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ABSTRACT
This paper proposes the novel Learning Classifier System (LCS)
which can solve high-dimensional problems, and obtain human-
readable knowledge by integrating deep neural networks as a com-
pressor. In the proposed system named DCAXCSR, deep neural
network called Deep Classification Autoencoder (DCA) compresses
(encodes) input to lower dimension information which LCS can
deal with, and decompresses (decodes) output of LCS to the original
dimension information. DCA is hybrid network of classification net-
work and autoencoder towards increasing compression rate. If the
learning is insufficient due to lost information by compression, by
using decoded information as an initial value for narrowing down
state space, LCS can solve high dimensional problems directly. As
LCS of the proposed system, we employs XCSR which is LCS for
real value in this paper since DCA compresses input to real values.
In order to investigate the effectiveness of the proposed system,
this paper conducts experiments on the benchmark classification
problem of MNIST database and Multiplexer problems. The result
of the experiments shows that the proposed system can solve high-
dimensional problems which conventional XCSR cannot solve, and
can obtain human-readable knowledge.
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1 INTRODUCTION
Knowledge discovery techniques are attracted attention these days
because of its growth of information technology. Learning Classifier
System (LCS) [8] which is one of knowledge acquiring system is evo-
lutionary rule-based machine learning using reinforcement learn-
ing. LCS gains generalized if-then rules called classifiers through
generating, deleting, updating them. Since generalized classifier
can be matched to more than one input, thus it represent a common
pattern in a problem, LCS is one of useful knowledge discovery sys-
tems, and can provide human-readable knowledge with its reliable
generalization capability.

However, it is hard for LCS to handle high-dimensional problems
(dataset) because LCS need to generate all rules for matching any
state space for learning. Correspondingly, some LCS works study
how LCS can handle the high-dimensional dataset effectively. For
instance, Iqbal proposed LCS extension which reuse knowledge
learned in low-dimensional problem for high-dimensional problems
[7]. Abedini introduced the guided rule that evolves rules indepen-
dently representing elements of input [1] in order to improve on a
learning efficiency. However, due to the complexity of the systems,
these approaches are limited in applicable problems.

This paper proposes the hybrid system of the neural network and
LCS for handling common high-dimensional problems and focuses
on compression of high-dimensional input to lower. In details, we
use deep neural network and XCSR[16] which is LCS extension for
continuous real number. The deep neural network extracts features
of high-dimensional input, compresses it, and they are input its
features to XCSR to learn. After learning classifiers in compressed
low-dimension, compressed classifiers are decompressed (decoded)
to original dimension by the deep neural network in order to acquire
human-readable rules.

In order to investigate the proposed system, this paper conducts
experiments on the benchmark classification problem of MNIST
dataset [9] and Multiplexer problems [14]. The problem of MNIST
dataset is to classify hand written digits, and it has 784 dimensions.
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The Multiplexer problem is difficult problem which input cannot
be compressed uniformly.

This paper is organized as follows. Section 2 and 3 describe mech-
anism of XCSR and the deep neural network respectively. In section
4, we explain the detailed mechanism of proposed system, the ex-
periment is conducted in section 5 on a benchmark classification
problem. Finally, we conclude this paper in section 6.

2 XCSR
XCSR is the extension of the XCS [14] (i.e., one of major LCS for
binary input) with a continuous real-valued coding for classifiers.
XCS is a reinforcement learning [13] method in which generaliza-
tion is obtained through the evolution of a population [P] which
stored classifiers.

2.1 Classifier
The classier is the if-then rule which has several parameters. In
XCS, classifiers consist of a conditionC , an action A, and four main
parameters: (i) the prediction p, which estimates the average payoff
that the system expects when the classifier is used; (ii) the prediction
error ε , which estimates the average absolute error of the prediction
p; (iii) the fitness f , which estimates the average relative accuracy
of the payoff prediction given by p; and finally (iv) the numerosity
n, which indicates how many classifiers with the same condition
and the same action are merged to this classifier. XCSR expresses
conditions with the range of continuous values called CS (Center /
Spread) expression. CS expression has 2 values – the center value
(ci ) and the spread value (si ), and the range is [li ,ui ), where li is
ci − si and ui is ci + si . Then the classifier matches input if all
values in inputs are in the condition range (i.e., li ≤ xi < ui for
all xi ). When there are no classifiers to match with input, XCSR
generates classifiers which match to the input. This operation is
called “covering”. When conducting covering operation, condition
of generated classifier is set to ci = xi , si = random(s0), where x
is a input, and random(s0) means real random number from 0 to s0.
s0 is a covering parameter of XCSR.

