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ABSTRACT
Combinatorial optimization problems come in a wide variety of
types but five common problem components can be identified. This
categorization can aid the selection of interesting and diverse set
of problems for inclusion in the combinatorial black-box problem
benchmark. We suggest two real-world problems for inclusion into
the benchmark. One is a transport-lot building problem and the
other one is the clustered generalized quadratic assignment problem.
We look into designing an interface for discrete black-box problems
that can accommodate problems belonging to all of the described
categories as well real-world problems that often feature multiple
problem components. We describe three different interfaces for
black-box problems, the first using a general encoding for all types
of problems the second one using specialized encodings per problem
type and the last one describes problems in terms of the available
operators. We compare the strengths and weaknesses of the three
designs.
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1 INTRODUCTION
Combinatorial optimization problems arise in a wide range of in-
dustries and there is often a strong financial incentive to solve
them well. As a result a staggering number of different problems
and problem variants have been described over the last decades.
Identifying problems and problem instances that should be part of
a black-box optimization benchmark set is therefore no easy task.

To aid the selection of suitable problems we suggest five problem
types or components, along with common variations, that are part
of many typical discrete optimization problems. We argue that in
order for the set of benchmark functions to be representative we
should include problems featuring all those types because they have
very different characteristics. Real-world problems often contain
multiple of these components that interact in some way. How al-
gorithms can deal with these interactions is especially interesting.
Because of this we describe two hard real-world problems that
feature an unusual combination of problem components. For each
of the problems we provide real-world instances.

When solving discrete optimization problems we want the so-
lution encoding to capture the structure of the problem as well as
possible, because invariants in the encoding can drastically reduce
the search space. The operators used should aim to preserve these
invariants in the encoding. Specialized encodings and operators
on these encodings have been created for problems of all the types
described below. The usage of specialized encodings and operators
is fundamentally at odds with the notion of a black-box problem.
We propose three different approaches to dealing with this apparent
incompatibility.

https://doi.org/10.1145/3205651.3208280
https://doi.org/10.1145/3205651.3208280
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The rest of this article is organized as follows. In the next section
we describe the problem components including typical problems as
well as specialized encodings and operators. After that we present
two real-world problems featuring multiple problem components.
Finally we describe three possible interfaces to black-box problems
that enable representing discrete and combinatorial problems of all
the described problem components.

2 PROBLEM COMPONENTS
The problem components presented in this section are chosen to
capture meaningful differences in problem characteristics over a
wide variety of problems. The problem components are partially
overlapping, because depending on how a problem is framed it
might appear to fall into different categories. The resulting choice
of encodings and operators is by no means irrelevant as is shown
by the large number of publications about specialized algorithms
for different problem types.

2.1 Assignment
In this type of problem the task is to find the best assignment of
two or more sets (in a mathematical sense) of items. The solution
space is mainly described by the cardinalities that are possible in the
assignment. The cardinalities on both sides can indicate optionality,
identity, and multiplicity resulting in the following choices:

• Multiple items of set 1 may be assigned to an item of set 2
• An item of set 1 may be assigned to multiple items of set 2
• Not all items of set 1 need to be assigned
• Not all items of set 2 need to be assigned

Since the first simple one to one assignment problem (AP) has
been formulated a large number of problem variants including the
bottlenecked AP, the generalized AP and the quadratic AP have
been created [4, 10].

Assignment problems can generally be encoded directly using a
list of sets where every set contains all the items assigned to one
target. If at most one set of items can be assigned to multiple items
of the other set, the encoding can simply be a vector where every
position represents one item and the value at this position is the
target this item is assigned to. For assignments where items can
be assigned to multiple target and targets can have multiple items
assigned to them, a fixed size encoding can still be used, if we view
the problem as selecting from the set of all possible combinations
of items and targets, which is described in Section 2.2.

2.2 Selection
In selection problems, the task is to find a subset of a set of items.
Selection is a special case of assignment where we can assign each
item either to the set of selected items or to the set of unselected
items. Here we consider:

• Some items must never or always be selected together.
• A certain minimum and maximum number of items need to
be selected.

The classical problem of this type is the knapsack problem [9].
The encoding is typically a binary vector encoding.

