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ABSTRACT
While some attention has been given to the process of using Evo-
lutionary Computation (EC) to optimize the activation functions
within hidden layers, available activation function sets have always
been hard coded by the developers, and were immutable by users.

In this paper, we present EvoNN. While many other Neuro-
evolution based tools or algorithms focus primarily on the evolution
of either Neural Network (NN) architecture, or its weights, EvoNN
focuses on simultaneous evolution of weights and the activation
functions within hidden layers. The main novely offered by EvoNN
lies in that users can provide additional activation functions to the
EvoNN system to be employed as part of the "alphabet" of available
functions. This feature gives users a greater degree of flexibility
over which functions the evolutionary optimizer can utilize.

We employ a set of three test cases where we compare EvoNN to
a standard NN, and observe encouraging results showing a superior
performance of the EvoNN system. We also observe this increase
in performance comes at the cost of additional run time, but note
that for some applications, this can be a worthwhile trade-off.
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1 INTRODUCTION
Neuro-evolution is the process of optimizing the weights, architec-
ture, activation functions, or any combination thereof of Artificial
Neural Networks (ANNs) [8]. ANNs [10] are machine learning
constructs which are loosely based on the human mind architec-
ture. ANNs are, generally speaking, composed of layers of neurons,
where neurons can only transmit information between layers, but
not within layers (Figure 1).

Figure 1: The general architecture of a neural network. This
neural network contains 3 input neurons (thus able to pro-
cess data with 3 features), 4 hidden neurons, and 2 output
neurons (thus able to output a target of 2 values)

The most simple ANN contains three layers, and is composed
of an input layer, a hidden layer, and an output layer, where each
layer contains neurons. The neurons in each layer contain links to
the preceding layer (except for the input layer neurons) and to the
succeeding layer (except for the output layer neurons).

ANNs are composed of two major components, the weights on
the links between the neurons, and the activation functions of neu-
rons. Traditional methods of training neural networks, whether
using backpropagation, or heuristic based training [18], have fo-
cused on adjusting the weights of the neural network [17, 20, 27],
or the network’s architecture [2, 5, 12, 23, 24], but relatively little
work has been done on modifying the activation functions within
neurons, with only a few notable exceptions. This is despite the fact
that the choice of the transfer functions is as important as choice
of architecture [7]
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In [16], Mani suggests the modification of activation functions
as part of the backpropagation algorithm, but his work can only be
applied on a set of functions which can be ordered on a gradient.
The work done by Liu and Yao in [14] focused on evolving both
network architecture and the activation functions employed within
the hidden nodes, but the nodes’ activation functions were limited
to either sigmoid or Gaussian activation functions. Alvarez, in [3],
also worked on evolutionary development of activation functions,
but employed a process similar to genetic programming [13] to
evolve simple expressions to be utilized within both hidden and
output neurons. Similarly, Augusteijn and Harrington [4] employed
genetic programming activation functions as well with a set of pre-
defined simple functions (such as tan(x), sqrt(x)) as the alphabet for
the tree. An interesting approach to evolving activation functions
was pursued by Turner in [25], where he evolved the connectivity
of a predefined set of nodes in order to create the ANN. However,
the resulting ANNs do not have a clear division into layers since the
connectivity can occur between any two nodes. Similar work done
by Stanley et al. [22], with the introduction of HyperNEAT, also
allowed nodes to select and evolve their activation functions, and
the work was more advanced than many other such attempts. How-
ever, the functions could still only be selected from a predefined
set which could not be modified by the user. In 2017, Vasconcellos
et al. introduced SUNA in [26]. Their work focused mostly on im-
plementing an advanced neuron representation for neuroevolution,
and reducing the number of neuroevolution hyper-parameters, and
their advanced neurons also utilized variable functions. Yet similar
to other methods, the activation function space was limited, and
could not be extended by the user. Recently, in [21] Shirakawa et al.
have also experimented with the simultaneous evolution of weights
and activation functions, along with the evolution of drop out rate
and other hyper-parameters in Deep Neural Networks (DNN). Their
work produced very good results compared to using a predefined
activation function. However, their choice for activation functions
were limited to the ReLU and tanh activation functions, and did not
allow for user interaction.

