
A Generic Problem Instance Generator for
Discrete Optimization Problems

Markus Ullrich∗
University of Applied Sciences

Zittau/Görlitz
Görlitz, Saxony, Germany

mullrich@hszg.de

Thomas Weise
Institute of Applied Optimization

Hefei University
Hefei, Anhui, China
tweise@hfuu.edu.cn

Abhishek Awasthi
University of Applied Sciences

Zittau/Görlitz
Görlitz, Saxony, Germany

aawasthi@hszg.de

Jörg Lässig
University of Applied Sciences

Zittau/Görlitz
Görlitz, Saxony, Germany

jlaessig@hszg.de

ABSTRACT
Measuring the performance of an optimization algorithm involves
benchmark instances of related problems. In the area of discrete
optimization, most well-known problems are covered by a large
variety of problem instances already. However, while exploring the
area of lesser-known optimization problems there is usually not a
sufficient amount or variety of such benchmark instances available.
The reasons for this lack of data vary from privacy or confiden-
tiality issues to technical difficulties that prevent the collection of
such data. This results in the inability to evaluate new optimization
algorithms on these problems. Ideally, the necessary data for a va-
riety of problem instances can be created randomly in advance to
measure the performance of a set of algorithms. Random problem
instance generators exist for specific problems already, however,
generic tools that are applicable to multiple optimization problems
are rare and usually restricted to a smaller subset of problems. We
propose a generic problem instance generator for discrete optimiza-
tion problems, which is easy to configure, and simple to expand
to cover a broad variety of optimization problems. We show the
capabilities of our tool by creating exemplary configurations for the
TSP, Max-SAT and a real-world load allocation problem to generate
random problem instances.
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1 INTRODUCTION
The goal of this first instance of the Black-Box Discrete Optimiza-
tion Benchmarking (BB-DOB) workshop is to define a suite of
benchmark problems for black-box discrete optimization. A single-
objective optimization problem is defined by a solution space X
and an objective function f : X 7→ R mapping X to the real num-
bers R [17]. Usually, the goal is to find the value x ∈ X for which
f (x) takes on the smallest possible value. In the context of discrete
(or combinatorial) optimization, X is finite [2, 12]. The sets of bit
strings of a fixed length n or of the permutations of the first n
natural numbers are common here.

An optimization algorithm is not applied to an optimization
problem as a whole, but to a specific instance. For instance, we do
not solve Traveling Salesmen Problems (TSP) [1, 4, 19] in general
but the specific instance looking for the shortest tour through 14
cities in Burma [14]. After the problems have been chosen, several
of their instances will be included into the BB-DOB benchmark set.
The data of the selected instances should be directly available for
any interested researcher. Interestingly, the history of optimization
has shown that problem instances once considered to be hard can
sometimes soon afterwards be solved to optimality.1 In the ideal
case, a researcher should thus not just have access to the data of the
selected instances, but also be able to generate more (in particular,
larger and harder) problem instances. This leads to the dilemma that
different researchers may use different instances and, hence, obtain
incomparable results – or that each paper must be accompanied by
additional files specifying the problem instances used.

1On the website http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/STSP.html
listing the optimal solutions of the symmetric cases of TSPLib, we find: “When I
published TSPLIB more than 10 years ago, I expected that at least solving the large
problem instances to proven optimality would pose a challenge for the years to come.
However, due to enormous algorithmic progress all problems are now solved to optimality!!”
(May 22, 2007)

https://doi.org/10.1145/3205651.3208284
https://doi.org/10.1145/3205651.3208284
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/STSP.html
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We propose a simple way to solve this problem: A versatile prob-
lem instance generator which can produce instances of a very wide
variety of discrete optimization problems and can do so reproducibly.

The rest of this paper is organized as follows. First, we discuss
the related work on problem instance generation in Section 2. In
Section 3, we then detail the requirements, specification, and utiliza-
tion of our instance generator, highlighting the different data types
and constraints that are supported. In Section 4, we provide three
different examples of scenarios created by our generator. Finally,
Section 5 concludes this paper and we discuss the planned future
applications of our work.

