

Juan-Julián Merelo-Guervós
Universidad de Granada

Granada, Spain
jmerelo@ugr.es

José-Mario García-Valdez
Instituto Tecnológico de Tijuana

Tijuana, Mexico
mario@tectijuana.edu.mx

ABSTRACT

Perl 6 is a recently released language that belongs to the Perl family
but was actually designed from scratch, not as a refactoring of the
Perl 5 codebase. Through its two-year-old (released) history, it has
increased performance by several orders of magnitude, arriving
recently to the point where it can be safely used in production.
In this paper, we are going to compare the historical and current
performance of Perl 6 in a single problem, OneMax, to those of other
interpreted languages; besides, wewill also use implicit concurrency
and see what kind of performance and scaling can we expect from
it.

CCS CONCEPTS

•Theory of computation→Evolutionary algorithms; •Com-

puting methodologies→ Distributed algorithms;

KEYWORDS

Benchmarking, computer languages, concurrency, evolutionary
algorithms, Perl, Perl 6

ACM Reference Format:

Juan-Julián Merelo-Guervós and José-Mario García-Valdez. 2018. Perfor-
mance improvements of evolutionary algorithms in Perl 6. In GECCO ’18

Companion: Genetic and Evolutionary Computation Conference Compan-

ion, July 15–19, 2018, Kyoto, Japan. ACM, New York, NY, USA, 8 pages.
https://doi.org/10.1145/3205651.3208273

1 INTRODUCTION

Performance has always been a concern in scienti�c computing.
Generally, you will want to use the fastest language available to be
able to run your experiments in as little time as possible. However,
while implementation matters [13], ease of programming, available
libraries and supporting community are sometimes more signi�cant
concerns, since in scienti�c computing the target is to optimize
time-to-publish the paper, not only time from pressing Enter to
obtaining the results, and that includes time to get toe program
done itself, as well as process results.

In that sense, interpreted languages such as Python, Perl or
JavaScript [2, 3, 6, 9, 11, 12, 15] o�er fast prototyping, if not the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan

© 2018 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-5764-7/18/07. . . $15.00
https://doi.org/10.1145/3205651.3208273

fastest implementation, which usually belongs to compiled lan-
guages such as Haskell or Java [10]. However, as proved in the cited
paper, that is not always the case and new languages deserve a
chance to be tested, mainly if they o�er functionalities that might
make the implementation of evolutionary algorithms faster or more
straightforward.

Besides, the performance of a language is not a static thing; while
some languages are happy enough with the level they achieve and
focus on other functionalities, newer languages focus on perfor-
mance in every new release, o�ering improvements of several or-
ders of magnitude. This has been the case of Perl 6 [17], a new,
concurrent, dynamic and multi-paradigm language that has been
in development since 2000 and released in December 2015. Since
then, it has had a release cycle of one, or sometimes more, releases
every month, with a stable release every four months. While initial
tests discouraged us from including its �gures in the paper where
we benchmarked many languages for evolutionary algorithms [5],
the increase in performance has been continuous, as well as the
implementation of implicit parallelism features.

This paper is specially focused on benchmarking this language
for evolutionary algorithms, with the intention of proposing it as
production-ready for scienti�c computing or evolutionary compu-
tation experiments.

The rest of the paper is organized as follows. We will brie�y
present the state of the art in benchmarking evolutionary algo-
rithms in the next section, followed by the set of experiments used
to test the performance in Section 3. Results and charts will be
presented in Section 4, and we will close the paper by stating our
conclusions.

2 STATE OF THE ART

As a matter of fact, there is very little scienti�c literature on Perl
6, much less applied to scienti�c computing. The paper by Audrey
Tang [17], one of the early programmers of a Perl 6 compiler in
Haskell called Pugs, is one of the few we can �nd. In fact, the
paper where she describes the design of the language has had some
in�uence in language design, including the design of Typed Scheme,
a functional language [18].

Its sister language, Perl, has been used in Evolutionary Algo-
rithms for a long time, with an early tool but used for minimizing
the performance of a network [1]. Since the publication of the
Algorithm::Evolutionary library circa 2002 [8, 9] it has been ap-
plied to many di�erent problems, including solving the MasterMind
puzzle [7]. In fact, its speed processing evolutionary algorithms
has made it a great tool for evolving regular expressions via the
DiscoverRegex and GenRegex tools [16], and even optimizing the
yield of analog integrated circuits [4].