2.2 Mechanism
XCSR is composed of performance, reinforcement, discovery com-
ponents and subsumption operation. Although XCSR corresponds
to both multi-step and single step problems, we explain here as
assuming single step problem. XCSR learns by updating classifiers
through repeating the sequence of performance, reinforcement,
discovery components.

2.2.1 Performance Component. At each time step, XCSR builds
a match set [M] containing the classifiers in the population [P]
whose condition matches the current sensory inputs; if [M] does
not contain all the possible actions, covering operation takes place
and creates a set of classifiers that match and cover all the missing
actions. For each possible action Ai in [M], XCSR computes the
system prediction P(Ai ) which estimates the payoff that XCSR
expects if actionAi is performed at that time. The system prediction
is computed as the fitness weighted average of the predictions of
classifiers in [M], cl ∈ [M], which advocate action Ai (i.e., cl .A =

Ai ):

P(Ai ) =

∑
cl ∈[M ] |cl .A=Ai cl .p · cl . f∑

cl ∈[M ] |cl .A=Ai cl . f
(1)

where cl ∈ [M]|cl .A = Ai represents the subset of classifiers (cl)
of [M] with action Ai . Next, the action which has maximum P(Ai )
is the selected by XCSR to perform. The classifiers in [M] which
advocate the selected action form the current action set [A]. The
selected action is performed in the environment, and a scalar reward
r is returned to XCSR.

2.2.2 Reinforcement Component. When the reward r is received,
the parameters of the classifiers in [A] are updated.

The p, ε , as (i.e., which estimates the average size of the action
sets this classifier has belonged to) of each classifier cl in [A] is
updated according to reinforcement learning with learning rate β
(0 < β ≤ 1) as follows.

cl .p ← cl .p + β(r − cl .p) (2)

cl .ε ← cl .ε + β(|r − cl .p | − cl .ε) (3)

cl .as ← cl .as + β(
∑
c ∈[A]

c .n − cl .as) (4)

Finally, classifier fitness f is updated in two steps: first, the accuracy
cl .κ of the classifier in [A] is computed as follows,

cl .κ =

{
1 if cl .ε < ε0
α(cl .ε/ε0)−ν otherwise

(5)

where α ,ν , ε0 are parameters of XCSR which constitutes the target
error level. The accuracy cl .κ means that a classifier is considered to
be accurate if its prediction error cl .ε is smaller than the threshold
cl .ε0; a classifier that is accurate has an accuracy cl .κ equal to 1.
Then the fitness cl . f of each classifier cl in [A] is updated as follows.

cl . f ← cl . f + β(cl .κ ·
cl .n∑

c ∈[A](c .κ · c .n)
− cl . f ) (6)

2.2.3 Discovery Component. On a regular basis depending on
the parameter θдa , a genetic algorithm (GA) [4] is applied to classi-
fiers in [A]. It selects two classifiers based on the fitness of classifiers
in [A], copies them, and performs crossover and mutation on the
copies with probability χ and µ respectively. Mutation is conducted
as ci ← ci+random(2m)−m, si ← si+random(2m)−m, wherem is
a mutation parameter in XCSR. The resulting offspring are inserted
into the population and classifiers are deleted if the number of clas-
sifiers in the population [P] is larger than a population size limit
N to keep the population size constant. This work uses two-point
crossover, and a roulette wheel selection [2] in all systems.

2.2.4 Subsumption. The subsumption operation is applied to
the classifiers in [A] after updating the classifiers’ parameters and to
offspring after GA. A classifier can be subsumed by a more general
classifier than it, provided that themore general classifier is accurate
and well-updated (i.e., ε ≤ ε0, exp > θsub ) where exp is number of
times which the classifier belongs in [A]. In details, classifier cl1 of
bigger interval range [li ,ui ) of condition can subsume a classifier cl2
of smaller interval range [l ′i ,u

′
i ) of condition (i.e., li ≤ l ′i ,u

′
i ≤ uj ).