Though these examples showed promising results for ANNs with
heterogeneous activation functions within layers, most research on
such ANNs has focused on simple activation functions (with the
exception of [25]), and none have focused on user supplied activa-
tion functions. Generally, this has been motivated by one of two
reasons: First, while many programming languages allow for the
run-time modification of variable values, the ability to use functions
as variables and modify their value with ease is a relatively recent
feature that came with high level programming languages such
as Python and R. Second, there is a non-trivial run-time overhead
added when modifying and assigning functions as variables. Since
Machine Learning (ML) is usually concerned with making sense of
large amounts of data, the minimization of run-time performance
is incredibly important to the field.

In this work, we present EvoNN, an Evolutionary system for
Neural Network evolution which is set apart by its ability to accept
user specified activation functions, and demonstrate that while a
system which includes function evolution, as well as weight evolu-
tion, performs slower, it can achieve superior performance due to
its added flexibility.

2 METHODS
2.1 The Architecture of EvoNN
The basic unit of the ANN is the neuron, which is composed of
two components: the weighted links leading information into the
neuron, and the activation function. These components are summed
up by the following formulas:

x =
N∑
i=0

wi jai (1)

ai+1 = f (x) (2)
Where N is the number of neurons in the previous layer, ai is

the output of the ith neuron in the previous layer, and wi j is the
weight of the link from the ith neuron in the previous layer to the
jth neuron in the current layer. The activation function f () is then
applied to x to produce the current neuron’s output, ai+1.
Figure 2 illustrates this process.

Figure 2: A sample neuron which accepts 3 inputs, applies
an activation function f () on their sum, and outputs a value
which is then multiplied by the weights of the different out-
going edges.

The most commonly used activation function is the sigmoid
function:

f (x) =
1

1 + e−x
(3)

but the hyperbolic tangent function is often used as well:

f (x) =
2

1 + e−x
− 1 (4)

Conventionally, the collection of neurons in a given layer all
contain the same activation function. However, EvoNN allows dif-
ferent neurons within the same layer to have different activation
functions (Figure 3). The function of each neuron becomes another
parameter to be optimized. Figure 4 illustrates this framework.

The proposed framework has two fundamental advantages:
Firstly, it presents a general added degree of flexibility for the neural
network to take advantage of: While conventional neural networks
force all hidden units to perform the same fundamental transforma-
tion to incoming data, the EvoNN framework allows each unit to
respond differently (Notice however, it is not obligated to respond
differently, since the optimizers can select for networks with the
same activation function in all nodes). Second, since the specific
framework of EvoNN does not use gradient-descent to optimize
its networks, the functions made available to the optimizer do not
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Figure 3: A sample neural network where the hidden layer
contains the sigmoid activation function at the first, second,
and fifth neorons, and piece-wise functions at the third and
fourth neurons
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(a) Generally, the chromosome of each individual using neuroevolu-
tion contains only the weights to be optimized, while the activation
functions remain constants.
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(b) In EvoNN, the chromosome of each individual contains an ad-
ditional vector for each hidden layer which contains the activation
function for each layer as well.

Figure 4: A comparison of chromosomes between standard
neuroevolution frameworks, and individuals in the EvoNN
framework. The example shows a network with three hid-
den layers

have to be differentiable, nor does their derivative need to be known
ahead of time. The result of such an architecture is that users are
able to supply EvoNN optimizer with their own functions (which
have to conform to a particular signature), and EvoNN uses those
functions within the optimization process.

2.1.1 Mutation. In the context of EvoNN mutation is divided
into two types of modifications, each controlled by different pa-
rameters; Weight mutation is the process of modifying the weight
associated with a specific link between two nodes. While activation
function mutation modifies the activation function present in a
node.