2.3 Grouping
In this type of problem, the task is to partition a set of items into
groups. The main difference to the assignment problems, described
in Section 2.1, is that groups are anonymous. While we can assign
all items to target ’2’, but we cannot group all items into group ’2’,
instead we group all items into a single anonymous group. Here
we consider:
• There must be a certain minimal and maximal number of
groups
• The groups may have a minimum and maximal size
• Some items may not be placed in the same group with others

Grouping problems are often related to graph theory with the
classical example being the graph colouring problem. There are sev-
eral algorithms that use encodings and operators specially designed
for grouping problems. The most well known one is certainly the
grouping genetic algorithm [5]. There are also grouping variants of
particle swarm optimization [8] and evolution strategies [7]. The
linear linkage encoding along with several new operators has been
defined in [14].

2.4 Sequencing
A sequencing problem asks us to find the best order for a number
of given items. In general, a permutation of items can be used to
describe the solution space, however some properties, especially
regarding the identity of two sequences can be defined a priori if a
choice in each of the following statements is made:
• All items are unique or some items are identical to each
other.
• The sequence either starts at the beginning or it has no start.
• The sequence is interpreted from left to right or the direction
does not matter.

The classical problems here are the travelling salesman problem
[13] and the job shop scheduling problem [2].

Specialized encodings for these problems include the permu-
tation encoding as well as the random key encoding. While the
random key encoding normally uses real-valued vectors there is
no reason the same idea cannot also be applied to integer vectors.

2.5 Value Picking
This is the most general problem category, where we have a fixed
number variables, that each need to be assigned a value out of a
given domain. A typical constraint would be that a linear combina-
tion of values must be smaller than some limit. Every other type of
problem described above can be viewed as a value picking problem.

3 REAL-WORLD PROBLEMS
While classical problems typically fall into a single category real-
world problems often belong to multiple of the categories described
in Section 2.

Many real world scheduling problems, consist of an assignment
and a sequencing part and so does the vehicle routing problem [15].

Apart from real-world problems that naturally feature multiple
problem components there are artificial problems designed to study
the interactions that occur when multiple types of problems are
combined. The best known problem of this type is probably the
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travelling thief problem[3]. It is a combination of a selection and
sequencing problem, more specifically of the travelling salesman
and the knapsack problem. There exist comprehensive benchmark
sets [11].

We would also like to suggest two real-world problems we have
encountered that have interesting properties. In the Appendix we
include a collection of problem instances for both problems.

3.1 Transport-lot Building Problem
This problem was first published together with a model based evo-
lutionary algorithm for solving it [12]. There are items stored in
stacks and only the items on top of a stack are accessible. All the
items must be moved by a transporter with limited capacity. While
moving the items to the transporter we should never need to move
another item out of the way. Some items must not be in the same
transport-lot at all while for others just incur some penalty. The
goal is to find the smallest number of easily retrievable transport
lots with minimal penalties.

There are n items in the set I = {i1, ..., in } that need to be
grouped into an ordered set of groups S. An undirected weighted
graph Gp = (I,R ) describes the relationships between the items.
The vertices of this graph are items and the weights of the edges
represent the costs of putting two items into the same group. The
functionC (S) → R calculates the costs of a group using theweights
on Gp . The goal is to find the minimal number of transport lots
with the lowest total cost.

The problem originated in the operation of a continuous caster
at a steel plant. The items are steel slabs that are produced need to
be processed further or stored at different locations depending on a
number of physical properties. In this setting it is more important
to maximise transporter utilisation, but it can be preferable to group
some items into a separate transport lot instead of distributing them.
We therefore choose to add the two objectives together because
this means we can tune this by adjusting the weights on Gp .

min |S | +
∑
s ∈S

C (s ) (1)

s .t . (a,b) ∈ R ∀s ∈S ∀a∈s, b ∈s (2)
S (a) ≤ S (b) ∀(a,b )∈D (3)
|s | ≤ N ∀s ∈S (4)

Two items that are connected by an edge in Gp with a large
weight should not be part of the same lot, but if they are not con-
nected by an edge in Gp at all, constraint 2 ensures that they are
not in the same group. The order of the groups is determined by de-
pendencies between items, which are described by a directed graph
Gd = (I,D). An item depends on another when it lies below the
other item in the same stack. If an item a depends on another item
b, item a must be either in the same group as b, or in a group with a
higher index in S. Such a dependency is modelled as an edge in the
dependency graph (a,b) ∈ D. This is enforced by constraint 3 with
the help of the function S (I) → Z, which maps an item to the index
of the group it belongs to. The order of groups that do not depend
on each other is irrelevant. Constraint 4 limits the maximum size
of transport lots to the capacity of the transporter.