2 RELATEDWORK
A variety of well-known problems, such as the TSP [13], have been
covered by problem instance generators already. However, these
generators are usually problem-specific.

Drexl et al. [3], for instance, developed a problem instance gen-
erator for resource-constraint project scheduling problems (RCPSP)
and several problem extensions. Their work is based on ProGen [8]
an existing project generator which has been used previously for
the RCPSP. From this example it becomes clear that it is not a simple
task to create a general instance generator, even for this specific
subset of problems. The dominant issue is the inability to predict
future problems or problem extensions as described in the paper
by Drexl et al. [3] which could not have been regarded during the
development of ProGen. Our tool attempts to avoid this problem
as it has been created with high flexibility in mind. Furthermore, it
is easy to extend the generator which we will demonstrate for the
creation of Max-SAT problem instances in Section 4.2.

However, to also highlight one of the limits of our generator,
the work by Sakti et al. [15] is concerned with the generation of
software test-data for object oriented code coverage. The challenges
of this task cannot be met by our tool without spending a lot of
additional work on creating an extension. Specifically, software
test generators usually aim for a high code-coverage which cannot
be achieved without meticulously analyzing the source code of a
software. For these tasks, efficient tools like the generator presented
by Sakti et al. [15] exist already.

Other applications for instance test generators include health-
care scheduling [9] in which only a few benchmark sets are known.
The approach by Leeftink and Hans [9] relies on a case-mix classi-
fication scheme to create random instances based on existing data
and measures their similarity to generate a highly diverse set of
instances for benchmarking. This approach is different from our
generator as it relies on existing data but, nonetheless, especially
useful under these conditions. We believe that adding the ability
to create a configuration from existing data to any generator will
greatly enhance its capabilities.

To study the effect of non-regular problem instances, Macedo
and Tchemisova [10] developed a generator for Semidefinite Pro-
gramming (SDP) instances. This paper shows yet another useful
application for problem instance generators. As non-regular prob-
lems can occur, it is valuable to be able to study the efficiency of
popular solvers on these problems beforehand based on generated
test data.

While related to our work, the presented instance generators in
the above papers are tailor-made to fit a specific problem. There-
fore, they are usually not applicable to different problems without
major modifications. However, approaches that cover a variety of
optimization problems exist as well. Hernando et al. [6] proposed
a tunable instance generator. In their approach, the properties of
the output instances are controlled by a set of parameters which al-
lows the modification of their qualitative characteristics. Although
this approach is applicable to a variety of problems it is specifi-
cally restricted to permutation-based combinatorial optimization
problems.

Weise et al. [20] introduced a tunable benchmark model problem,
the W-Model, for black-box benchmarking of black-box optimiza-
tion algorithms. This problem allows for separately fine-tuning
different problem difficulty characteristics, such as epistasis, neu-
trality/redundancy, and ruggedness/deceptiveness [18, 21]. These
problems can also be turned into multi-objective tasks. Compared
to our approach, the W-Model is limited to bit-string based search
spaces. Its goal is not to provide instances for new real-world prob-
lems, but instead to investigate the impact of fitness landscape
features on algorithm performance.

3 INSTANCE GENERATION APPROACH
In Section 1, we described how a typical problem is defined in
our context. A problem instance in this regard is a collection of
matrices in which values for a set of attributes and, in some cases,
their relation to each other are represented, e.g., a distance matrix
for a TSP containing the distance or travel time between cities to
describe a problem instance. Therefore, a common and convenient
way to store data from such a problem instance are CSV files and
related formats like TSV.

Comprehensive resources including problem instances in such
standardized formats exist already for well-known optimization
problems. However, for lesser known or very specific problems, the
lack of a sufficient amount of test data and thus problem instances
can be an issue [9]. This holds especially for novel problems. The
reasons for this lack of data vary from case to case and are either
due to privacy or confidentiality issues or because the data for a
problem instance has to be collected or generated first. While the
first might prevent the publication of the data used in the experi-
ments which is especially problematic in cases where obfuscating
the data will destroy valuable information, the latter can be related
to the scale of a dataset or a specific distribution of values that has
not occurred yet in a real-world scenario but is likely to occur in the
future. A usual solution in these cases is to create a problem specific
instance generator [3, 9, 10, 13]. Some also offer the possibility to
be fine-tuned which allows the creation of instances with varying
difficulty [6, 18, 20, 21]. However, since those are usually directly
tied to a specific problem they offer only limited possibilities for
applications in other problems.