Perl 5 was a convenient and multi-paradigm, if not particularly
groundbreaking language. Conceptually, you could program an

GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan Juan-Julián Merelo-Guervós and José-Mario García-Valdez

evolutionary algorithm in pretty much the same way you would
do it in C or C++, which were at the time much faster languages.
The fact that it was used proves that languages for implementing
evolutionary algorithms are not chosen purely by their raw speed.

However, speed has to be adequate and not vary in orders of
magnitude with respect to other, well-established, language. Even
if slower, the trade-o� might be interesting if a new language o�ers
new ways of implementing evolutionary algorithms that give you
some insight on the inner workings of evolutionary optimization.
This why in this paper we will set to measure the speed of Perl 6
and its evolution, in order to prove that it has come the time to
consider it as a language for evolutionary optimization given the
functional and concurrent facilities it now o�ers.

3 EXPERIMENTAL SETUP

In this experiment we have used the same operators and data al-
ready published in [10] that is, crossover, mutation and one-max or
count-ones. We have added the Royal Road function [14], mainly
with the objective of comparing Perl and Perl 6 and its parallel
facilities.

The functions are well known, and the main objective of these
tests was, besides comparing performance side by side, see how this
performance scales to big, and a bit unrealistic, chromosome sizes.
The way the handling of data structures by particular languages
is done makes that, sometimes, the speed of dealing with bigger
sizes is faster than with smaller sizes; as a matter of fact, in the
above mentioned paper Java achieved its best performance for the
biggest chromosome size. We tested several data structures in Perl
6 and �nally chose a vector (or array) of booleans as the fastest one.
In fact the speed of the benchmark is divided in two parts: speed
for randomly generating the vector and speed of actually counting
the number of ones. In this case, generating a vector of Bools was
considerably faster than doing the same with integers, although
summing them was almost 4 times as slow. That is why we also
test a vector of integers in the experiments we show below. These
two operations take two lines in Perl 6, as follows.

my $ones = Bool . r o l l xx $ l en ;

my $maxones = $ones . sum ;

These two lines show the advantage of this kind of language;
the same operation needs several lines and two loops in most other,
non-functional, languages. The �rst one creates an array of random
boolean values, generated with Bool.roll; xx multiplies by the
length to yield an array of the desired length. And the second
line just uses the sum method, which is an standard method for
arrays and can also be applied to arrays of booleans. In Perl 6,
there are many possible ways of achieving the same, but in fact
after several measurements we found this was the fastest, even if
initially it was much slower than for other languages. Also, as it
can be seen, Perl 6 uses sigils for variables, this $ been applied to
most kinds of containers. Bool is a standard type, and my is a scope
declaration which can optionally include a type or class declaration.
A fuller introduction to the language is outside the scope of this
paper, but the interested reader can check the documentation at
https://docs.perl6.org for a tutorial or a more thorough explanation
of all its features and capabilities.

The benchmark consists in 100,000 repetitions of the operation
for sizes that are increased by 2 starting from 16 to, when possible,
32768. All experiments took place in a desktop computer with 8
cores running Ubuntu 14.04.5.

All programs are open source, and included in the same GitHub
repository that holds this paper in https://github.com/JJ/perl6eo.
Data from the experiments is also freely available in the same place.

4 RESULTS AND ANALYSIS

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

10

1000

100 1000 10000

length

ti
m

e

Language

●

●

●

2016.08

2017.1

2018.03

Perl6 language benchmarks: Onemax

Figure 1: Plot of time needed to perform 100K OneMax eval-

uations in several versions of Perl 6, from 2016 to the cur-

rent in 2018. Strings have lengths increasing by a factor of

two from 16 to 215. Please note that x and y both have a log-

arithmic scale.

The �rst experiment just measured the speed of the max-ones

function across releases of Perl 6; Perl 6 has a monthly release
schedule, with version number corresponding to year and month.
The result of this operation is shown in Figure 1, and it clearly
shows the increase in speed across time, that amounts to almost
one order of magnitude from the �rst version, with a performance
that prompted us to exclude it from our initial study, to the current,
which is much better.