In order to generate random but realistic problem instances of
any size we suggest the following procedure. Choose the number of
items and the maximal transport lot size. Based on that choose the
number of item types and number of stacks such that the number of
items. Then create the desired number of items and randomly assign
it a number between zero and the number of item types. The cost
of putting two items in the same lot is determined by the difference
between their type numbers plus some small random value. All
items are then randomly distributed to different stacks and the
positions in the stacks determine the dependencies. The number of
items on every stack and of every type should, on average, be a few
times larger than the maximal number of items in a transport lot.
This ensures that both the grouping costs as well as the dependency
constraints are relevant to the solver.

This problem can either be seen as an assignment problem or as
a combination of a grouping and an sequencing problem. Viewing it
as a combined problem can enable more efficient solvers because the
sequencing part can be solved in linear time. Given a grouping of
the items, a group dependency graph can be derived from the item
dependencies and any topological sorting of this group dependency
graph is a valid solution. This is why the solver used in the orignal
paper uses a linear linkage encoding and group based crossover
and mutation operators.

3.2 Clustered Generalized Quadratic
Assignment Problem

This extension of the generalized quadratic assignment problem
was introduced together with a mixed integer linear program and
two different linearisations for solving it [6]. The problem was first
encountered at a steel manufacturer where steel slabs are stored on
stacks in multiple yards. It is relevant to warehousing in general
where products can be stored at locations in different facilities. It
is a 1:n assignment problem where the goal is to assign items to
one or multiple locations taking capacity constraints into account.
Locations are clustered into storage areas and there are distances
between the locations. The same item must not be stored in loca-
tions belonging to different storage areas. Given the probability that
two pieces of items are used together, the goal is to minimize the
expected travel distance during processing as well as the number
of storage areas used.

min
∑

i,k, j,h

di jwkhxikx jh + δ
∑
a∈A

ua (1)

s .t .
∑
k ∈N

xikck ≥ ri ∀i ∈ M (2)∑
i ∈M

xik ≤ 1 ∀k ∈ N (3)

xikxih ≤ a(k,h) ∀k,h ∈ N , i ∈ M (4)

There is a set of locations N , a set of itemsM and a set of areas
A. The binary decision variable xik is one when item i is assigned
to location k and zero otherwise. The costs of assigning item i to
location k while also assigning item j to location h is determined
by the distance between the locations dkh and the probability that
they are processed togetherwi j . The value of ua is one if any item
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is assigned to a location belonging to the area a and zero otherwise.
More formally the problem can be defined as:

The goal is to minimize the total costs as well as the number
of used areas. Using an area has costs of δ . Every location has
a capacity c and every item has requirements r and constraint 2
ensures that all requirements are fulfilled. Every location can only
contain a single item as specified in constraint 3. Finally to ensure
that no item is assigned to locations in different areas, constraint 4
uses a function a which takes two locations and returns one if they
are in the same area and zero otherwise.

This is a NP-hard problem just like the QAP and the GQAP.What
makes it interesting is that while it is clearly an assignment problem
it also has a grouping aspect. Like in many grouping problems, the
goal is to find a solution using as few groups, in this case called
areas, as possible. But instead of grouping the items directly, they
are grouped via the locations they are assigned to. This means that
two components of the problem cannot be solved independently
but instead must be considered simultaneously.

4 INTERFACES TO BLACK-BOX PROBLEMS
Defining the interface of a discrete black-box problem involves
making a lot of decisions. We describe three areas that must be
considered:
• Constraint violations
• Problem dimensions
• Solution encodings

How to deal with constraint violations. Combinatorial problems
often feature hard constraints and solutions violating such a con-
straint are considered infeasible. There can be a large difference
in the number of feasible solutions between instances of the same
problem. There is a choice of how to handle solutions that violate
the constraints. Either a hard distinction between feasible and in-
feasible solutions is drawn or constraint violations are factored into
the solution quality. If there is the concept of an infeasible solution,
either it is only reported that a constraint was violated or a count
of violations is provided. The shape of the fitness landscape has
strong influence on algorithm performance and simply declaring a
solution infeasible without any indication how far away it is from
a feasible solution leaves algorithms without a search direction. We
therefore suggest to at least provide information about the number
of violated constraints. It can also help to report the severity of a
violation but this is very much problem dependent. Whether the
violations are reported separately or factored into the quality is
much less important. However we suggest reporting them sepa-
rately, because it is easy go from a quality value and a count of
violations to a combined quality, but not the other way around.