Considering that it is a time consuming process to create a gen-
erator for a single problem that presumably involves a lot of redun-
dant tasks most of this effort could be avoided by creating a generic
problem instance generator for not only existing but also future
problems. Such a generator will take the definition or “blueprint”
for one or multiple problem instances, e.g., problem attributes or
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variables and their relations to each other and create random or
pseudo-random instances based on these definitions. For a generic
instance generator as we described it these specifications should
also be provided in a standardized manner to improve their read-
ability and re-usability as well as the reproducibility of the resulting
problem instances.

This Section describes the specific requirements for our generic
problem instance generator based on the above problem formula-
tion, each followed by their corresponding implementation details.
Whereas Section 3.1 lists basic requirements, Section 3.2 describes
how the generator can be configured and which options are avail-
able. We also highlight particular challenges regarding the verifica-
tion process for the instance definitions in Section 3.3.

3.1 Requirements
The generator should use a standardized, human-readable format
to specify the “blueprint” of the problem instances to be generated.
We also wanted to use a lightweight format without much overhead.
For these reasons, we chose JSON as it also offers enough flexibility
to extend the generator with additional features if they become
relevant in the future. The generator itself is written in Java and
available on GitHub2.

A second important requirement is that the generated instances
should both be random and reproducible. This can be achieved by
allowing the provision of the seeding value for the random number
generator. Furthermore, the instances will also contain comments
per default with related information such as the seeding used, the
version of the generator, in case its value generation routine changes
over time, and the Java version due to similar concerns about the
random number generation process in Java.

Typically, an instance can be defined as a matrix. A vehicle
routing problem may, for instance, specify several customers (rows)
where each customer has a location (column 1), demand (column 2),
and time window (column 3 and 4) for serving. Following this idea,
the generator must allow specifying data types and constraints for
columns as well as the number of rows to generate.

3.2 Generator Configuration
Table 1 shows a list of general configuration values that describe
a problem instance. We are planning to add more options in the
future to enable a more fine-grained tuning of the generator.

Since we plan to add new features for upcoming versions of
the generator that older versions might ignore, the version for the
generator that has to be used can be enforcedwith the version option.
This setting is optional and serves currently just informational
purposes since there is only one version to choose from which
has to be deployed locally. However, for future development, we
also would like to offer the generator as a web service with the
ability to choose a different version with every request. Another
option that helps to improve the reproducibility of results is seed,
which can be used to provide the seeding for the random number
generator. Other basic options that can be set are the number of
rows which are generated in the resulting CSV file, whereas each
row usually represents a datum of the problem instance, and the
name of the problem, which will be printed as a comment in the
2https://github.com/mullrichHSZG/BBDOB_problem-generator

Component Example Default Optional
"version" "v0.1" "latest" yes
"seed" -5436791876534 random yes
"rows" 100000 - no
"problem" VRP - yes
"no_duplicates" true false yes
"print_parameters" true false yes
"comments" [· · · ] - yes
"parameters" [· · · ] - yes
"attributes" [· · · ] - no
"constraints" [· · · ] - no

Table 1: Basic components of a problem instance “blueprint”
for our generator.

Component Example Optional
"name" "max_capacity" no
er versions might ignore "type" "double" no
"value" 2000.00 no

Table 2: Basic components of a parameter

results if provided. Finally, there are optional flags that can be set.
The option no_duplicates set to true enforces that none of the rows
which are generated for a problem instance are exactly the same.
The flag print_parameters enables that optional problem parameters,
which can be defined separately, are printed as a comment in the
results as well. The last part of the configuration file are lists of
comments, which will be included in the result, problem specific
parameters, which only have a cosmetic function for now, if the
print_parameters flag is set to true, attributes and constraints.

