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ABSTRACT 
Cooperative1  co-evolution (CC) is a powerful evolutionary 

computation framework for solving large scale global 
optimization (LSGO) problems via the strategy of “divide-and-

conquer”, but its efficiency highly relies on the decomposition 

result. Existing decomposition algorithms either cannot obtain 

correct decomposition results or require a large number of 
fitness evaluations (FEs). To alleviate these limitations, this paper 

proposes a new decomposition algorithm named historical 

interdependency based differential grouping (HIDG). HIDG 

detects interdependency from the perspective of vectors. By 

utilizing historical interdependency information, it develops a 
novel criterion which can directly deduce the interdependencies 

among some vectors without consuming extra FEs. Coupled with 

an existing vector-based decomposition framework, HIDG 

further significantly reduces the total number of FEs for 
decomposition. Experiments on two sets of LSGO benchmark 

functions verified the effectiveness and efficiency of HIDG.  

CCS CONCEPTS 

• Computing methodologies → Artificial intelligence; Search 

methodologies 

KEYWORDS 
Large scale global optimization, cooperative coevolution, 
decomposition algorithm, historical interdependency.  

1 INTRODUCTION 
Large-scale global optimization (LSGO) has become an active 

research field over the last decade due to the higher and higher 
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dimensions of optimization problems involved in scientific 

research and engineering practice. Owing to the black-box 
characteristics of LSGO problems, the gradient-free evolutionary 

algorithms (EAs) are the major approaches for solving them. 

However, conventional EAs inevitably encounter “the curse of 

dimensionality” [1], which means that they can hardly get 

desirable solutions since they cannot adequately explore the 
solution space of a LSGO problem within acceptable 

computation time.  

To alleviate this limitation, a special algorithmic framework 

named cooperative coevolution (CC) was proposed [2]. By taking 
the idea of “divide-and-conquer”, CC provides a natural and 

efficient approach for solving LSGO problems. It first 

decomposes the original LSGO problem into some lower 

dimensional sub-problems and then cooperatively optimizes 
these sub-problems with conventional EAs. As such, the 

decomposition strategy plays a vital role in CC. Ideally, a given 

LSGO problem should be decomposed such that the interaction 

between the resultant sub-problems is minimized. Moreover, the 

number of solutions evaluated during the decomposition process 
should be as few as possible since the total number of fitness 

evaluations (FEs) provided to CC is very limited.  

In recent years, great efforts were put on decomposition 

method and several kinds of decomposition strategies have been 
developed [3], where the learning-based decomposition strategy 

is an excellent one. It groups the variables according to the 

detected interdependency information, thus has the potential to 

make near-optimal decomposition. As a typical learning-based 
decomposition algorithm, different grouping (DG) [4] focuses on 

detecting the additive separability which is the most common 

type of separability. DG shows superior performance over other 

decomposition algorithms. In DG, the interaction between two 

variables is defined as follows [4]:  

Definition 1: Let ( )f x


be an additively separable function. 

For a, b1 ≠ b2, δ  ℝ, δ ≠ 0, if the following condition holds:  

1 2
[ ]( )|  [ ]( )|

p p q p p qx x a x b x x a x bf x f x      , , , ,

 
                 (1) 

then xp and xq are non-separable, where 

[ ]( ) ( , , ) ( , , )
px p pf x f x f x    ,


                    (2) 
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refers to the forward difference of 


( )f x  with respect to variable xp 

with interval δ.  

According to Definition 1, if the change of f caused by a 

perturbation to xp varies with different values of xq, then we say 

xp interacts with xq. Generally, a threshold parameter (ε) is 

required in practice to handle the computational roundoff errors 

on floating-point numbers. Concretely, let the left side and right 

side of (1) be denoted as 1 and 2, respectively, and let τ = 1  

2. Then only if |τ | >ε, DG adjudges xp and xq interact with each 

other.  
Despite its success, DG also shows some drawbacks. To be 

specific, it is likely to omit indirect interactions and requires too 

many FEs on some functions. To improve the performance of DG, 

global DG (GDG) [5] and extended DG (XDG) [6] were 

developed. These algorithms can detect both direct and indirect 
interactions, but also require more FEs. Recently, a new version 

of DG named DG2 [7] tries to reduce the requirement for FEs by 

systematically generating solution samples, but its effect is 

relatively limited. Besides, it also adopts a new threshold setting 
method to improve the final decomposition accuracy.  