Problem dimensions. For real-valued black-box problems, the
search space can be described as a hypercube with a fixed number
of dimensions. Every vector inside of this hypercube describes a
valid solution to the problem with some associated quality and
every vector outside does not represent a solution. Therefore, the
search space always has the same size and this size only depends
on the number of dimensions.

For combinatorial problems the size of the search space depends
heavily on the type of problem. Figure 1 shows the number of
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Figure 1: The number of unique solutions by problem type.

unique solutions for different types of problems, depending on the
number of items. While the assignment of n items to 10 targets has
the most unique solutions for problem sizes up to ten, it is quickly
overtaken by an assignment of n items to n targets. The number
of possible sequences and possible groupings eventually outgrows
the number of assignments to any fixed number of targets but
always grows slower than the number of assignments to n targets.
This is because both sequences and groupings can be viewed as
assignments to n targets where many solutions are either invalid
or equivalent.

How to encode solutions. The number of possible values, given
some encoding, is not necessarily equal to the number of unique
solutions. For example using a integer vector encoding, in order
to encode a valid solution to a sequencing problem, the vector
must not contain duplicate values, otherwise it does not uniquely
identify a sequence. A one to one assignment problem also requires
the vector to not contain duplicated values. There are a number
of possible strategies for dealing with values that do not encode a
solution:
• Report the vector as invalid. This has the same problems as
described before with constraint violations.
• Interpret the reasons that it is not a solution as constraint
violation and report them accordingly. So in the case of
a permutation, every repeated value would count as one
constraint violation. This only works for simple cases.
• Use encodings that do not contain non-coding values. An
example would be the random key encoding for sequencing
problems where every possible value encodes a solution. The
drawback is that the search space grows dramatically.
• Describe the encoding sufficiently. Non-coding vectors can
be avoided by describing the conditions for a vector to be
interpretable as a solution, so an optimizer can choose oper-
ators that avoid producing invalid vectors.

Correctly identifying the type of problem canmake the difference
between an effective search and an unsuccessful one. For small
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problems, it may even be the difference between being able to
enumerate every solution and only trying a tiny fraction of the
possible solutions. This is the reason why so many papers have
beenwritten about specialized encodings and operators for different
problem types [2, 5, 14].

The problem sizes must be chosen so that the solvers have a
chance to find interesting solutions within the allowed evaluation
budget. But the relationship between problem size and search space
is very different for different problem types and also depends on the
encoding. Therefore the question is, how can we design a interface
to a black-box problem so that we can compare optimizers on all
types of problems?

How to design an interface to a black-box problem. The simplest
possible interface is a single evaluation function that takes a list
of integers as input and outputs a quality value or a signal that
the solution is infeasible or not a solution at all. This reveals very
little information about the problem upfront and likely results in
many algorithms either being inapplicable because they require
fixed sized encodings or simply failing to find any solution at all
within the allowed evaluation budget. Algorithms that can solve
problems given such a limited interface are likely to contain some
parts specifically tailored to gain information about the problem.
Like systematically trying lists of different sizes to determine the
allowed length and value ranges. Algorithms are also encouraged
to determine through trial and error in which range the values can
be and whether or not duplicated values are allowed or if the order
is significant. Such elements are not present in algorithms usually
used to solve combinatorial problems and are therefore of little
practical use.

4.1 Interfaces Using a General Encoding
Solutions to set-oriented problems such as grouping and assignment
problems are most naturally modelled using variable sized sets
or lists of integers. However all the types described above can
be represented as a fixed sized integer vector. Every index of the
vector stands for one item while the value at that index is the value
associated with that item. How to interpret these values depends on
the type of problem. The drawback is that not all possible vectors
correspond to a solution to a given problem.