Whereas comments are quite simply a list of comment values,
every other list consists of complex elements which we are going
to describe in more detail now. Table 2 lists the currently supported
options for a parameter. The current version of the generator sup-
ports simple values only, which means all of the three options have
to be present. The name represents the identifier of this parameter,
the type option can be set to one of the following: {integer, double,
boolean, nominal} and the value must match the specified type, e.g.,
0.12 for double and "string" for nominal types.

For attributes more complex options exist as shown in Table 3.
Similar to a parameter, an identifier can be provided with the name
option. Type and value can be set as well, however, providing a
single value for an attribute is optional and not recommended. For
most types additional settings exist to define the range of values
instead. If a value is not provided at least one of the following
options has to be present. One possibility is to provide min and
max values for numeric types including an optional default value.
Furthermore, the type can be set to Gaussian, which is another
numeric type for attributes to generate normal distributed values
using the Polar method by Marsaglia and Bray [11]. The mean and
standard_deviation can be specified additionally. In case boolean has
been chosen as a type, the percentage in which the value evaluates
to true can be modified with the true option. If an id value needs to
be generated, the id type can be usedwhich generates integer values
starting with 0 and using an increment of 1 for every additional

https://github.com/mullrichHSZG/BBDOB_problem-generator
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Component Example Default Optional
"name" "x" - no
"type" "double" - no
"value" 726.13 0.0 yes
"min" 0.0 0.0 yes
"max" 9999.99 1.0 yes
"default" 500.0 - yes
"mean" 500.0 0.0 yes
"standard_deviation" 200.0 1.0 yes
"true" 0.7 0.5 yes
"start" 1000 0 yes
"increment" 1000 1 yes
"minIncrement" 10 1 yes
"maxIncrement" 100 1 yes
"stop" 10000 - yes
"expression" "5 * y" - yes
"use_all_values" true false yes
"output" true true yes
"seed" 9354673 global_seed yes

Table 3: Basic components of an attribute

value. Optional settings for this type are a different start value and
the increment for every row. For the latter, a minIncrement and
maxIncrement value can be specified alternatively which causes the
generator to randomly pick the increment from these boundaries
for every row. Furthermore, only the minIncrement option can be
provided along with a stop value. This will cause the generator
to produce a random sequence between the start and stop value
using as many steps as the number of rows with a value of at least
minIncrement. Lastly, instead of value,min ormax, an expression can
be specified for any numeric type which will be evaluated during
the generation process. The example expression in Table 3 will
cause the value of x to always be 5 times the value of y in every
row of the output file. For nominal types no specific options exist
currently.

Besides type specific options, more general options are available
as well. For instance, it is possible to provide a local random seed for
every attribute. If a local seed is not provided, the global seed will be
used instead. If a local seed is specified for every attribute, the global
seed will not be used at all since all random numbers are generated
locally. If the flag use_all_values is set to true the generator will
ensure that every possible value for this attribute is generated at
least once, e.g., for an integer attribute withmin = 1 andmax = 5,
each value in {1,2,3,4,5} is generated at least once for this attribute.
The method we utilize to guarantee this behavior verifies that the
number of possible values does not exceed the number of rows
first. Then we insert all possible values in a list with a length equal
to the number of rows. After that, all remaining empty spots are
filled with pre-generated random numbers and the list is shuffled
using the Collections.shuffle() method provided by Java. If during
the generation process one or several constraints cannot be fulfilled
using the current next value from such a pre-generated list the
remaining list will be re-shuffled. It is recommended that no or
only a few other constraints, in which this attribute is restricted
by a different attribute, are present in the configuration. Finally,

Component Example Optional
"name" "x!=y" no
"left" "x" no
"relation" "!=" no
"right" "y" no

Table 4: Basic components of a constraint

the output flag can be modified as well for every attribute. If set to
true, which is the default, the attribute is part of the output CSV
file, otherwise it will not be printed. This might be particularly
useful for attributes that use an expression to support the definition
of complex constraints. We explain this procedure briefly in an
upcoming paragraph.