Instead of directly analyzing the interactions among decision 

variables, some researchers attempted to perform decomposition 

operations from the view of decision vectors. The interaction 
between two vectors can be defined as follows [8]:  

Definition 2: For an additively separable continuous function


( )f x  and a partition of x


 (  1 2{ , ,..., }mS S S S ), two vectors Sp and 

Sq (p, q = 1, 2, …, m; p q ) are non-separable if the following 

formula holds:  

1 2
[ ]( ) |  [ ]( ) |

p p q p p qS S A S B S S A S Bf x f x       , , , ,

 
                 (3) 

where  

[ ]( ) ( , , ) ( , , )
pS p pf x f S f S   ,


                     (4) 

refers to the forward difference of 


( )f x with respect to Sp with an 

interval Γ. Γ, A, B1, and B2 can be arbitrary values as long as they 

ensure the feasibility of Sp and Sq.  
The vector-based decomposition idea has been adopted by 

several algorithms, including fast interdependency identification 

(FII) [9], two kinds of vector-growth decomposition algorithms 

(VGDA-S and VGDA-D) [8], and recursive DG (RDG) [10]. Since 
there is no need to detect the interaction between each pair of 

variables, the number of FEs required by these three algorithms 

is reduced to a great extent. However, when decomposing 

functions with indirect interdependency, such as Rosenbrock’s 
function, all of them still need lots of FEs. 

To improve the efficiency of existing DGs, this paper 

proposes an efficient decomposition algorithm called Historical 

Interdependency based Differential Grouping (HIDG). HIDG 

investigates the interdependencies among decision vectors in a 
more systematical way. By utilizing the historical 

interdependency information, HIDG develops a novel criterion 

which can deduce the interactions among some vectors without 

consuming extra FEs. Concretely, for two interacting vectors 
whose τ value has been investigated, when we investigated the 

interaction between Sp and a sub-vector of Sq, the interaction for 

Sp and the corresponding complementary sub-vector of Sq can be 

directly deduced based on the criterion. When integrating HIDG 

into an existing vector-based decomposition framework, two 
special rules are designed to facilitate the implement of the 

developed criterion. As a result, HIDG further significantly 

reduces the total number of FEs for decomposition.  

2 HISTORICAL INTERDEPENDENCY BASED 
DIFFERENTIAL GROUPING 

This section first presents and proves the new criterion for 

detecting interactions among vectors, then describes HIDG in 
detail. 

2.1 New Criterion based on Historical 
Interdependency  

By utilizing historical interdependency information, the 

following criterion can deduce the interactions among part of 

vectors without consuming any FEs.  

Criterion: For an additively separable function


( )f x , suppose 

the vectors Sp and Sq interact with each other with ,p q  being their 

interdependency value, Sq1 and Sq2 are two complementary sub-

vectors of Sq, and , 1p q  is the interdependency value detected for Sp 

and Sq1 with the same perturbations on the corresponding variables 

as those for ,p q . If , , 1p q p q  , then Sp and Sq2 are separable; 

otherwise, they are non-separable.  

The criterion can be strictly proved as follows:  

Proof: According to definition2, τp,q and τp,q1 can be formulated 

as  

1 1 2 1 1 2 2 2, , , , , , ,[ ]( ) | - [ ]( ) |
p p q q p p q qp q S S A S B S B S S A S B S Bf x f x         
 

         (5) 

1 1 2 1 1 2 2 1, 1 , , , , , ,[ ]( ) | - [ ]( ) |
p p q q p p q qp q S S A S B S B S S A S B S Bf x f x         
 

        (6) 

Since they are obtained with the same perturbations on the 

corresponding variables, then 

1 2 2 1 1 2 2 2, , 1 , ,[ ]( )| - [ ]( )|
p p q q p p q qp q p q S S A S B S B S S A S B S Bf x f x           , , , ,

 
  (7) 

which can be exactly defined as the interdependency value for Sp 

and Sq2, i.e.,    , , 1 , 2p q p q p q . Then we can get the conclusion given 

above.  

When considering the roundoff errors introduced by floating-

point numbers, the criterion should be modified as follows: For 

two non-separable vectors Sp and Sq with  ,p q , if , , 1| - |<p q p qτ τ ε , 

then Sp and Sq2 are separable; otherwise, Sp and Sq2 are non-

separable. This means that, for two interacting vectors Sp and Sq 

whose τ value has been investigated, the interactions between Sp 

and the two complementary vectors of Sq can be obtained by 

detecting only a new interdependency, thus half of FEs can be 

saved.  