Let us now examine what kinds of constraints we need in order
to be able to avoid non-coding vectors. Every vector that is not the
right size cannot encode a valid solution, so the first restriction is
the size of the vector. For every position in the vector, there is a set
of values that can be used at that position. Since we can map every
set to a range between zero and the number of elements in the set,
we simply need to specify the maximum value. For value picking
problems we can have a different range for every item, so we need
to specify a maximum for every position. All the other problems
generally use the same maximum across the entire vector.

As described earlier, some problems allow the same value to
appear multiple times in the vector and some problems do not, so
this is also a constraint. These three constraints, the length of the
vector, the ranges that constrain the allowed values and whether
or not repetition of values is allowed are actually enough to avoid
non-coding vectors for any problem that belongs to one of our
problem categories. A vector that meets these constraints can still

Problem type Values Range Repetition Solutions
Value picking Value 0..xi yes ∏

xi
Assignment Target 0..m yes | no mn | m!

(m−n)!
Sequencing Position 0..n no n!
Grouping GroupId 0..n yes Bn
Selection Selected 0, 1 yes 2n

Table 1: Integer vector encoding for different problem types

encode a solution that is infeasible for a given problem instance,
but it will always encode a solution.

Table 1 describes for all the problem types what the values in
the vector represent, in which range the values have to be, whether
or not the vector can contain the same value twice and what that
means for the maximum number of unique solutions. The variable
n generally stands for the number of items whilem stands for the
number of assignment targets. Bn is the nth bell number, which is
the number of possible partitions of a set of size n.

While assignment and grouping can have the same range and
repetition the number of distinct solutions is different. The differ-
ence comes from the fact that in grouping problems many vectors
can describe the same solution because the group numbers can be
chosen arbitrarily. This is primarily a concern with grouping and
sequencing problems. For example a TSP solution can be described
in n different ways where n is the number of cities just by altering
the starting point. Describing vector encodings that uniquely iden-
tify every solution in a generic fashion is a lot harder to do than
describing encodings that avoid non-coding vectors. It is also a lot
less useful, because a encoding does not help much if there are no
operators for it.

Problems that contain multiple problem components like the
ones described in Section 3 can also be handled with the approach
presented here by simply concatenating the encodings of the dif-
ferent parts. The length of the new encoding is simply the sum
of the lengths of the parts. The valid ranges and whether or not
repetition is allowed must be described separately for every part
of the combined encoding. While encodings of this type have the
advantage of being very simple to describe, they are often not a
very natural way to describe a solution.

4.2 Interfaces Using Specialized Encodings
Many combinatorial optimization problems are fundamentally about
sets of items, especially the ones falling into the categories grouping
and assignment. In this section we explore how to describe encod-
ings to a very wide range of problems using only a few concepts.
The approach laid out here is similar to the modelling language of
a commercial mathematical optimization solver called LocalSolver
[1].

There are integer variables and there are ranges. Every variable
has a range of values that can be assigned to it. There are collections
which contain multiple variables or collections of the same type.
The number of elements in a collection is again constraint by a
range, if that range contains only one possible value the size of the
collection is fixed.
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There are several different kinds of collections defined by a few
properties. A collection can require all contained variables to have
unique values. The position of a value within a collection can either
be significant or it can be insignificant. So based on these two
choices there are four different types of collections. Collections
without a restriction on the uniqueness of values are called lists
if the position of a value is significant and multiset if it is not. A
collection of unique values where order does not matter is a set,
while if the order also matters it is called a permutation.

Using only those four collectionswe can describemany problems,
but we cannot model value picking problems, where we need a
fixed number of variables with distinct value ranges. We also cannot
model combined problems that requiremultiple different collections
to describe the parts of the solution. This can be fixed by adding
a tuple type that can contain an arbitrary but fixed number of
different variable and collection types.

In order to describe grouping problems and assignment prob-
lems that do not ask for one to one assignments, we need to be
able to express two additional closely related concepts. The first
one is disjointness and the second is partitioning. A collection of
collections is disjoint if there is no value that appears in more than
one of the inner collections. A collection of collections forms a
partition if it is disjoint and every value in the range is contained.

This are all the concepts needed to describe the solution spaces
of a wide range of combinatorial and discrete problems. In order to
illustrate the usage we will describe the solutions to some famous
problems, as well as the problems described in Section 3, using
the concepts introduced above. The notation for the examples is as
follows first is the name of the collection and then in parenthesis the
parameters separated by a comma. The first parameter is the type
of elements in the collection and it can either be a collection or a
variable. All variables have ranges from zero to a certain maximum
value and they are referred to by their maximum value. The second
parameter to every collection is the range of allowed sizes. If the
size is fixed we could write the range as n..n but instead we can
abbreviate this to just n.