Lastly, constraints represents an array of restrictive properties
of the resulting problem instance which are checked on a row by
row basis during the generation process. Every constraint consists
of four components which are listed in Table 4. As with param-
eters and attributes, constraints have to have a unique identifier
provided with the name option. Further, a constraint consists of
two expressions, left and right, and their relation to each other. An
expression can be - similar to an expression that can be provided
for a numeric attribute - any kind of arithmetic expression, e.g., a
constant, an attribute or an addition, subtraction, etc. Statistical
expressions, e.g., min, max, mean or the sum of all values of an
attribute that have been created so far can be used as well. Table 5
shows a list of all possible expressions and provides an example
configuration each, which consists of a type and its value. Regard-
ing their relation, currently, only constraints in the form of a linear
inequality with integer or rational domains are supported. Equali-
ties are allowed as well, but those should be used sparingly since
they are highly restrictive which can lead to an empty domain for
an attribute and thus no valid problem instance can be created.
Generally, only simple expressions, as the ones described above,
can be used. However, complex expressions, e.g., x2 ·2y2 , can be cre-
ated using additional attributes. To create the previous example as
an expression for a constraint, one would first have to create an
attribute with the expression "x2 * 2" as its value and give it a name.
We call this attribute "z" for now. The output value can be set to
"false" so this attribute will not be present in the generated CSV file.
The expression for the constraint can now be provided with "z / y2".
In the future, we are also planning to automate this process which
means complex expressions can be provided without the manual
creation of a support variable. The problem generator itself will
take care of creating the necessary attribute.

3.3 Constraint Validation
Before a problem instance will be created, the generator attempts
to validate the constraints that have been provided by checking for
circular dependencies and general problems with the configuration.

First, we check for attribute boundaries that make it impossible
to fulfill certain constraints, e.g., max(x) = 10 and min(y) = 20
with the constraint x ≥ y. To check if the no_duplicates constraint
can be fulfilled, the number of possible combinations of values will
be calculated. This number must be higher or equal to the number
of generated rows in the output file. The current implementation
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Expression Type Example Value
Constant "integer" 300
Variable "attribute" "x1"
Sum "expression" "sum(x2)"
Min "expression" "min(y1)"
Max "expression" "max(y2)"
Mean "expression" "avg(i)"
Absolute "expression" "abs(j)"
Addition "expression" "j + 3"
Subtraction "expression" "100 - x1"
Multiplication "expression" "y2 * x2"
Division "expression" "x1 / 2"

Table 5: List of expressions that are currently supported by
the problem generator

only takes the boundaries that are provided with the definition of
the attributes into account, e.g., min and max values, and excludes
attributes for which output is set to false. Further, the attributes
are sorted based on their dependencies on each other by using the
method developed by Kahn for topological sorting of nodes [7].
That means, in order to sort the attributes they are placed as nodes
in a directed graph whereas the constraints define the edges for that
graph going from right to left. Since an expression that has been
directly provided for an attribute might represent an additional
dependency it can also be interpreted as an edge in the graph.
Expressions with a constant value are not considered during this
process. Sorting the attributes using this method is also necessary
for the generation process. To ensure that all dependencies for
every attribute can be met we simply generate the values in the
topological order of the directed graph, starting with all attributes
that have no incoming edges.

Once the generation has been started, the generator will check
the validity of every value that is created during the process and
generate new values in case a constraint has not been fulfilled.

4 EXAMPLE SCENARIOS
In this Section we provide three example configurations for the
problem instance generator. First, we are focusing on well-known
problems, e.g., TSP and the general Max-SAT problem in Sections
4.1 and 4.2 respectively. After that, we introduce a novel problem
which is based on the resource constraint project scheduling prob-
lem with time window. Section 4.3 describes the real-world load
allocation problem, explains the necessity to generate data and how
an example configuration for our generator could be used to create
various problem instances.

4.1 TSP Example Scenario
We choose TSP as our first example since its input format, although
several variations exist, is already very-well defined. Furthermore,
it has a very simple and human readable structure which makes it
a perfect candidate to show the basic capabilities of the generator.