The n of the subsuming classifier is added with n of the subsumed
classifier, and the subsumed classifier is deleted from the [P].
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3 NEURAL NETWORK
In this section, we explain neural network, and an autoencoder [3]
which is one of architecture of the neural network.

3.1 Deep Learning
Neural network is a classifier which is modeled on brain of hu-
man [11]. Neural network is composed of nodes, layers, and its
connections.
• input layer is the first set of node sensing an environmental
input ®x = {x1,x2, · · · ,xn } where n is a length of input.
• hidden layer is a set of node that converts the sensed input to
the output. Each hidden layer is connected with the neighbor
layers. (i.e., the input, other hidden, or output layers.) Each
hidden layer represents an internal expression of input in-
herited from the expression of previous layer. Typical neural
networks have equal to or more than one hidden layer to
apply complex problems.
• output layer is the layer located at the end of an entire net-
work, which outputs class, or values.

Each node at a layer is connected with other node on next layer
with a weight valuew . The input value of node u is sum of product
of output of each previous layer’s node z and weightw . The output
of node z is an output of activation function f (u) when input the
u. Appropriate activation functions are depend on the layer and
problems. Then, neural network aims at learning the values of
parametersw which are initially set to a random value under the
Gaussian distribution. Note that, for the nodes connecting with the
input layer, ui can be the corresponding input’s element xi , and
output of output layer’s node becomes output of neural network.

Neural network which has more than 2 hidden layers is called
deep neural network, and the machine learning of deep neural
network is called deep learning [5]. To use (deep) neural networks
for classification, softmax function of k th layer (equation 7) is
employed as an activation function of the output layer.

f (ui,k ) =
eui,k∑N
l=1 e

ui,l
(7)

The number of input layer’s nodes is set to input dimension, and
the number of output layer’s nodes is the number of classes. The
node of output layer outputs possibility of belong to each class.
Sigmoid function shown as equation 8 is often used for activation
function of hidden layer.

f (ui,k ) =
1

1 + e−ui,k
(8)

The output error is calculated with equation 9, where ®t indicates
the answer of class expressed with one-hot expression for input
®x , ®y indicates the output of the network, K is the number of the
classes.

E(®x) = −
K∑
k=1

tk logyk (9)

this error function is called “log-loss” which constitutes a standard
loss function in the context of neural network.

Neural network learns to minimize the output error by updating
weights. Figure 1 shows an example of deep neural network for
classification with handwriting number recognition problem. The

Figure 1: An Example of the Deep Neural Network for Clas-
sification (Handwriting Number Recognition)

layer on the left which is input image written the “2” is an input
layer, the input propagates through hidden layers and finally, output
layer derives the class. In this figure, since the max output value is
2nd units from index of 0, the input image is classified to class “2” by
deep neural network. Deep neural network learns to minimize the
difference of output of output layer and answer which is converted
to one-hot expression. Stochastic gradient descent or its improved
method is used for updating weights, in practice, it is done by back
propagating the output error from the output layer towards the
input layer (backpropagetion [12]).

3.2 Autoencoder
Autoencoder is an algorithm of dimensional reduction using a neu-
ral network. The idea of autoencoder is to reproduce the input
through by the output, then the learned hidden layers can repre-
sent a compressed input. The autoencoder learns the weight values
of each node to minimize an error or a difference between the input
and the output shown in equation 10.

E =
1
2

N∑
n=1
| | ®xn − ®y(®xn )| |

2 (10)

Sigmoid function (equation 8) is used for hidden layers, and identify
function (f (x) = x ) is used for output layer as activation functions.
Figure 2 shows an overview of autoencoder. Specifically, to repro-
duce the input with the output layer, the number of nodes of the

Figure 2: Overview of Autoencoder
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output layer is set to the same of the input length. The first half
layer of autoencoder encodes input, and last half layer decodes
it. With the smaller number of node at the hidden layer than the
input length, the hidden layer encodes a sensed input to a low-
dimensional input. By inputting encoded (compressed) data to the
central layer of autoencoder, decoded data can obtained.

4 PROPOSED SYSTEM: DCAXCSR
The proposed system (DCAXCSR) is a hybrid system of deep neural
network called DCA and XCSRs. The aim of DCAXCSR is tackling
the problem that LCS cannot deal with high-dimensional input by
using compression function of neural network, and gain human-
readable rules from high-dimensional problem.