2.2 Description of HIDG  

HIDG is implemented by integrating the criterion given above 

into VGDA-D [8] which is an efficient vector-based 

decomposition framework.  

VGDA-D concerns an iterative process. At each iteration, it 
initializes the vectors Sp and Sq with an untreated variable and all 

the other untreated variables, respectively. If Sp and Sq interact 
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with each other, it tries to find the variables in Sq interacting 

with Sp by equally dividing Sq into two complementary sub-
vectors and detecting the interaction between Sp and each sub-

vector. The division process is repeated unless the current sub-

vector does not interact with Sp or contains only one variable. 

This process can be illustrated by a binary tree shown in Fig.1, 
where each node denotes a vector and two child nodes denote 

the complementary sub-vectors of their corresponding parent 

node.  

 

Figure 1: The Binary Tree Generated for Sq.  

It seems natural to further accelerate VGDA-D with the new 

proposed criterion. Unfortunately, the combination of VGDA-D 

and the criterion is non-trivial. For example, when investigating 

the interactions between Sp and the variables in Sq described by 

the binary tree in Fig. 1, if the interdependency values ,p q  and 

, 2p q  have been detected, we can deduce the interaction between 

Sp and Sq1 according to    , 1 , , 2p q p q p q . However, it is infeasible 

to directly deduce the interaction between Sp and Sq11 by just 

detecting  , 12p q  and calculating  , 11p q  with    , 11 , 1 , 12p q p q p q  since 

the usage of  , 1p q  will lead to the accumulation of calculation 

errors, which may reduce the final decomposition accuracy to a 

large extent. HIDG tackles this issue according to the following 

two rules:  
1) When investigating the interactions between Sp and the 

variables in Sq, HIDG follows the depth-first strategy. Without 
loss of generality, HIDG preferentially investigates the left nodes 

in the binary tree generated for Sq.  

2) For the two complementary sub-vectors (child nodes) of 

the current node, HIDG constructs different virtual parent 
vectors for them instead of employing the current node. 

Concretely, for the current sub-vector, HIDG takes the union of 

the sub-vector itself and the untreated sub-vector as its parent 

vector.  

Take the situation shown in Fig. 1 as an example, the sub-
vector Sq11 will be investigated first at the 3rd level according to 

rule 1) and its parent vector will be set as {Sq11, Sq12, Sq2} 

according to rule 2), then {Sq12, Sq2} will become its 

complementary sub-vector. This sub-vector is exactly the parent 
vector of Sq12 who takes Sq2 as its complementary sub-vector. We 

define this sub-vector as the connection vector of Sq11 and Sq12, 

and denote it as Sv. According to rule 1), HIDG has calculated the 

interdependency values between Sp and each of {Sq11, Sq12, Sq2} 
and Sq2 at higher levels, then we can deduce the interaction 

between Sp and each of Sq11 and Sq12 by just calculating the 

interdependency value between Sp and Sv and applying the new 

criterion. Other sub-vectors shown in Fig. 1 can be treated in the 

similar way.  

 Algorithm 1: groups = HIDG ( x


, ε) 
Initialize: groups = ; Sq = x


; H = { };  

While |Sq| > 1           //H stores sub-vectors and corresponding τ values 
      select ∀xr ∈ Sq; set Sp = {xr}, Sq = Sq \ Sp;  
      While |Sq| > 0     //There are still untreated variables in Sq 
            set H = { }, V = [ ];      //V stores the variables interacted with 
            calculate the interdependency value τ between Sp and Sq; 
            if |τ | < ε    break;   //Sp does not interact with Sq 

            store Sq,  and their corresponding τ values into H;  
            equally divide Sq = Sq1  Sq2; VS = {Sq1, Sq2}; //VS is a stack 
            For each two top vectors Sa, Sb in VS 
                  VS = VS \ {Sa, Sb};  
                  generate Sv and investigate its τ with Sp; 

                  find Sv  Sa and Sv \ Sb in H and set their τ values as τ1, τ2;  
                  if | τ2 – τ | > ε 
                        if |Sb| = 1;  

                              V = V  Sb 
                        else  

                              divide Sb = Sb1  Sb2; VS = VS  {Sb1, Sb2}; 
                  if | τ1 – τ | > ε 
                        if |Sa| = 1;  

                              V = V  Sa; 
                        else  

                              divide Sa = Sa1  Sa2; VS = VS  {Sa1, Sa2}; 
                  store Sv and τ into H;  

        Sp = Sp  V; Sq = Sq \ Sp;  
      groups = groups  Sp; 
groups = groups  Sp; 

The whole procedure of HIDG is show in Algorithm 1. Here, 

the interdependency value of the empty vector  is set as 0. 