The example configuration for the TSP problem instance format
we decided to use is shown in Listing 1. The attributes we define are
a unique identifier for every location that can be visited and x and
y coordinates on a two-dimensional euclidean plane. Constraints

Listing 1: TSP Configuration for the Generator
{

"version": "v0.1",
"seed": -198465108435,
"rows": 1000,
"problem": "TSP",
"no_duplicates": true,
"attributes": [

{ "name": "id",
"type": "id",
"start": 1,
"increment": 1 },

{ "name": "x",
"type": "double",
"min": 0.0,
"max": 10000.0 },

{ "name": "y", ... }
],
"constraints": []

}

Listing 2: TSP Example Result
# comments om i t t e d f o r b r e v i t y
i d ; x ; y
1 ; 9 8 1 5 . 9 9 ; 6 8 3 0 . 2 0
2 ; 3 0 2 1 . 4 5 ; 4 1 7 3 . 2 5
3 ; 4 1 8 5 . 6 0 ; 8 3 4 0 . 0 2
. . .
9 9 8 ; 8 3 3 7 . 3 2 ; 7 5 2 2 . 3 3
9 9 9 ; 6 6 5 0 . 9 7 ; 2 5 5 5 . 3 7
1 0 0 0 ; 7 5 2 6 . 3 2 ; 3 4 5 1 . 1 6

are not necessary in this case. We further provide a seed to ensure
that the same instance will be generated every time.

The output in Listing 2 is roughly equivalent to the uniformly
distributed instances from the DIMACS TSP challenge [4]. While
instances like these, as well as random distance matrices can be
produced by our current generator, instances with clustered cities
are not yet possible: They could be modeled using more complex
probability distributions for attribute values, such as multiple two-
dimensional normal distributions, which we will include in the near
future.

4.2 Max-SAT Example Scenario
To show the flexibility and extensibility of the generator, we choose
Max-SAT as our second example. Specifically, we want to gener-
ate problem instances according to the CNF specification in the
DIMACS format3. The configuration in Listing 3 uses additional
settings for the generator that we have not described yet, how-
ever, most of them are only used for cosmetic reasons. For instance,
we provide an alternative_header, a different comment_prefix and
change the separator value from the default ";" to adhere with the
required problem instance format. In our example we want to cre-
ate a problem instance with 100 clauses and 4 variables. The latter
are represented in the clauses using the i, j and k attributes with
the boundaries −4 and 4. To create clauses of varying length we
added the ability to change the output_probability of an attribute.

3http://maxsat.ia.udl.cat/requirements/ - last visit: 01.04.2018

http://maxsat.ia.udl.cat/requirements/


GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan Markus Ullrich, Thomas Weise, Abhishek Awasthi, and Jörg Lässig

Listing 3: Max-SAT Example Configuration based on the
CNF Standard
{ ...

"separator": " ",
"comment_prefix": "c",
"alternative_header": "p cnf 4 100",
"attributes": [

{ "name": "i",
"type": "integer",
"min": -4,
"max": 4 },

{ "name": "j", ... },
{ "name": "k", ...,

"output_probability": 0.3 }
{ "name": "zero",

"type": "integer",
"value": 0}

],
"constraints": [

{ "name": "i!=j",
"left": {

"type": "attribute",
"value": "i" },

"relation": "!=",
"right": {

"type": "attribute",
"value": "j" } },

{ "name": "k!=j", ... },
{ "name": "k!=i", ... },
{ "name": "no_i_zero",

"left": {
"type": "attribute",
"value": "i" },

"relation": "!=",
"right": {

"type": "integer",
"value": 0 } },

{ "name": "no_j_zero", ... },
{ "name": "no_k_zero", ... } }

]
}

Listing 4: Max-SAT Example Result
c comments omi t t ed for b r e v i t y
p cn f 4 100
−1 3 0
4 −2 0
−2 1 −3 0
. . .
4 −1 0
3 −2 0

In this case, the column with the k attribute will only be printed
in 30% of the rows. The zero attribute is required by the standard
to be present at the end of every clause. The constraints ensure
that the absolute values of the attributes which are present in every
clause are distinct and non zero. By using the absolute value, we
also prevent clauses that are always true and thus irrelevant, e.g.,
(x1 ∨ ¬x1).

Listing 4 shows the output of the generator for the Max-SAT
configuration we provided earlier. Although the problem instance
definition is rather long compared to the TSP, we believe that the cre-
ation process is very straightforward and the file is human readable
which was one of our main concerns for creating this generator.