4.1 Deep Neural Network Component — The
Deep Classification Autoencoder (DCA)

Deep Classification Autoencoder (DCA) is composed by the deep
neural network of classification and deep autoencoder. Figure 3
shows an architecture of the DCA. The DCA has 2 output layers –
the classification layer and the autoencoder layer. The aim of the
DCA is to extract features of input with high-dimensional com-
pression. Normal autoencoder is able to compress input, however
it is not labeled to class. The DCA is designed that autoencoder
learns features of input with hint of class. If using only classifica-
tion layer, the input is too compressed to get features of input. The
DCA can compress input with remaining necessary features, and
its compression rate is higher than (deep) autoencoders [10]. The
output layers of the DCA is fully connected to previous layer, and
activation function of the classification output layer employs the
softmax function (equation 7), and activation function of autoen-
coder output layer employs the logistic sigmoid function (equation
8). The layer constitution of the DCA is the same to deep autoen-
coder [6] which has an hourglass type except output layers. The
number of nodes of the classification output layer is the number of
classes, and the number of nodes of the autoencoder output layer is
the same as input layer. Output of the DCA is the class possibility
distribution in the classification output layer and the decoded data
in the autoencoder output layer. When learning the DCA, we regard
2 output layers as a single output layer and backpropagates in the

Figure 3: An Architecture of DCA

same time. The compressed features of input are obtained in the
center of hidden layer.

DCA is to reduce dimension of input data which the XCSR can
learn, and compressed data are input to XCSR for compressed input.
When the DCA is composed of L layers, n nodes in input layer,
m(n > m) nodes in central layer (the (L + 1)/2 th layer), the 1st
layer to the central layer are the encoder which compresses n input
data tom data and the central layer to the L th layer are decoder
which decodesm data to (n+ the number of classes) data with output
distribution possibility of class. Input data from the environment
are input to the input layer of the DCA and calculates from the input
layer to the central layer. Output of the central layer is compressed
data and it becomes input data of XCSR for compressed input.
Decoder decodes condition C of classifiers in population of XCSR
for compressed input. To decode, input encoded condition C of
classifier to output of (L + 1)/2 th layer in DCA, decoded data are
output to autoencoder output layer.

4.2 Mechanism
4.2.1 Overall System. Figure 4 shows whole system architec-

ture. There are two XCSR, i.e., “XCSR for compressed input” and
“XCSR learning from high-dimensional input”. The first half layers
of the DCA is a role of encoder which compress environmental
(high-dimensional) input. XCSR for compressed input is input com-
pressed input by the encoder. XCSR for compressed input gets
reward from the environment by outputting action to the environ-
ment and updates rules according to be given reward. When the
learning of XCSR for compressed input is finished, picks the all
learned classifiers in the population, and decodes them by the last
half layers of the DCA with autoencoder output layer in order to
get human-readable rules.

When XCSR can learn classifiers with high accuracy, system can
get human-readable rules by decoding them, however when the
learning of classifiers does not go well due to the loss of information
by dimensional compression, they become imperfect rules after de-
coding. However, even imperfect rules can be used to narrow down
state space and they can make that learning from high-dimensional
possible. The decoded imperfect rules are set to initial population
of XCSR learning from high-dimensional input. By learning the

Figure 4: An Architecture of DCAXCSR
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initialized system (XCSR learning from high-dimensional input) di-
rectly with high-dimensional-input, imperfect rules can be restored
and perfect rules can be acquired. This makes the system learnable
from high-dimensional input.

4.2.2 XCSR for compressed input. XCSR for compressed input
receives input which are reduced dimension by the DCA, and learns
classifiers in low dimension. The XCSR for compressed input is
input from the DCA, output an appropriate action to the environ-
ment, gets reward from the environment and updates classifiers
using reward.

If unknown data that DCA has not learned is generated within
XCSR, there arises a problem that it cannot be correctly decoded.
In order to deal with this problem, XCSR for compressed input has
made the following improvements to native XCSR; 1) when running
GA, first, encoded values are decoded, crossover and mutation are
conducted on the decoded values, and finally, encode the values
after GA is completed; 2) when random values is assigned to s
values in covering operation, the random values are generated in
the high dimension, and encoded values are used. When decoding
condition of classifiers, input each values of c and s of classifiers in
population of XCSR to the decoder of DCA.