Despite the improvement, it needs to be compared to the rest of
the languages we tested in the previous paper. We have excluded
the fastest, mainly compiled, languages, to leave mainly scripting,
and some compiled, languages. This comparison is shown in Figure
2. This chart, besides all the measures already published in the
previous paper, includes three versions of the one-max in Perl 6.
One is the same as above, which uses a boolean representation for
the chromosome bits; the second uses an integer representation
for the bits and is listed as IntVector. This version needed a bit of

Performance improvements of evolutionary algorithms in Perl 6 GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ●
● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1e−01

1e+01

1e+03

100 1000 10000

length

ti
m

e

Language

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

C++−BitString

C−char[]

clisp−simple_bit_vector

julia−BitString

lua−BitString

node−BitString

Octave−Vector

perl5.20−BitString

perl5.22−BitString

perl6−BitVector

perl6−BitVector−hyper

perl6−IntVector

perl−BitString

PHP−BitString

Python−BitString

Rust−BitVector

Scala−BitString

Evolutionary algorithm language benchmarks: Onemax

Figure 2: Plot of time needed to perform 100K OneMax function evaluations in strings with lengths increasing by a factor of

two from 16 to 215. Please note that axes x and y both have a logarithmic scale.

hacking which included using a Boolean bit generation and then
transforming it to an integer number; however, even that step made
it a bit slower than the Boolean version.

The third version, listed as perl6-BitVector-hyper, shows one
of the unique characteristics of Perl 6: implicit parallelism. The
hyper and race methods, applied to vectors, divide the job into

di�erent threads, 4 by default, evaluating di�erent parts of the
vector in parallel, without a�ecting in any way the rest of the
operation. In the case above, just changing the line to

my $maxones = $ones . r a c e . sum ;

GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan Juan-Julián Merelo-Guervós and José-Mario García-Valdez

● ● ●

●

● ● ● ● ● ●
●

●

●
● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ●
● ● ●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

● ●
●

●
● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ●

●

● ●
●

●

● ● ● ● ● ●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ● ● ● ● ● ● ● ● ● ●

1e−02

1e+00

1e+02

100 1000 10000

length

ti
m

e

Language

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

C++−BitString

C−char[]

clisp−simple_bit_vector

julia−BitString

lua−BitString

node−BitString

Octave−Vector

perl6−BitVector

perl−BitString

perl−Bit_Vector

perlsimple−BitString

PHP−BitString

python−BitString

Scala−BitString

Scala−BitVector

Evolutionary algorithm language benchmarks: Bitflip mutation

Figure 3: Plot of time needed to perform mutation on 100K chromosomes with increasing lengths from 16 to 215. Please note
that x and y both have a logarithmic scale.

made the sum to be executed in parallel, improving the performance
by the number of threads it is using by default.We used race instead
of hyper since the latter forces in-order execution; in our case, the
order of the sums is not important and keeping order makes it a bit
slower.

The chart shows that, in fact, Perl 6 for this operation is faster,
for big sizes, than C++, and overall faster than the Lua language or
even Python for a particular representation. For some sizes, it can
also be faster than Common Lisp.

In principle, by being faster than more traditional languages,
we can prove here that Perl 6 can be not only convenient in terms

Performance improvements of evolutionary algorithms in Perl 6 GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan

●
●

● ●

●
●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ● ●
● ●

●

●

●

●

● ● ● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ● ●
●

●
●

●

●

●

● ● ● ● ● ● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1

100

100 1000 10000

length

ti
m

e

Language

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

C++−BitString

C−char[]

clisp−simple_bit_vector

julia−BitString

lua−BitString

node−BitString

Octave−Vector

perl5.20−BitString

perl6−BitString

perl6−BitVector

perlsimple−BitString

PHP−BitString

Python−BitString

Scala−BitString

Scala−BitVector

Evolutionary algorithm language benchmarks: Crossover

Figure 4: Plot of time needed to perform crossover on 100K chromosomes with increasing lengths from 16 to 215. Please note
that x and y both have a logarithmic scale.

of programming ease (just two lines where other languages need
many more lines), but also faster. Let us, however, have a look at
the rest of the genetic operations.

The very traditional bit�ip mutation comparison chart is shown
in Figure 3. The lines used for doing this operation are shown below.

my $ p o s i t i o n = $range . p i ck ;

@ones [$ p o s i t i o n] = ! @ones [$ p o s i t i o n] ;

In this case we are using pick for choosing a random value in a
range, which is the chromosome size, and �ipping the bit in that
random position. Could be done also in a single line, avoiding the
$position variable; besides, we use the sigil to clearly indicate we

GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan Juan-Julián Merelo-Guervós and José-Mario García-Valdez

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

10

100

1000

100 1000 10000

length

ti
m

e

Language

●

●

●

perl 5

perl 6 − parallel

perl 6 serial

Comparing Perl 5 and Perl 6 using the Royal Road Function

Figure 5: Plot of time needed to perform 100K royal road functions on chromosomes with increasing lengths from 16 to 215.
Please note that x and y both have a logarithmic scale.

are dealing with a vector. We avoided it in the listing above since it
made the operation slightly slower.