4.3 Load Allocation Example Scenarios
For our third example, we choose a novel problem with a real-world
application case. This specific problem is part of a current research
project which is concerned with the development and evaluation
of a management platform for the distribution grid and has, to the
best of our knowledge, not been published yet.

For the discrete load allocation problem, a certain amount of
power is generated by one or multiple power-supplier(s) for a given
period of time, to meet the demands of the consumers. The inputs
for the problem are the power-schedule as a step function with
respect to time, and the sum consumer requirements-schedule for
the demand with a flexible time window for the power delivery
denoted by the earliest and latest possible power feeding time for
every individual consumer. In our application scenario, a single
supplier exists for multiple consumers. If the supplier is not able
to deliver all of the generated power to the customers, a penalty
per time unit is incurred by the supplier. Likewise, if the power
consumption of a consumer exceeds the total power availability
according to the schedule at any time t , a penalty is incurred by
the supplier as well as he has to buy additional resources at the
intra-day market for a higher price. Figure 1 shows one possible
solution for this problem with the supply for a single supplier and
the demand as a sum of the power consumption of all customers.
The optimization problem is amodification of the project scheduling
and standard resource allocation scheduling problem [5, 16].
Let
n = the total number of customers to whom the power is

to be delivered,
Pt = the power available at time t , Pt ≥ 0 ∀ t ,
τi = total time for which customer i needs power,
di = power demand by customer i for a period of time τi ,

τi ≥ 0 ∀ i ,
θ ti = power consumption of a customer i at any time t ,
Ei = earliest possible power feeding time to customer i ,
Li = latest possible power feeding time to customer i ,

Li − Ei ≥ τi ,
α t = penalty incurred by the supplier at any time t , for

not meeting the total requirement of the consumers,
βi = penalty associated with any customer i , for exceeding

the power consumption,
si = start time for power feeding to customer i .

With the above formulation, it is clear that
∑si+τi
t=si θ ti = di . The

objective of the problem is to find the feasible starting times of the
power consumption by the customers, to reduce the sum of the
total weighted penalties incurred by the customer and the supplier.
The constraint of the earliest and the latest power feeding times to
any customer, must be respected. The objective function for this
discrete optimization problem can be formally expressed as

min
∑
t
α t ·max

{
0, Pt −

∑
i
θ ti

}
+
∑
i

∑
t

βi ·max
{
0,θ ti − Pt

}
.

(1)

According to the problem formulation, at least two different
files need to be created for a valid problem instance. One file has
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Figure 1: The figure showing the demand and supply sched-
ules. The light region between the schedules is the total
amount of excess supply from the supplier. The dark region
is the excess demand from the customers.

Listing 5: Load Allocation Configuration for the Customers
{ ...

"rows": 10,
"problem": "LoadAllocation_Customer",
"no_duplicates": true,
"attributes": [
{ "name": "n",

"type": "id",
"start": 1 },

{ "name": "E_i",
"type": "integer",
"min": 0,
"max": 70 },

{ "name": "L_i",
"type": "integer",
"min": 20,
"max": 95 },

{ "name": "tau_i",
"type": "integer",
"min": 2,
"max": 20 },

{ "name": "d_i",
"type": "integer",
"min": 1,
"max": 10 },

{ "name": "beta_i",
"type": "integer",
"min": 1,
"max": 10 }

],
"constraints": [
{ "name": "L_i >= E_i + tau_i",

"left": {
"type": "attribute",
"value": "L_i" },

"relation": ">=",
"right": {

"type": "expression",
"value": "E_i + tau_i" } }

]
}

to describe the power demand of every customer. In our appli-
cation scenario, only a single supplier exists, so only one other
file is necessary that describes the schedule of the power supplier.
From the problem description we derived the configurations for
the customers and the supplier which are shown in Listings 5 and 6
respectively.

We believe that, for the most part, theses configuration files are
self-explanatory. Therefore, there are only a few details we would

Listing 6: Load Allocation Configuration for the Supplier
{ ...