4.2.3 XCSR learning from high-dimensional input. When de-
coded rules are imperfect, they are set to initial population of XCSR
learning from high-dimensional input. Imperfect rules mean classi-
fier that condition is almost correct, however only partly wrong,
for example in 6-multiplexer problem, “if #0##1# then 1” is a im-
perfect rule of “if 10##1# then 1” (For the meaning of symbol ‘#’
and 6-multiplexer problem, please refer to the later sections). XCSR
learning from high-dimensional input is same as native XCSR ex-
cept that the initial population is set to decoded rules. When set-
ting to initial population, XCSR learning from high-dimensional
input take over condition-action if-then rule and parameter pre-
diction p of classifiers, and the other parameter of classifier is dis-
carded. XCSR learning from high-dimensional input learn from
high-dimensional input directly, and when learning is over, we can
get human-readable rules from population.

4.3 Algorithm
Figure 5 shows the algorithm flow of the DCAXCSR. The following
explanation numbers are corresponding to the numbers in the
figure.

(1) Initialize the DCA, and learns to generate networks by using
input from the environment.

(2) Compress the high-dimensional input to low-dimensional
by encoder of DCA.

(3) Learn XCSR for compressed input with compressed input.
Repeat (2)-(3) until convergence.

(4) Decode the compressed classifiers in the population of XCSR
for compressed input by the decoder of DCA. If the decoded
classifiers are perfect classifiers, the gained classifiers are
human-readable rules.

(5) If the decoded classifiers are imperfect classifiers, set them to
the initial population of XCSR learning fromhigh-dimensional
input.

(6) Learn XCSR learning from high-dimensional input with high-
dimensional input. Repeat learning until convergence. The
imperfect rules are modified, and human-readable rules are
in the population.

5 EXPERIMENT
To confirm that 1) DCAXCSR performs better classification accu-
racy than XCSR with high-dimensional benchmark problems and 2)
acquired rules are well generalized, human-readable and accurate;
we conducted experiments on two classification benchmark prob-
lems. We chose the MNIST database [9] for the problem of image
input which has high dimension which can be compressed to lower
dimension with neural network and 11-multiplexer problem [15]
for the problem which is impossible for neural network to compress
input.

5.1 Problems
5.1.1 The MNIST Database. The MNIST database of handwrit-

ten digits (MNIST stands for Modified National Institute of Stan-
dards and Technology) is a dataset of images of handwritten digits
like Figure 6. (We call it “MNIST” from here.) Each image has 784
pixels (28 × 28) which each pixel has integer value from 0 to 255.
These images are converted to values of linear 786 dimensions and
are granted the label of numbers.

In our experiment, we used data labeled “3” and “8” , and used
binarized images like Figure 7. There are 11982 samples of images
to train. The reason we used only “3” and “8” is that since they
have the same shape of “3”, it is easy for human to verify whether
DCAXCSR can gain human-readable rules because shared feature
is well-known.

5.1.2 Multiplexer Problem. Multiplexer problem [14] (MUX) is
a benchmark classification problem. In this problem, the system
outputs 1-bit in response to the input of l-bit. l-bit input is composed
ofm-bit address bits and 2m -bit reference bits (l =m+ 2m :m ∈ N).
The multiplexer problem with l-bit input is called l-multiplexer
problem. The value of the reference bits indicated by the address bits
is the answer output. If address bits indicate a in decimal number,
the a th reference bit indicates an answer. Fig. 8 shows an example
of the 6-multiplexer problem. When the length of input bits is 6
(l = 6) and length of address bit is 2 (m = 2), address bits of “101110”
are “10”=2, and reference bits are “1110”, then the answer of “101110”
represent “1” since 2nd reference bit is 1.