Weight mutation is controlled by the mutation probability (Pm ∈

[0.0, 1.0]) and the mutation radius (Rm ∈ (0.0,∞)). The mutation
probability determines the probability for each link to be mutated.
While the mutation radius dictates the severity of the mutation. For
example, if Pm = 0.5 and Rm = 0.1, then each link has a 50% chance
of being mutated at each iteration. If the link is indeed chosen for
mutation, its weight will increase by a value uniformly chosen from
the range [−0.1, 0.1]. Notice this means the weight may decrease if
the chosen value falls between -0.1 and 0.0.

Activation functionmutationworks similarly to weight mutation
and is controlled by the function mutation probability (Pmf ∈

[0.0, 1.0]). Much like the weight mutation probability, the function
mutation probability controls the likelihood an activation function
within a hidden node is modified. However, this mutation does not
have a mutation radius equivalent. If a node’s activation function is
chosen for mutation, the new function is uniformly chosen from the
"bank" of available functions which are different from the function
employed at the given node. For example, if Pmf = 0.5, then each
hidden node has a 50% chance of having its activation functions
mutated. If a node which contains the function f (x) is chosen for
the process and the available functions are {f (x),д(x),h(x), i(x)},
then the function is replaced by either д(x), h(x) or i(x), each with
a 33% chance to be chosen.

2.1.2 Crossover. Since the architecture of the neural networks
remains constant through the evolution process, crossover is rather
straightforward. First, the proportion of individuals in the offspring
produced via crossover is controlled by the crossover proportion
parameter (Pc ∈ [0.0, 1.0]). For example, if Pc = 0.3, then 30% of
the individuals in the offspring generation will be the result of
crossover.

If an individual is chosen to be produced through crossover, then
its links and hidden nodes are produced in the following way. Each
link has a 50% chance to receive its weight from the first parent, and
a 50% chance to receive its weight from the second parent. Likewise,
each hidden node has a 50% chance of inheriting the first parent’s
activation function, and a 50% chance to inherit the second parent’s
activation function.

The resulting individual has, on average, 50% of the first parent’s
genotype and 50% of the second parent’s genotype.

2.2 Experimental Setup
For the purposes of this manuscript, three classification datasets
were tested. The datasets are all available through the Python
sklearn library [6, 19]. The three sets used were the wine, breast
cancer, and iris classification sets. Their main characteristics are
presented in Table 1.

Each dataset was divided into three subsets: Training, Valida-
tion, and Testing. 60% of instances were used for training, 20% for
validation, and the remaining 20% for testing. The results reported
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Set # Set Name Instance
Number
(n)

Feature
Number
(m)

Class
Number
(c)

1 Iris 150 4 3
2 Breast Cancer 569 30 2
3 Wine 178 13 3

Table 1: The three datasets used in the experiments. All
three datasets can be found in the sklearn library.

are based on the testing sets. The EvoNN framework was com-
pared against an ANN framework which uses gradient descent and
backpropagation 1.

For each dataset, 200 runs were performed with a different ran-
dom seed each time, and the average of the 200 runs as well as
the standard deviations were recorded and compared using the
Wilcoxon Signed Rank test [28]. Within the 200 comparisons, the
data was shuffled at random and split into training, validation, and
testing subsets every 10 runs, creating 20 "mini-runs" of 10 repe-
titions each. This was done to simulate different distributions of
classes within the subsets. Each algorithm was allowed to run un-
til it showed no signs of improvement for 200 iterations2 on the
validation set, or until it reached 10,000 iterations.

