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ABSTRACT
In this paper, a new benchmark, for testing the capability of Evolu-
tionary Algorithms to generate maze solving Exploration Strategies
is introduced. This benchmark solves three problems commonly
found in other benchmarks: small maze set, all mazes belonging
to the same kind of maze, and biased methods for choosing start-
ing locations. In this benchmark, the Connectivity Based Maze
Generation Algorithm is proposed for building maze sets. Mazes
generated using this algorithm exhibit a property called connec-
tivity that indicates how much the walls are connected among
them. Connectivity can be used to control the diversity of the sets.
Additionally, a new method for choosing starting locations, that
takes into account the maze goal positions, is presented. Using
the Connectivity Based Maze Generation Algorithm and the new
method for choosing starting locations, two problems that test the
capability of an Evolutionary Algorithm for solving mazes with
similar and different connectivity are built. Example datasets are
generated and experiments are performed to validate the proposed
benchmark.

CCS CONCEPTS
• General and reference→ Cross-computing tools and tech-
niques; •Computingmethodologies→Artificial intelligence;

KEYWORDS
Benchmark, Maze Solving, Evolutionary Algorithms, Maze Genera-
tion Algorithms, Connectivity, Starting Locations

ACM Reference Format:
Camilo Alaguna and Jonatan Gomez. 2018. Maze Benchmark for Testing
Evolutionary Algorithms. In GECCO ’18 Companion: Genetic and Evolu-
tionary Computation Conference Companion, July 15–19, 2018, Kyoto, Japan.
ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3205651.3208285

1 INTRODUCTION
Planning a route, from one point to another, is one of the most
common problems in daily life. We face it when we are moving
around a city, when delivering goods, while cleaning a house and
in many other cases. Many technologies have been developed to
make solving this problem easier [1, 9, 15]. Nevertheless, planning
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a route becomes a really hard problem when the place being ex-
plored is unknown, the goal place is not completely defined, or
there are obstacles and closed paths in the way. For example, when
a building collapses, rescuers spend hours and even days trying to
find survivors. The search process can be accelerated by sending
autonomous devices to look for survivors. However, these devices
might fail as a result of new conditions that were not taken into
account when they were developed. In this case, the designer must
develop new devices and Exploration Strategies (ES), spending time
and resources on it. One way of finding better ES is to abstract
the exploration problem as a maze solving problem, because mazes
present several challenges commonly found in real navigation prob-
lems, like the presence of loops [3] and dead ends [11].

In a maze solving problem an agent is placed inside a maze, and
then it performs an ES to find a way out. Mazes are interesting,
because in them the walls block direct paths to the exit, hindering
the exploration task. The maze problem, originally proposed by
Koza in [10], has been used extensively when finding ES by using
Evolutionary Algorithms (EA), in which testing in real scenarios
is costly and it is unknown whether the algorithm can generate
coherent ES.

Lehman and Stanley, as Koza proposes, use EA and only onemaze
to obtain and test ES [11, 12]. This has the problem that it is not
possible to verify if the EA generates a general ES for solving mazes,
or is just solving one instance of the problem. In actual scenarios
it is important for the ES to solve more than one instance of the
problem so it can be robust against unknown circumstances. By
increasing the number of mazes, it is possible to test the capability
of an obtained ES of solving multiple mazes. Gordon and Matley
use five mazes, with different sizes [6]. They evolve, however, an
specific ES for each maze, and the specific ES are not tested in the
other mazes. Georgiou et al use two simply-connected mazes to
generate ES [4, 5], but the mazes are used both for the Evolutionary
Process (EP) and for the Testing Process (TP). Keane does something
similar with fifty non-simply-connected mazes [8], but again all of
them are used in both the EP and the TP. To avoid that, Shorten and
Nitschke generate a set of one thousand mazes, and divide them
into two sets, one for evolution and the other for testing [16, 17].
Nevertheless, these mazes are designed with the same features (to
obtain the Wall-Follower algorithm), and the obtained ES are not
verified against mazes with other kinds of features.

One approach to avoid testing on the same kind of maze, is
to move the exit, and increasing the number of instances. Velez
and Clune do this by using fourteen different locations (chosen
manually) on a single maze [19] starting from the center. However,
all of the exit locations were used both for the EP and for the TP,
making it difficult to determine whether the obtained ES are able to
find an exit placed on locations different from the original fourteen.
Another approach, is to change the location where the agent starts.
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Urbano, Trujillo and Naredo generate randomly a hundred different
starting locations [13, 18]. They divide the starting locations set in
two, one for the EP, and the other for the TP, but they do not test
whether the obtained ES solve mazes different from the used ones.