5.2 Evaluation and Experiments Settings
In order to compare the respective method (DCAXCSR, and XCSR),
we use the correct rate of classification of XCSR as evaluation cri-
teria. The learning of XCSR conducted 10 times for each method,
and result is shown the average value of 10 trials. When the output
of system is correct, the environment gives reward of 1000, and 0
when incorrect. The parameter of each method are set to indicated
values of Table 1. Note that the parameter of “DCA: hidden lay-
ers structure” in the table indicates the first half layers structure
because the hidden layers structure of DCA is symmetry. DCA
compresses 784 dimensions to 4 dimensions in the MNIST dataset,
and 11 dimensions to 9 dimensions in the 11-multiplexer problem.
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Figure 5: An Algorithm Flow of DCAXCSR

Figure 6: Examples of MNIST Dataset

Figure 7: Examples of Binarized Images

Figure 8: An Example of 6-multiplexer Problem

“XCSR: N ” is the maximum population size of XCSR which is num-
ber maximum classifier XCSR can have. Other parameters of XCSR
of each method are set to following [16]. If the correct rate of XCSR
for compressed input is low, set the decoded classifiers to the XCSR
learning from dimensional input, and learn it (Corresponding to
(5)-(6) in section 4.3). In this section, result of “XCSR for compressed
input” is denoted as “DCAXCSR (without knowledge) ” which is

standing for “DCAXCSR without using compression rules as knowl-
edge”, and result of “XCSR learning from high-dimensional input”
is denoted as “DCAXCSR (with knowledge)” which is standing for
“DCAXCSR with using compression rules as knowledge”.

Table 1: Parameters of Experiments

parameter MNIST MUX
compression dimensions 784→ 4 11→ 9
DCA: training epoch 150000 300000
DCA: batch size 100 100
DCA: hidden layers structure 196-49-12-4 22-9
XCSR: training iteration 50000 50000
XCSR: N 1000 1000

5.3 Result
5.3.1 The MNIST Dataset. Figure 9 shows the correct rate of

classification of “3” or “8” of The MNIST dataset of DCAXCSR
(without knowledge) and XCSR. The vertical axis and the horizontal
axis indicate the correct rate of classification of XCSR (%), and
learning iterations of XCSR. From this figure, we can see that against
XCSR which cannot solve that the correct answer rate is around
50%, DCAXCSR (without knowledge) converges to nearly 100%.
Since both of the MNIST dataset and the 11-multiplexer problem
are to classify to 2 classes, note that 50% of the output will be correct
if output is selected randomly.

Figure 10 shows examples of acquired rules of DCAXCSR. The
left image of the figure shows the rule which argues “it is 8” and
the right image of the figure shows the rule which argues “it is 3”.
Red pixels indicates the “don’t care” which means the pixel can
be either white or black. The acquired knowledge from the figure
is that “if the indentation on the left side of ‘3’ is buried by black
pixels, then it is ‘8’, else it is ‘3’ ”.

5.3.2 11-Multiplexer Problem. Figure 11 shows the correct rate
of 11-multiplexer problem of DCAXCSR (without knowledge),
DCAXCSR (with knowledge) and XCSR. The vertical axis and the
horizontal axis indicate the correct rate of classification of XCSR
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Figure 9: The Correct Rate of Classification of “3” or “8” of
The MNIST Dataset

Figure 10: Examples of Acquired Rules of DCAXCSR

Figure 11: The Correct Rate of 11-Multiplexer Problem

(%), and learning iterations of XCSR. From this figure, the correct
answer rate of XCSR converges to about 56%, DCAXCSR (without
knowledge) converges to about 68% and DCAXCSR (with knowl-
edge) converges to 100%. Thus we can say that XCSR cannot solve

this problem, DCAXCSR (without knowledge) can hardly solve it,
however, DCAXCSR (with knowledge) can solve it.

Table 2 shows top 3 examples which sorted by fitness of acquired
rules in each XCSR. The symbol “#” of the table indicates don’t care

Table 2: Examples of Acquired Rules

XCSR
condition:action p

O 01001001000 : 0 1000
O 11111110010 : 0 1000
O 00111101111 : 0 0

DCAXCSR (without knowledge)
condition:action p

X #10##111111: 1 941
X #01##010011: 0 645
X #11##111111: 1 926

DCAXCSR (with knowledge)
condition:action p

O 1100110#00#: 1 0
O 0000#######: 1 0
O 100####0###: 1 0

which means either 0 or 1 is acceptable. The rule which has more
number of “#” is more general because it can match many inputs.
The leftmost column indicates whether or not the rule is correct.
“O” indicates correct rule, and “X” indicates incorrect rule. From
this table, we can see XCSR could obtain correct rules however
they are not generalized, DCAXCSR without knowledge obtained
some wrong rules, and DCAXCSR with knowledge obtained correct
generalized rules.