2.2.1 Standard ANN Parameters. The standard ANN had a fixed
architecture of three layers:m units for input (wherem is the fea-
ture number for each set), 10 hidden units employing the sigmoid
activation function, and c output units (where c is the number of
classes for each set) employing the softmax activation function. A
learning rate of 0.001 was used.

so f tmax(xi ) =
exi∑c
j=1 e

x j (5)

The loss function chosen was the multiclass logloss function,
defined as

loдloss(Y , Ŷ ) = −
1
n

n∑
i=1

c∑
j=1

yi j × ln(ŷi j ) (6)

Where Y is the true value of the classes, and Ŷ is the matrix of
predictions generated by the neural network,yi j is the true value of
instance i belonging to class j (1 or 0 if it belongs, or doesn’t belong,
respectively), and ŷi j is the estimated probability that instance i
belongs to class j . To prevent computational failures, ŷi j is taken to
bemin(1−10−15,max(10−15,pi j ))wherepi j is the neural network’s
predicted probability that instance i belongs to class j.

2.2.2 EvoNN Parameters. EvoNN also had a fixed architecture
of three layers:m input units, 10 hidden units, and c output units
employing the softmax activation function. However, each of the
10 hidden units could have a different activation function. The
activation functions provided as a function "bank" were the sig-
moid function, the hyperbolic tangent (tanh) function, the Rectified
Linear Unit function (ReLU) [9], and the Leaky Rectified Linear
1The code for the standard ANN was taken from https://www.analyticsvidhya.com/
blog/2017/05/neural-network-from-scratch-in-python-and-r/ and adjusted to be used
with the logloss loss function
2200 epochs for the neural network, and 200 generations for EvoNN

# Name Equation Domain Range
1 sigmoid f (x) = 1

1+e−x (−∞,∞) (0,1)
2 tanh f (x) = 2

1+e−x − 1 (−∞,∞) (-1, 1)

3 LReLU f (x) =

{
0.01x x ≤ 0
x x > 0

(−∞,∞) (−∞,∞)

4 ReLU f (x) =

{
0.0 x ≤ 0
x x > 0

(−∞,∞) [0,∞)

Table 2: The functions used by the EvoNN algorithm

Parameter Value
µ 50
λ 50
Weight Mutation Probability (Pm ) 0.01
Weight Mutation Radius (Rm ) 0.1
Function Mutation Probability (Pmf ) 0.05
Crossover Proportion (Pc ) 0.3
Elitism 1
Selection Method Tournament (size=2)
Fitness Function Logloss

Table 3: The evolutionary parameters for EvoNN

Unit (LReLU) function [15]. Their properties are outlined in Table
2. The evolutionary parameters are laid out in Table 3. For brevity
purposes, the parameters are not described in this manuscript, but
an excellent introduction to the hyper-parameters of evolutionary
computation can be found in [11].

Notice that the logloss loss function which was used as the loss
function for the standard neural network, is also used as the fitness
function for EvoNN such that both methods are optimizing the
same objective.

2.3 Custom Functions in EvoNN
When themain evolver (optimizer) is instantiated, users can provide
custom functions for the evolver to use. The signature for EvoNN
is as follows:

https://www.analyticsvidhya.com/blog/2017/05/neural-network-from-scratch-in-python-and-r/
https://www.analyticsvidhya.com/blog/2017/05/neural-network-from-scratch-in-python-and-r/
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myEvo = Evolver( G=10000,
early_stopping=200,
MU=50,
LAMBDA=50,
P_m=0.01,
P_mf=0.01,
R_m=0.1,
P_c=0.3,
elitism=True,
tournament_size=2,
fitness_function=logloss,
final_activation_function=softmax,
additional_functions=[LReLU, ReLU])

The important two parameters to pay attention to are
additional_functions and fitness_function.

The parameter fitness_function tells EvoNN what the objec-
tive function is to optimize. This function is used for both training
and validation sets, and can be any arbitrary function with the
following signature:

def myFunction(y_predicted, y_true):
# myFitnes = ...
# Calculations of the loss between
# predicted and known values go here

return myFitness # the result of the fitness
# a single real value

Note that this allows non-differentiable measures such as the
Area Under Curve (AUC).