In summary, proposed benchmarks are presenting three prob-
lems: the maze set is small, all mazes belong to the same kind of
maze, and there is not a clear method for choosing starting locations.
By increasing the amount of mazes it is possible to solve the first
problem, however, doing this in a wrong way leads to the second
problem. For that reason, in the maze set creation, it is necessary
to use an algorithm able to generate different kind of mazes, and
also to have a metric that indicates whether mazes belong to the
same kind or not. Finally, the selection of starting locations have
been done either manually (introduces researcher bias) or randomly
(ignores the topological characteristics of mazes), therefore, it is
necessary to propose a new method for choosing starting locations.

In this paper, a new benchmark, for testing the capability of an EA
to generate maze solving ES, that takes into account the problems
mentioned above, is proposed. Section 2 describes how a diverse
maze set is generated, by using a metric called connectivity and a
modified version of Wilson’s Algorithm. Section 3 explains how
the starting locations are chosen. Section 4 presents the generated
benchmark dataset. Section 5 shows how EA are evaluated by using
the dataset. Finally, Section 6 draws some conclusions.

2 MAZE GENERATION
To generate the maze set, we propose a new algorithm that we name
"Connectivity Based Maze Generation Algorithm" (CoMGA, see
Section 2.2), based on the Wilson’s Algorithm for simple connected
mazes generation (See Section 2.1). This algorithm can generate
different kinds of mazes by varying only one parameter, because the
generated mazes present property called connectivity (See Section
2.3). and in each maze we place a goal cell avoiding dividing the
mazes (See section 2.4).

2.1 Simply Connected Mazes Generation
Simply connected mazes are defined as mazes that do not have loops
(paths which start and end on the same place) [21], for that rea-
son, this kind of mazes can always be solved by the Wall-Follower
Algorithm. Wilson’s Algorithm has been used to generate simply
connected mazes [20], without using structures that can introduce
bias in the maze generation. The idea is to surround all the maze’s
cells with walls, and then, remove these walls iteratively in order
to build the maze structure (See Algorithm 1).

The algorithm starts by surrounding all the maze’s cells with
walls (line 5), then one randomly chosen cell is marked as a goal
cell (lines 6 and 7) (See Figure 1a). While non-marked cells still exist
(line 8), one non-marked cell is randomly chosen (line 9), as shown
in Figure 1b. After that, a path is randomly generated, starting from
the last chosen cell, until it reaches another marked cell (line 10)
(See Figure 1c). Next, the walls that obstruct the path (Figure 1c)
are removed (line 11), as in Figure 1d). Finally, the cells that the
path crosses are marked as goal cells (line 12) as in Figure 1d.

Algorithm 1 Wilson’s Algorithm

1: function дenerate()
2: structure = new MazeStructure()
3: nonMarked = structure.cells
4: marked = []
5: fill(structure)
6: cell = chooseOne(nonMarked)
7: marked.add(cell)
8: while nonMarked.size > 0 do
9: cell = chooseOne(nonMarked)
10: path = buildPath(cell, marked)
11: removeWalls(structure, path)
12: marked.add(nonMarked, path.cells)
13: end while
14: return structure
15: end function

(a) (b)

(c) (d)

Figure 1: Wilson’s Algorithm steps: (a) surround the maze
cells with walls and mark one cell randomly, (b) choose a
non-marked cell randomly, (c) generate a random path be-
tween the chosen cell and another marked cell, (d) mark
cells in the path and remove walls.

2.2 Connectivity Based Maze Generation
Algorithm

Wilson’s Algorithm only produces simple-connected mazes, be-
cause it is not possible to choose already marked cells to start a
path at the beginning of each iteration (see Algorithm 1 line 9). For
this reason, we modify this statement to make possible to choose
already marked cells. The idea is to choose either a marked cell or
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non-marked cell depending on a given probability.We call this Algo-
rithm Connectivity BasedMaze Generation Algorithm (CoMGA),
that can be seen in Algorithm 2.

Algorithm 2 Connectivity BasedMaze Generation Algorithm

1: function дenerate()
same as Algorithm 1...

9: cell = chooseEither(nonMarked, marked)
same as Algorithm 1...