Listing 1: Well-known problems described using the intro-
duced concepts.
/ / knapsack
l i s t ( 1 , n )

/ / j ob shop s ch edu l i n g
pe rmuta t i on ( n , n )

/ / graph c o l o u r i n g problem
s e t ( s e t ( n , 1 . . n ) , 1 . . n , p a r t i t i o n )

/ / v e h i c l e r ou t i n g problem
l i s t ( pe rmuta t i on ( n , 0 . . n ) , n , p a r t i t i o n )

/ / v a l u e p i c k i n g
t u p l e ( a , b , . . . )

/ / t r a n s po r t − l o t b u i l d i n g ( 3 . 1 )

pe rmuta t i on ( s e t ( n , 1 . . n ) , 1 . . n , p a r t i t i o n )

/ / CGQAP ( 3 . 2 )
l i s t ( s e t ( n , 1 . . n ) , m, d i s j o i n t )

4.3 Interfaces Based on Operators
In all of the previously described interfaces, the problems are en-
tirely defined by the evaluation function that takes a solution en-
coded in some way and returns the quality and/or the number of
constraint violations. The main question is how much information
about the problem is revealed through the solution encoding. There
is an alternative approach that completely sidesteps this issue by
not providing any externally visible encoding. In this model instead
of defining a problem by the evaluation function, it is defined by
the operators it offers. An operator is simply a function that takes
a certain number of solutions and returns a new solution. There
are different kinds of operators:

Creation operators. They take no arguments and when called,
they create a new random solution, call the evaluation function on
it and return the result. Every problem must have at least a single
creation operator, otherwise no solutions can ever be created. Using
only creation operators, different random sampling algorithms can
be implemented.

Mutation operators. They take a solution and return a slightly
modified version. They can be used to implement various evolution
strategies.

Crossover operators. They take two solutions and combine them
into a third. They are used in genetic algorithms.

Neighbourhood iterators. They take a solution and return an iter-
ator over all the neighbouring solutions as defined by some neigh-
bourhood. So it is similar to the mutation operator, with the key
difference that mutation returns any neighbouring solution while
the neighbourhood iterator eventually returns all neighbouring
solutions.

Listing 2: Possible API
c l a s s S o l u t i o n {

S o l u t i o n I d i d ;
double Ge tQua l i t y ( ) ;
in t Ge tV i o l a t i o n s ( ) ;

}

in te r face Neighbours {
S o l u t i o n Next ( ) ;

}

in te r face Problem {
Set <Crea t o r I d > Ge tC r e a t o r s ( ) ;
Se t <Cros sove r Id > Ge tCro s sove r s ( ) ;
Se t <Mutator Id > GetMuta tors ( ) ;
Se t <Ne ighbours Id > GetNeighbourhoods ( ) ;

S o l u t i o n Crea t e ( C r e a t o r I d ) ;
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S o l u t i o n Mutate ( So l u t i on , Muta to r Id ) ;
S o l u t i o n Cros sove r ( So l u t i on , So l u t i on ,

C ro s s ov e r I d ) ;
Ne ighbours Neighbours ( S o l u t i on ,

Ne ighbour s Id ) ;
}

The code in Listing 2 shows a possible API. The interface does
not contain an explicit evaluation method. Instead every operator
returns evaluated solutions. Every solution consists of some id as
well as the associated quality and number of constraint violations.
The SolutionId either somehow encodes a solution or it is simply a
index into the list of previously created solutions. Either way, an
algorithm trying to solve the problem can simply use the available
operators and does not need to know anything about encodings,
problem types and which operators can be used for which combi-
nation. The problem has a method for each type of operator that
returns the set of valid operators of this type. The operator ids are
always the last parameter to operator methods and define which
of the available operators should be called. The reason to use oper-
ator ids is that choosing which operators to use at which time in
the search is one of the most important things algorithms have to
decide in this setting. It is therefore convenient to have a unique
identifier to refer to each operator, which can be used to collect
statistics that guide the operator selection.