In this case, Perl 6 is considerably fast, although not the fastest,
and the time needed is independent of the chromosome length, a
good trait, overall. Once again, it shows a good performance in this
operation. Let us examine the next genetic operator, crossover.

The crossover performance comparison chart is shown in Figure
4. In this case, after initial tests, we have gone back again to testing
a di�erent representation: a bit string, that is, a string composed
of 0s and 1s. Strings have a di�erent internal representation than
vectors, and the operations needed are di�erent. While in the �rst
case we could use this line to perform the crossover:

Performance improvements of evolutionary algorithms in Perl 6 GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan

@chromosome2 . sp l i c e ($ s t a r t , $ t h i s − l en ,

@chromosome1 [$ s t a r t . .

($ s t a r t + $ t h i s − l e n)]) ;

, in the second case we used

$chromosome2 . substr−rw ($ s t a r t , $ t h i s − l e n) =

$chromosome1 . substr ($ s t a r t , $ t h i s − l e n) ;

changing from an array operation to a string operation. And we did
so after �nding a very disappointing performance, in fact the worst
of all languages tested, with the �rst one. Using a bitstring was not
much better, still needing almost double the time of the second-
worst language, which is Scala in this case. The fact that these two
functional languages have the same disappointing performance,
while Scala is usually very fast for all applications, points to the
fact that we might be taking the wrong, non-functional, approach
to this operation in these languages.

In fact, changing the line to

@chromosome2 . sp l i c e ($ s t a r t , $ t h i s − l en ,

@chromosome1 . s k i p ($ s t a r t) . head ($ t h i s − l e n)) ;

somewhat improved the performance. In this case we are using
functional methods to access di�erent parts of the chromosome.
There is around a 20% improvement over the previous line, but
still very slow compared to other languages. This proves, anyway,
that testing and some help from the community are needed to
extract the best performance out of a language; also that idiomatic
constructions are in general preferred over generic constructions.
It always pays to know the language well.

That is also whywe have tested another function, the well known
Royal Road, which was proposed as an example of a complicated
landscape for evolutionary algorithms. It might also be a compli-
cated performance benchmark. Perl 6 needs a single line to imple-
ment this function:

my $ roya l −road= $ones . r o t o r (4)

. grep (so (∗ . a l l == True | F a l s e)) . e lems ;

In this case, we are using several unique Perl 6 features and
doing so in a functional way. For instance, | are Junctions and all
becomes True or False if all the elements in its 4-element block
are. That is a very straightforward, and mathematically correct,
way to express the Royal Road function. However, it is still slower
than Perl by an order of magnitude, as shown in Figure 5. In fact,
we had to stop the benchmark, since scaling with size was very bad
too.

That is why we used again the .race method, which distributes
load among threads. Although for smaller sizes the overhead needed
to set up the distribution of tasks made it slower, and thus not
very convenient for the usual sizes, it became much faster, by al-
most an order of magnitude, for bigger sizes, proving again that
implicit parallelism very conveniently allows to work with big
sets of elements, making the result faster. However, it is still very
slow. As it becomes the target of optimization in subsequent re-
leases of Perl 6, it will probably improve in speed. The implicit
parallel facilities of Perl 6 makes it possible, however, to optimize
it at a di�erent level, for instance, population level, which still

makes Perl 6 an interesting target for the implementation of evo-
lutionary algorithms. In fact, there are already two implementa-
tions available in the Perl 6 module ecosystem, one by the au-
thor of this paper, Algorithm::Evolutionary::Simple, which
includes implementations of the operators shown here. The other
one, Algorithm::Genetic, makes extensive use of Perl 6 function-
alities including roles and gather/take loops.