15: end function

16: function chooseEither (nonMarked,marked)
17: option = random(0, 1)
18: if option < nonMarkedProbability then
19: return chooseOne(nonMarked)
20: else
21: return chooseOne(marked)
22: end if
23: end function

As in Wilson’s Algorithm, CoMGA surrounds all maze cells with
walls, marks cells as goal cells, iterates until all cells are marked
and removes walls to build the maze structure. The main difference
is the function chooseEither , called in line 9, which chooses either
a non-marked cell or a marked cell to start a path depending on a
probability (see Algorithm 2). This probability is known a priori
and indicates the likelihood of choosing a non-marked cell. To
select a cell, function chooseEither generates a random number
between zero and one (line 17), if this number is less than the
given probability, one non-marked cell is chosen randomly (line
19), otherwise, one marked cell is chosen randomly (line 21).

Figure 2 shows what happens when a marked cell is chosen.
We continue from where the iteration in Figure 1 ends (See 2a).
Function chooseEither chooses one marked cell (Figure 2b). Then,
starting from the last chosen cell, a path is randomly generated until
one marked cell is reached, as in Figure 2c. Finally, the walls that
block the path are removed and the cells where the path crosses are
marked as goal cells (See Figure 2d). Notice that, when a marked
cell is chosen, the algorithm creates a loop in the maze. The emer-
gence of these loops is what lets the algorithm generate non-simply
connected mazes, as a result of disconnecting a group of connected
walls from another.

2.3 Connectivity
As mentioned above, the emergence of loops enables the proposed
algorithm to build non-simply connected mazes. Figure 3 shows
four mazes generated by setting the probability of choosing a non-
marked cell as 0 (a), 0.3 (b), 0.6 (c) and 1 (d). Notice that, the amount
of walls and how much these walls are connected among them,
increases when this probability tends to 1. That is to say, mazes
become more connected when the probability tends to 1. So we call
this property connectivity.

Two mazes, generated by setting a similar non-marked prob-
ability in CoMGA, have a similar connectivity. On the contrary,
when this probability is different, mazes have different connectivity.
Additionally, as mentioned above, connectivity increases when this

(a) (b)

(c) (d)

Figure 2: Choosing a marked cell: (a) starting after the itera-
tion in Figure 1, (b) one already marked cell is chosen, (c) a
random path between the last chosen cell and one marked
cell is generated, (d) cells in the path are marked and the
walls are removed.

(a) (b)

(c) (d)

Figure 3: Mazes generated by setting a probability of choos-
ing non-marked cells of: (a) 0, (b) 0.3, (c) 0.6, (d) 1.

probability tends to 1. This property allows us to conclude the prob-
ability given to the CoMGA is a measure of connectivity, because
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what inputs the algorithm indicates how connected a maze is going
to be. We express this connectivity as a percentage (multiply the
given probability by one hundred).

2.4 Selecting a Main Goal
We should be careful when we are choosing the position in which
the Main Goal cell of a maze is going to be, because this cell might
divide themaze in two. Figure 4 showswhat happens when this goal
is wrongly chosen. Observe that, in both mazes it is not possible
to built a path to visit all cells avoiding crossing the Main Goal. In
this situation, we have divided the maze problem in two smaller
problems.

(a) (b)

Figure 4: Samples of placing the Main Goal wrongly.

As mentioned above, placing the goal on a wrong cell can divide
a maze in two, for this reason it is important to correctly choose
where to place the main goal of the maze. In order to do that, we
initially look for cells surrounded by three walls (this kind of cells
never divide the maze) as in Figure 5a. If there is at least one cell of
this kind, one of them is chosen randomly and marked as the main
goal cell (See Figure 5b), otherwise any cell is chosen randomly an
marked as the main goal cell.

(a) (b)

Figure 5: Choosing the main goal among cells with three
walls: (a) selectable locations, (b) choose one cell as themain
goal.

3 SELECTING STARTING LOCATIONS
To perform experiments, it is necessary to choose starting locations
in a maze set, either to evolve Maze ES or to test them. However,

the selection of starting locations is often performed in two ways:
manually and randomly. The first one introduces a researcher bias,
and the other ignores the topological characteristics ofmazes. In this
section we propose a new method for choosing starting locations
that does not have these two disadvantages.

(a) (b)

(c) (d)

Figure 6: Location filtering process: (a) remove the maze set
main goals cells, (b) rotate themain goals cells positions and
continue removing the matching cells, (c) for each of the re-
maining cells measure the average distance from these to
themain goals original locations, choose the cells which are
at the nearest, median, and furthest distance from the main
goal cells, (d) rotate the obtained cells

First of all, it is necessary to generate a maze set (See Section
2). In addition, it is not desirable to choose starting locations that
coincide with goals, because in those locations the maze problem
is already solved. To avoid this, all the cells are marked as possible
starting locations, and then the cells which coincide with the main
goals of all mazes in the set are removed (See Figure 6a). However,
when we rotate the mazes by 90, 180 and 270 degrees, there are
other cells that match the main goals, these cells are also removed
(See Figure 6b).