"rows": 10,
"problem": "LoadAllocation_Supplier",
"no_duplicates": true,
"attributes": [
{ "name": "t",

"type": "id",
"start": 0,
"minIncrement": 2,
"stop": 95 },

{ "name": "P_t",
"type": "integer",
"min": 0,
"max": 10 },

{ "name": "alpha_t",
"type": "integer",
"min": 1,
"max": 10 }

],
"constraints": []

}

Listing 7: Load Allocation Customers Example Result
# comments om i t t e d f o r b r e v i t y
n ; E_ i ; L_ i ; t a u _ i ; d _ i ; b e t a _ i
1 ; 7 0 ; 8 1 ; 5 ; 7 ; 3
2 ; 4 ; 4 0 ; 1 0 ; 6 ; 4
. . .
9 ; 4 1 ; 9 1 ; 1 3 ; 5 ; 6
1 0 ; 6 2 ; 6 9 ; 6 ; 1 0 ; 9

Listing 8: Load Allocation Supplier Example Result
# comments om i t t e d f o r b r e v i t y
t ; P_t ; a l p h a _ t
0 ; 0 ; 2
9 ; 7 ; 8
. . .
7 2 ; 7 ; 2
9 5 ; 1 ; 5

like to point out. The constraint in the customer configuration file
is the representation of the mathematical notation Li − Ei ≥ τi and
ensures that the required power can be delivered during the given
time window for every customer. The schedule is provided with
indexes that each represent a 15 minute time interval during one
day followed by the change in power supply. The increment from
one index to another can be random. The supply is assumed to
remain constant in between these intervals. Therefore, we used the
id data type with a random step interval and a stop value at 95 to
ensure that the generated indexes match the problem description.
We also provided a global and sometimes local seeds, which we
omitted for brevity, in each of the configurations to ensure result
reproducibility. Listings 7 and 8 show the generated files for the
customers and the supplier respectively.
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5 CONCLUSION AND FUTUREWORK
We developed a generic problem instance generator for discrete op-
timization problems. This generator can be used to create problem
instances for a large variety of discrete optimization problems in
an efficient manner. We showed the flexibility of our tool by gen-
erating instances of well-known optimization problems, i.e., TSP
and Max-SAT, and for a real-world load allocation problem based
on the resource constraint project scheduling with time window
problem. We demonstrated how a formal problem description can
be translated into a configuration file for our generator.

While we were aiming to build the generator as generic as pos-
sible, it still creates random instances. Therefore, the quality char-
acteristics of these instances cannot be assessed prior to bench-
marking. Although the creation of complex constraints can reduce
the impact of this limitation to some extent, the randomly gener-
ated instances will not reach the quality of carefully selected test
instances.

Nonetheless, the focus of the first instance of the BB-DOB work-
shop is to define a set of problems for black-box discrete optimiza-
tion benchmarking. Of course, for each problem, several instances
are required. We think that it would be suitable for creating the
instances of at least some of the problems that will be chosen into
the final BB-DOB benchmark set. This way, one could first obtain
an initial set of “default” benchmark instances. As stated in the
introduction Section 1, however, we can hope that these instances
can eventually be solved efficiently in the future, even if including
hard problems for today’s approaches. Having a standardized, well-
defined, documented, open source software process to create new
instances will allow us to create new, harder, or larger instances.
Due to the availability of our generator, any researcher can do
so and make these instances accessible to others by including the
configuration script in their publication, rather than potentially
hundreds of files.

In the future, we would like to further expand the capabilities
of our tool. As we already mentioned, the support for complex
expressions and constraints will be added to increase the readability
of the configuration. Furthermore, different types of constraints
should be supported as well, e.g., satisfaction problems as well as
regular expressions for nominal values. Another feature that could
improve the usability would be the automatic or bulk generation
of attributes to simplify the generation of matrices.

To improve the re-usability of a “blueprint” we will also add the
ability to pass certain parameters on the command line which will
take precedence over the values in the configuration file. Then the
same file can then be reused with slightly different parameters, e.g.,
the seeding for the randomnumber generator or the number of rows.
This will also be useful for the bulk generation of problem instances.
Lastly, although a lot of manual testing has been conducted, we
are currently implementing unit tests for the different aspects of
the generation process to further increase the confidence in the
correctness of the code and generated instances.
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