5 CONCLUSIONS

In this paper, we set to prove the readiness of Perl 6, a new pro-
gramming language, for implementing evolutionary algorithms.
Traditionally, these tests have been based purely on performance,
to the point that the only questions asked when a new evolutionary
algorithm library is released is: "Is it faster than Java/C++?". In this
paper we have considered this performance, �rst historically from
the �rst releases, and then considering the latest releases. Taking
into account the improvements in performance experimented along
this time, and how seriously performance issues are taken by the
developers, we can safely assume that in the medium term Perl 6
will achieve levels of speed comparable with those of other scripting
languages, which means that it could be faster than some compiled
languages.

On the other hand, a very important consideration is also the
facilities that the language o�ers for the implementation of most
classical evolutionary functions. In this case, Perl 6 o�ers functional
methods that allow the chaining of operations, equivalent to func-
tion composition, so that in many cases a single line of chained
functions is enough to process chromosomes. In many cases, this
idiomatic way of doing those operations will result in a faster op-
eration, since idiomatic constructs are usually optimized in every
language. In this sense, using either functions or the implicitly
parallel methods such as .race results in improvements in speed,
although for the time being, and in general, Perl 6 is still slower
than its sister language, Perl.

Putting both things in the balance, and in general, the conclusion
is that the time for implementation of evolutionary algorithms in
Perl 6 has arrived, although there is still some way to go in terms
of performance. Closely following the development will make the
programmer choose the faster alternative for the implementation of
evolutionary algorithms, constituting an interesting and promising
line of work.

Another line of work will be to use explicit concurrency primi-
tives to implement a concurrent evolutionary algorithms. This is
something we will explore in a di�erent paper.

ACKNOWLEDGMENTS

This paper is part of the open science e�ort at the university of
Granada. It has been written using knitr, and its source as well
as the data used to create it can be downloaded from the GitHub
repository https://github.com/JJ/2016-ea-languages-wcci/.

This paper has been supported in part by GeNeura Team, projects
TIN2014-56494-C4-3-P (Spanish Ministry of Economy and Compet-
itiveness) and DeepBio (TIN2017-85727-C4-2-P)

We are also deeply grateful to the Perl 6 community, who through
the Perl 6 IRC channel and pull requests have helped greatly to
improve the code.

GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan Juan-Julián Merelo-Guervós and José-Mario García-Valdez

REFERENCES
[1] Doina Bucur, Giovanni Iacca, Marco Gaudesi, Giovanni Squillero, and Alberto

Tonda. 2016. Optimizing groups of colluding strong attackers in mobile urban
communication networks with evolutionary algorithms. Applied Soft Computing
40 (2016), 416–426.

[2] Hossam Faris, Ibrahim Aljarah, Seyedali Mirjalili, Pedro A. Castillo, and Juan J.
Merelo. 2016. EvoloPy: An Open-source Nature-inspired Optimization Frame-
work in Python. In Proceedings of the 8th International Joint Conference on Com-
putational Intelligence, IJCCI 2016, Volume 1: ECTA, Porto, Portugal, November
9-11, 2016., Juan Julián Merelo Guervós, Fernando Melício, José Manuel Cadenas,
António Dourado, Kurosh Madani, António E. Ruano, and Joaquim Filipe (Eds.).
SciTePress, 171–177. https://doi.org/10.5220/0006048201710177

[3] Félix-Antoine Fortin, De Rainville, Marc-André Gardner Gardner, Marc Parizeau,
Christian Gagné, et al. 2012. DEAP: Evolutionary algorithms made easy. The
Journal of Machine Learning Research 13, 1 (2012), 2171–2175.

[4] Ivick Guerra-Gomez, Esteban Tlelo-Cuautle, and Luis Gerardo de la Fraga. 2015.
OCBA in the yield optimization of analog integrated circuits by evolutionary
algorithms. In Circuits and Systems (ISCAS), 2015 IEEE International Symposium
on. IEEE, 1933–1936.

[5] Juan Julián Merelo Guervós, Israel Blancas-Alvarez, Pedro A. Castillo, Gustavo
Romero, Pablo García-Sánchez, Víctor M. Rivas, Mario García Valdez, Amaury
Hernández-Águila, andMario Román. 2017. Ranking Programming Languages for
Evolutionary Algorithm Operations. In Applications of Evolutionary Computation
- 20th European Conference, EvoApplications 2017, Amsterdam, The Netherlands,
April 19-21, 2017, Proceedings, Part I (Lecture Notes in Computer Science), Giovanni
Squillero and Kevin Sim (Eds.), Vol. 10199. 689–704. https://doi.org/10.1007/
978-3-319-55849-3_44

[6] Masatoshi Hidaka, Ken Miura, and Tatsuya Harada. 2017. Development of
JavaScript-based deep learning platform and application to distributed training.
arXiv preprint arXiv:1702.01846 (2017).