The parameter additional_functions is in fact a list of activa-
tion functions which can be used within the hidden layer. These
functions must all conform to the signature:

def myActivationFunction(x):
# myOutput = ...
# Calculations of the activation function
# are performed here

return myOutput

Under this signature, both x and myOutput are n×1 matrices where
n is the number of samples in the set. In essence, this method
applies the function to all examples in the set at once. When each
unit applies its function, the result is an n × hi matrix where n is
the number of instances in the set, and hi is the number of hidden
units at layer i , i.e. the n × hi matrix is the result of the sample set
forward propagating through the ith layer.

In the current set of experiments, the list of functions provided
included the ReLU and LReLU functions. This is because by default,
EvoNN has the sigmoid and tanh functions in its function collection.

2.4 Preprocessing, language, and hardware
All experiments reported have been performed on an Asus Vivo-
Book with an i7-8550U processor. The code was written in Python
3.5.4.

All features were scaled into the range [-1.0, 1.0] by dividing the
values of each feature i bymax(max(®xi ), |min(®xi )|), where ®xi is the
vector of values in feature i .

3 RESULTS
3.1 Optimization Performance
Figure 5 and Table 4 present the resulting average values of logloss
and the standard deviations associated with them. It is clearly evi-
dent that the EvoNN system performed superiorly to the standard
ANN on average, with significantly smaller average logloss values
and a p-value < 0.01 for all three datasets. However, it is also evident
that the standard deviations for all three sets are rather large, more
so for the standard ANN than for EvoNN, and these differences
should be addressed.

In order to understand the observed results it is necessary to
remember the data seen by the learning algorithms was presented
as a set of different permutations with different distribution of
the classes between the training, validation, and test sets. These
different permutations create different fitness, or loss, landscapes
for the learners to navigate through, creating more or less frequent
local optima. Additionally, different permutations would change
the extent the training set can be telling of the test set, because
of different class distributions within the training and testing sets.
This property could change the logloss values each of the learners
can attain as it is training. Evidently, for most of the permutations,
the EvoNN system outperforms the standard ANN.

These results are important since when constructing models, it
is not always possible to attain an accurate representation of test
sets due to limited amount of data, class imbalances, or other biases
related to data gathering. Having confidence in the model’s general
flexibility towards distribution of examples and classes, in addition
to confidence in its ability to stop before it begins overfitting is
very important, and the results observed here are very encouraging
regarding this aspect of EvoNN.

3.2 Run-time Performance
Figure 6 and Table 5 present the run time averages for both opti-
mization systems. As expected, the run-time performance of the
standard ANN is superior to the EvoNN optimizer. While the run
time of both the standard ANN and EvoNN are dependent on their
hyper-parameters, generally a decrease of run time will also compel
a decrease of accuracy or performance. These results, combined
with the results in Section 3.1 show that the superior performance
observed with EvoNN has a trade-off with regards to run-time.

Generally, optimization problems can be divided into online
and offline problems. Online problems have the data changing fre-
quently (even so frequently that at every iteration, a new data point
is added), and a learner must continuously adjust to maintain an
optimal model of the data. Offline problems have the data changing
infrequently, or even never, such that a model produced once can
be used for an extended period of time. Online optimization prob-
lems require a fast run-time performance from the model, since it
must adjust quickly to accurately reflect new information coming
in. However, offline optimization instances can incur an additional
run-time cost in exchange for a higher accuracy, or a less lossy,
model.
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Figure 5: The logloss score of EvoNN versus the standard ANN on the test set for the three sample datasets. The averages of
200 runs, as well as the standard deviations, are shown.