The set of available operator types can always be extended, for
example an operator that combines more than two solutions might
be useful. It could also be interesting to include operators that
perform more than a single step, such as a hill climbing or a path
relinking.

5 DISCUSSION
Now that we have presented three different choices of how to
design the interface to a combinatorial black-box problem. lets
carefully consider advantages and disadvantages of the different
approaches. The central questions are which types of problems
should be considered and how much information about the black-
box problems should be revealed through its interface.

We described how providing no information about the solution
space of a problem encourages the usage of very specialized algo-
rithms that try to infer this information. Since these specialized
algorithm are only useful in the context of benchmark instances we
should provide this information as part of the interface and we have
looked at two possible choices of what exactly could be exposed in
Section 4.1 and 4.2. The former provides the same interface for all
problems, namely an evaluation method taking a fixed sized integer
vector and a method for providing some additional information
about the allowed values. This has the advantage that a wide range
of algorithms can be applied, because while there is additional in-
formation about the problem available, every algorithm can choose
to ignore it. However, all algorithms have the opportunity to in-
ternally choose specialized encodings and operators according to
the available information. A drawback is that the list of problems
whose solution space can be adequately described is limited. In
particular many real-world problems and grouping problems are
not included.

The second alternative is to have a specialised interface for every
type of problem where the solution space is defined by the type of
the single parameter to the evaluation method. Given only a few
concepts, the solution spaces of a wide variety of problems can be
accurately modelled this way. The problems are still black-boxes
because neither the evaluation function nor the constraints are
known but they are less of a black-box than with the general encod-
ing. It becomes possible for algorithms to choose operators based
on the properties of the solution space of the problem that is solved.
A drawback is that it is no longer possible to apply every algorithm
to every problem. Measurements of algorithm performance in this
setting are more comparable because we are not comparing algo-
rithms that use knowledge about the search space versus ones that
do not. Algorithms that perform well in this setting are also more
interesting for real-world applications, because in the real world
we always have at least that much information about a problem.

It is also possible to provide both interfaces since it is relatively
easy to translate from a more specialised encoding into a general
vector encoding. It could also be interesting to provide both in-
terfaces to all problems and compare how the solver performance
changes with the additional information.

In Section 4.3 we looked at describing the problems in terms of
available operators. This is very different from the first two inter-
faces and brings a change of perspective. The focus changes from
low level considerations about encodings and operators, to a high
level view centred around search strategies. All problem types can
be included in the benchmark set without major differences in how
well the encoding captures the solutions space. This is especially
significant for real-world problems where the invariants are dif-
ficult to describe generically. Algorithms are easy to implement
because it is not necessary to write and choose specialized encod-
ings or operators. A drawback is that algorithms are limited to the
operators defined for a problem. This can be mitigated by carefully
choosing the set of operators to enable a broad range of algorithms,
but it can never be avoided completely. However, accepting this
limitation means that every algorithm be applied to every problem
without any changes. By using this interface we can collect a lot of
information about each algorithm. We know exactly which opera-
tors an algorithm has used at which point in the search and what
that means for the solution quality. This information can be the
basis for some very interesting analysis that is much harder to do
using one of the previously described interfaces.

6 CONCLUSION
We identified five important types of combinatorial optimization
problems, namely assignment, sequencing, selection, grouping and
value picking. Every type of problem has different solution space
characteristics and capturing those is a big part of what makes an
algorithm successful. Classical well studied optimization problems
typically fall into a single type while many real-world problems fea-
ture elements of multiple types. This makes them harder to solve in
a black-box setting because of the high number of constraints this
imposes on solutions. We therefore suggested two real-world prob-
lems for inclusion in the benchmark. The problems are a grouping
problem that features a sequencing element as well as assignment
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problem that has features of classical grouping problems. The ap-
pendix contains problem instances for both problems.

All three types of interfaces that black-box can offer to solvers
have their respective strengths and weaknesses. Which interface
should be presented depends on the exact goals of the benchmark.
We think that choosing an interface based on the operators is very
interesting because it provides the opportunity to evaluate the
performance of different types of algorithms on different types of
problems. Which operator types can be used as well as which spe-
cific encodings and operators should be available per problem must
definitely be subject to further discussion. If real-world problems
like the ones we presented should be part of the benchmark set and
the focus is more on algorithm implementation than on algorithm
design we strongly suggest a interface using specialized encodings.
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