[7] Javier Maestro-Montojo, Sancho Salcedo-Sanz, and Juan J. Merelo Guervós. 2014.
New solver and optimal anticipation strategies design based on evolutionary
computation for the game of MasterMind. Evolutionary Intelligence 6, 4 (2014),
219–228. https://doi.org/10.1007/s12065-013-0099-6

[8] J. J. Merelo. 2002. Evolutionary Computation in Perl. In YAPC::Europe::2002,
Münich Perl Mongers (Ed.). 2–22.

[9] Juan-Julián Merelo. 2010. A Perl primer for evolutionary algorithm practitioners.
SIGEVOlution 4, 4 (2010), 12–19. https://doi.org/10.1145/1810136.1810138

[10] Juan J. Merelo, Pedro A. Castillo, Israel Blancas, Gustavo Romero, Pablo García-
Sánchez, Antonio Fernández-Ares, Víctor M. Rivas, and Mario García Valdez.
2016. Benchmarking Languages for Evolutionary Algorithms. In Applications of
Evolutionary Computation - 19th European Conference, EvoApplications 2016, Porto,
Portugal, March 30 - April 1, 2016, Proceedings, Part II (Lecture Notes in Computer
Science), Giovanni Squillero and Paolo Burelli (Eds.), Vol. 9598. Springer, 27–41.
https://doi.org/10.1007/978-3-319-31153-1_3

[11] Juan-Julián Merelo-Guervós, Pedro-A. Castillo, and Enrique Alba. 2010.
Algorithm::Evolutionary, a �exible Perl module for evolutionary compu-
tation. Soft Computing 14, 10 (2010), 1091–1109. https://doi.org/10.1007/
s00500-009-0504-3 Accesible at http://sl.ugr.es/000K.

[12] Juan-Julián Merelo-Guervós, Pedro-A. Castillo-Valdivieso, Antonio Mora-García,
Anna Esparcia-Alcázar, and Víctor-Manuel Rivas-Santos. 2014. NodEO, a multi-
paradigm distributed evolutionary algorithm platform in JavaScript. In Genetic
and Evolutionary Computation Conference, GECCO ’14, Vancouver, BC, Canada,
July 12-16, 2014, Companion Material Proceedings, Dirk V. Arnold and Enrique
Alba (Eds.). ACM, 1155–1162. https://doi.org/10.1145/2598394.2605688

[13] Juan-Julián Merelo-Guervós, Gustavo Romero, Maribel García-Arenas, Pedro A.
Castillo, Antonio-Miguel Mora, and Juan-Luís Jiménez-Laredo. 2011. Implemen-
tation Matters: Programming Best Practices for Evolutionary Algorithms. In
IWANN (2) (Lecture Notes in Computer Science), Joan Cabestany, Ignacio Rojas,
and Gonzalo Joya Caparrós (Eds.), Vol. 6692. Springer, 333–340.

[14] Melanie Mitchell, Stephanie Forrest, and John H Holland. 1992. The royal road
for genetic algorithms: Fitness landscapes and GA performance. In Proceedings
of the �rst european conference on arti�cial life. 245–254.

[15] Víctor M Rivas, Juan Julián Merelo Guervós, Gustavo Romero López, Maribel
Arenas-García, and Antonio M Mora. 2014. An Object-Oriented Library in
JavaScript to BuildModular and Flexible Cross-Platform Evolutionary Algorithms.
In Applications of Evolutionary Computation. Springer, 853–862.

[16] David Ruano-Ordás, Florentino Fdez-Riverola, and José R Méndez. 2018. Using
evolutionary computation for discovering spam patterns from e-mail samples.
Information Processing & Management 54, 2 (2018), 303–317.

[17] Audrey Tang. 2007. Perl 6: Reconciling the Irreconcilable. In Proceedings of the
34th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL ’07). ACM, New York, NY, USA, 1–1. https://doi.org/10.1145/
1190216.1190218

[18] Sam Tobin-Hochstadt and Matthias Felleisen. 2008. The design and implementa-
tion of typed scheme. ACM SIGPLAN Notices 43, 1 (2008), 395–406.