Dataset EvoNN Standard ANN
Average Logloss Standard Deviation Average Logloss Standard Deviation

Iris 0.11 0.096 0.23 0.33
Breast Cancer 0.071 0.025 0.17 0.21
Wine 0.11 0.067 0.54 0.50

Table 4: Optimization results of EvoNN and the standard ANN

Figure 6: The run-time (in seconds) of EvoNN versus the standard ANN on the test set for the three sample datasets. The
averages of 200 runs, as well as the standard deviations, are shown.
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Dataset EvoNN Standard ANN
Average Run-time (seconds) Standard Deviation Average Run-time (seconds) Standard Deviation

Iris 299.66 191.87 23.15 8.92
Breast Cancer 664.70 173.20 36.92 26.26
Wine 414.49 206.64 24.68 22.40

Table 5: Run-time results of EvoNN and the standard ANN

Furthermore, it is important to consider the architecture of both
algorithms when observing run times. The nature of evolutionary
algorithms is that many steps in the evolutionary process can be
parallelized. Mutation, crossover, evaluation, and selection are all
processes which work on the individual level and can be applied
to several individuals in parallel. This feature is not available for
the backpropagation algorithm. The backpropagation must happen
sequentially since each iteration of the backpropagation depends
on the new position of the model in the loss function space. This
can, in theory, further decrease the run time and allow EvoNN to
deliver superior results at a reduced run-time.

Generally, it may be the case that a fully optimized ANN which
uses backpropagation will always deliver results faster than EvoNN.
However, for applications where an increased accuracy or flexibility
is important and can be traded for additional run-time, EvoNN
shows superior results.

4 CONCLUSIONS AND FUTUREWORK
This article described a new system, EvoNN, which presents users
with two novel features. First, in addition to the general ANN opti-
mization method of adjusting the network’s weights, the activation
functions of the hidden layer are optimized as well. This presents
an added degree of flexibility in the network’s exploration of the
fitness space presented to it within the problem. Second, EvoNN can
accept as part of its arguments novel activation functions to be used
within its "alphabet" of functions. The functions must conform to a
particular signature, but are overall simple to implement, can have
an arbitrary complexity or shape, and need not be differentiable.

Section 3 demonstrates the results of EvoNNwhen tested against
a standard ANN on three classification sample sets. EvoNN shows
superior performance with regards to optimization, but at the ex-
pense of increased run-time. This shows there exists a trade-off
between obtaining higher accuracy results, and the run-time dedi-
cated to obtain such accuracy.

However, it is important to remember there are several potential
routes for accelerating the observed run times. First, as mentioned
before, evolutionary algorithms can be parallelized easily for most
instances since evaluation, crossover, mutation, and selection are
all actions which operate on the individual level, thus they can be
divided among the number of cores or threads available for the
system. Additionally, since the algorithm is written using Python, it
can in fact be accelerated by using Cython, a systemwhich compiles
Python code by the addition of static type decelerations (Python
does not usually make static deceleration but rather resolves types
during runtime).

Furthermore, EvoNN holds an additional advantage over stan-
dard ANN approaches. Since EvoNN does not use gradient directly,

it does not require for the activation functions, or the fitness func-
tion, to be differentiable. This provides users with the ability to
design arbitrary functions, or use optimization targets that are not
necessarily differentiable.

Future work on EvoNN will look into a larger array of test sets
to further validate the results observed in this manuscript. A combi-
nation of both regression and classification problems from different
fields could be tested. In addition, the use of the Cython compiler for
Python could be implemented to dramatically reduce the run-time
of most EvoNN operations.

Further extensions to EvoNN could see the evolver adjusting
not just the weights and activation functions of hidden units, but
even the activation functions of the output layer (this is now a
parameter for EvoNN). Furthermore, additional hyper-parameters
could be incorporated as input to accommodate a potentially larger
array of user specified functions (e.g. the Adaptive Piecewise Linear
(APL) function described in [1]). Additionally, the evolver could also
optimize the architecture of the network itself, deciding through
evolution the appropriate size of each hidden layer, and the number
of hidden layers. Such advances would have to resolve the issue
of crossover between ANNs of different architecture, but if imple-
mented could add another degree of flexibility and adaptability to
EvoNN.

Overall, EvoNN shows promise in this work, and opens new
research avenues into the optimization and automatic generation
of ANNs.
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