Based on Definition 2, when a vector interacts with Sp, the 

absolute value of its interdependency value with Sp is less than 

threshold ε, so when we set the interdependency value of  with 

Sp as 0, the developed criterion can be also used to detect the 

vectors whose parent vectors are themselves and the 

complementary sub-vectors are .  

As for the setting of the threshold ε, HIDG adopts a simplified 
method of the one developed by DG2 [7]. Concretely, it first 

calculates the greatest lower bound and the least upper bound of 

the current roundoff error and then chooses the mid-value of 

these two bounds as the final threshold. 

3 EXPERIMENTS  
We briefly evaluated the performance of HIDG by 

experimentally comparing it with several state-of-the-art 

decomposition algorithms, including DG, DG2, and VGDA-D. 

The experiments were conducted on the functions of 1000 
dimensions in CEC2010 and CEC2013 benchmark suites [11, 12], 

which contain 20 and 15 functions, respectively. Note that the 

results of the three existing algorithms reported below are 

obtained from corresponding original papers.  

Table 1: Functions Improperly Decomposed by the Four 

Algorithms  

Algorithm CEC2010 suite CEC2013 suite 
DG f4, f7, f8, f11, f13, f16, f18, f20 (8) f4-f8, f11-f15 (10) 

DG2 f3, f6, f11 (3) f3, f6, f8 (3) 

VGDA-D f3, f11 (2) f3, f5, f6, f8, f10, f11 (6) 

HIDG f3, f6, f11 (3) f3, f6, f8, f11 (4) 
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Table 1 lists the functions which are improperly decomposed 

by DG, DG2, VGDA-D, and HIDG. It can be observed that HIDG 
achieves similar decomposition accuracy with DG2 and VGDA-D, 

since they only make mistakes on 7, 6 and 8 out of total 35 

functions, respectively. Compared with DG, HIDG demonstrates 

much greater performance since DG improperly decomposes 
about a half of functions.  

As for the decomposition cost, Fig.2(a) and Fig.2(b) provide 

the number of FEs consumed by the four algorithms on the 

functions in CEC2010 and CEC2013 benchmark suites, 
respectively. From the two charts, it can be observed that HIDG 

is an extremely efficient decomposition algorithm. Among the 

four algorithms, it consumes the fewest FEs on all of the 35 

functions. It can decompose most of the test functions within 
10,000 FEs. Even on the Rosenbrock’s function, which is f20 in 

CEC2010 suite and f12 in CEC2013 suite, the number of FEs 

consumed by HIDG is just slightly larger than 10,000, while the 

best one (VGDA-D) of the other three algorithms requires nearly 
100,000 FEs.  

In summary, HIDG can achieve similar decomposition 

accuracy with the state-of-the-art algorithms by consuming 

much fewer FEs. This is of great significance for CC in 
facilitating it concentrating a limited number of FEs on the 

optimization process.  

 

                                         (a) CEC2010                                                                                                     (b) CEC2013 

Figure 2: The Radar Chart of the FEs Consumed by DG, DG2, VGDA-D, and HIDG on the Functions in CEC2010 and 
CEC2013 Benchmark Suites.  

4 CONCLUSIONS 
This paper presents an efficient decomposition algorithm named 
HIDG for LSGO problems. By utilizing the historical 

interdependency information, HIDG develops a novel criterion 

to detect the interactions among some vectors without 

consuming extra FEs. Then HIDG is implemented by integrating 

the criterion into a vector-based decomposition framework via 
two well-designed rules. As a result, HIDG can accurately 

decompose LSGO problems with much fewer FEs. The 

superiority of HIDG was verified through the comparison with 

several state-of-the-art decomposition methods on benchmark 
functions.  

Our future work will focus on integrating HIDG into a 

complete CC framework and developing an excellent algorithm 

for solving LSGO problems.  
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