It is expensive (in time) to use all locations that do not match
main goals, because there can be a huge number of possibilities. To
reduce the selectable starting points, for each location in the maze
we calculate the average Manhattan distance between the location
itself and all main goals. Then, we keep only the three which have
the lowest, the median and the greatest average distance from all
main goals (See Figure 6c). They cover uniformly a maze set respect
to the main goals when these locations are rotated by 90, 180 and
270 degrees (See Figure 6d). Finally, the locations resulted for this
process are used for both evolution and testing.
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4 DATASET
This section describes our publicly available benchmark dataset (See
mazebenchmark.github.io). Section 4.1 shows the software used to
generate the dataset. Section 4.2 proposes two benchmark problems
for testing ES. After this, Section 4.3 provides a data representation
for the maze set and the starting locations.

4.1 Software
A Maze Generation Tool (See Figure 7) has been developed for
building datasets. This software generates mazes by using CoMGA
accepting connectivity as input. In addition, this tool performs the
selection of starting locations automatically, it also produces images
of stored mazes and starting locations for ease of use.

Figure 7: Screenshot of the software used for generating
mazes and selecting starting locations.

4.2 Benchmark Problems
Two benchmark problems are proposed to test the capability of an
ES for solving both similarly connected mazes and differently con-
nected mazes. The first problem is called the "Similarly Connected
Maze Problem" (SCMP), which, as the name implies, is designed to
test if an ES can solve mazes with similar connectivity. The other
is the "Differently Connected Maze Problem" (DCMP), that is de-
signed to test if an ES is able to solve several mazes with different
connectivities.

In the SCMP, a set of ten mazes with the same connectivity is
generated. Then, the maze set is divided in two: four randomly
chosen mazes for the EP and the other six for testing. The starting
locations are chosen as described in Section 3. We generate four
instances of the problem, in order to check if an EA performs well
when finding ES for specific kinds of mazes. The first instance has
mazes with connectivity of 0% (SCMP1), the second 30% (SCMP2),
the third 60% (SCMP3) and the last 100% (SCMP4). We generate
15ÃŮ15 cell mazes, because this maze size is enough to allow a
maze to present different structures for testing maze ES and is often
used in Micromouse competitions.

The DCMP is designed to test if an EA is able to produce an ES,
that solves kinds of mazes which are not used in the EP (generaliza-
tion). To generate a diverse testing set with different kinds of mazes,
we use probabilities of 0, 0.25, 0.5, 0.75 and 1, that are uniformly
distributed between zero and one. Then, for each probability four

mazes are generated. As in the SCMP dataset, we generate four
datasets where the first training set has 15 × 15 mazes with con-
nectivity of 0%, 15% and 30%. The second 40%, 60% and 80%. The
third 70 %, 85% and 100%. The last one 0% and 100%. The idea is
to evolve ES with less amount of kinds of mazes than the testing
set have. By doing this, it is possible to check if obtained ES solve
other kinds of mazes. Finally, starting locations are generated as
Section 3 explains.

4.3 Data Representation
Our dataset includes three kinds of files: .mz for mazes, .loc for
starting locations and .png for images. The .mz files store the data
structure of a maze using a set of integer numbers. The first two
numbers represents the width and the height of the maze. The
following number indicates the maze’s connectivity. Then there are
width×heiдht integer numbers which represent the maze structure,
where each number indicates which walls surround a cell.

Figure 8: Cell binary representation.

To determine which walls actually surround each cell, we must
parse the number from decimal base to binary base. As shown in
Figure 8, five bits are used for cell representation, the rightmost one
indicates whether a wall should be placed in the upper side of the
cell, the second to the left indicates the same for the right side wall,
the third one controls the lower side wall, and the fourth the left side
wall. Finally, the leftmost bit indicates whether the cell is a Main
Goal cell. Table 1 lists all possible cell values, shows their binary
representation, and also shows the final graphical representation
of the cell.