5.4 Discussion
From Figure 9, we can say that it is too high-dimension for XCSR
to learn MNIST dataset (784 dimensions) because the XCSR cannot
solve it at all. However, DCAXCSR can solve it because inputs
are compressed enough and correctly by DCA. In this problem,
N = 1000 is too little for XCSR to solve, on the other hand,N = 1000
is enough for DCAXCSR because dimension is compressed to 1/196
size. There is a possibility for XCSR to solve it if N is increased
significantly, however it cannot be solved in realistic calculation
time. This means that DCAXCSR can solve the high-dimensional
problem which can be compressed by neural network.

Figure 10 shows DCA of DCAXCSR can decode compressed rules
correctly. Acquired rules (images) has common red “3” shape which
means shape of “3” and “8” has a common shape of “3”, and differ
of them is whether the pixels of indentation on the left side of “3”
is buried by black or while. We can say these are human-readable
generalized rules.

From Figure 11, it is difficult for XCSR to learn from 11-multiplexer
problem with N = 1000 because of the shortage of N . Incidentally,
by increasing N enough, it was confirmed that it is possible even
for XCSR to learn from 11-multiplexer problem. It is also difficult
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for neural network to learn this problem. Because input of multi-
plexer problem cannot be compressed since distribution of features
are vary for each input. When compressing the input with DCA,
multiple inputs may be mapped to the same data (overlap). In addi-
tion, since uncompressible input is compressed forcibly, necessary
information may be lost. Using such incorrectly incompletely com-
pressed input for XCSR generates rules with incorrect parts and
cannot learn perfectly. Thus, DCAXCSR without knowledge cannot
solve the problem perfectly. However, correct rate of DCAXCSR
with knowledge converged to 100%. This is because compressed im-
perfect rules are used for narrowing down the state space of input.
The calculation cost of modifying imperfect rules to perfect rules is
smaller than generate perfect rules from nothing. This fact is seen
in Table 2. There are partially wrong rules acquired by DCAXCSR
without knowledge, in the table, 1st and 3rd rules have incorrect
p and the 2nd rule has a wrong generalization, however the other
part is correct. On the other hand, rules acquired by DCAXCSR
with knowledge are correct. In addition, rules acquired by XCSR is
not incorrect, however they are not generalized because there are
no “#” in the rules, in contrast, rules acquired by DCAXCSR with
knowledge are well-generalized.

From these reasons, we can say following implications; DCAXCSR
can 1) learn from high-dimensional input and solve it; 2) learn dif-
ficult problems which DCA cannot learn and compress well by
using compressed imperfect rules and 3) acquire well-generalized
human-readable rules.

6 CONCLUSION
Learning Classifier System (LCS) is rule based machine learning
which discovers knowledge from input. LCS can acquire human-
readable generalized if-then rules as knowledge, however it is dif-
ficult for LCS to learn from high-dimensional input. To solve this
problem, this paper proposed new LCS called DCAXCSR which can
solve high-dimensional problems, and obtain human-readable gen-
eralized knowledge fromhigh-dimensional environment. DCAXCSR
is a hybrid system of XCSR which is one of LCS which can deal with
continuous real numbers and DCA. DCA is dimension compressor
with necessary features by combining the deep neural network for
classification and autoencoder.

In order to investigate the effectiveness of DCAXCSR, this paper
conducted experiments on the benchmark classification problem
of MNIST database and 11-multiplexer problems. Samples of the
MNIST database are images which has 784 dimensions. And 11-
multiplexer problem is difficult problem because it is impossible
for neural network to compress its input because distribution of
features of input is vary for each input. DCA compress MINIST sam-
ples to 4 dimensions, and 11-multiplexer problems to 9 dimensions.
The experiment results revealed following implements: DCAXCSR
can 1) learn from high-dimensional input and solve it; 2) learn
difficult problems which DCA cannot learn and compress well by
using compressed imperfect rules and 3) acquire well-generalized
human-readable rules.

Future work is that to solve more difficult various problems to
verify applicability of DCAXCSR. And since the current system can
not judge whether the rule is a perfect or imperfect only from the

correct rate of classifiers, it is necessary to consider the judgment
criteria to classify perfect rule or imperfect rule in the future.
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