To store the starting locations, we use the .loc files. These files
store only integer numbers. The first two numbers represent the
maximum width and the maximum height of all mazes in the maze
set. The next number is used to indicate howmany starting locations
there are. The following two numbers represent the column and
the row in which a starting cell is located. Finally, .png files are
used to store a graphical representation of the maze and indicate
the starting locations.

mazebenchmark.github.io
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Value Bits Cell Value Bits Cell

0 00000 16 10000
1 00001 17 10001
2 00010 18 10010
3 00011 19 10011
4 00100 20 10100
5 00101 21 10101
6 00110 22 10110
7 00111 23 10111
8 01000 24 11000
9 01001 25 11001
10 01010 26 11010
11 01011 27 11011
12 01100 28 11100
13 01101 29 11101
14 01110 30 11110
15 01111 31 11111

Table 1: Cell Encoding Values with their binary representa-
tion and graphical output

5 EVALUATING EVOLUTIONARY
ALGORITHMS

This section describes how to analyze the results of EA that find
maze ES using the proposed benchmark. To illustrate this we test
two EA, described in Section 5.1. Thirty experiments are performed
(See Section 5.2). After that, we evaluate the performance of the
obtained ES on the datasets, based on themetric described in Section
5.3. Finally, we discuss results of ES in both SCMP and DCMP (See
Section 5.4 and 5.5).

5.1 Benchmarked Methods
One of the earliest Evolutionary Approaches proposed for finding
maze ES directly defines the path between a starting location and
the goal as a solution. Baba and Handa evolve binary strings where
every bit represents two possible directions: down and right [2].
However, CoMGA generated mazes are usually not solvable by
using only two directions to define a path, as the goal can be in
one of the undefined directions. For this reason, we use two bits
(instead of one) to represent four possible movement directions:
up, right, down and left. Obtained paths can still collide with walls,
so running agents ignore colliding movements.This feature allows
agents to solve more than one kind of mazes. Finally, the agent
execution stops when a goal cell has been found, or there are not
more movements to be executed.

Two versions of the path definition approach are evaluated on
the dataset (See Section 4). The first one, consist in evolving paths
that can increase their size without limit. The other, limits the size
to a maximum of 500 movements. This upper bound is enough for
any given path to explore the maze up to two times. To identify
each approach, we name the first one as the "Evolved Path Method"

(EPM), and the second as the "500 Limited Evolved Path Method"
(500LEPM).

5.2 Experimental Settings
Initial population is composed of 100 randomly generated binary
strings of 20 bits. This population is evolved for 100 generations, by
using the Generational Genetic Algorithm (GGA) [7]. The mutation
probability is defined as one divided by the size of the genome
(1/|дenome |), and the crossover probability is 0.6. The two cross
point crossover operator (each parent is divided by a different cross
point) [14] is used instead of the typical crossover, because this
operator lets genomes (binary string) increase in size. The fitness
function is the average Manhattan Distance between the goal posi-
tion and the last position of each agent after executing their path
on different instances of the SCMP and DCMP datasets.

5.3 Performance Metric
As mentioned in Section 4.2, the SCMP and the DCMP maze set
is divided in two subsets, one for evolving ES and the order for
evaluating the obtained ES. In both processes agents execute ES on
each maze starting from the previously defined starting locations
(See Section 3). When an agent finds a goal the ES is considered
successful for that instance of the problem, otherwise it fails. We
can consider the number of these hit events as a metric of perfor-
mance, however, this metric depends on the number of mazes and
the number of starting locations, something that can hinder the
comparison among ES and Algorithms. For this reason, we choose
the percentage of hit events as the performance metric of ES.

5.4 Analysis of Results for SCMP
The performance of obtained ES, when solving similar connected
mazes, is evaluated on the four SCMP datasets (See Section 4.2).
Figure 9 shows the distribution of hit percentage obtained with both
EPM and 500LEPM, after having performed 30 repetitions. Observe
that, in both methods the maximum median hit percentage and
spread over the first and third quartiles are achieved on SCMP1, and
then decrease until the minimum is reached on SCMP4. This allows
us to conclude that the capacity of both algorithms for solving
mazes with the same connectivity decreases when the connectivity
increases (Remember that SCMP1 has mazes with connectivity 0%,
SCMP2 30%, SCMP3 60% and SCMP4 100%). This analysis allows us
to identify whether an EA presents difficulties while finding maze
ES for solving certain kinds of mazes. In addition, this analysis can
be used to compare the performance of different EA when finding
maze ES for solving the SCMP. In this case we can observe that
the hit percentage across datasets of 500LEPM tends to be lower
than the hit percentage of EPM. For this reason, we can conclude
that EPM is better that 500LEPM when solving the SCPM, because
limiting the path size by 500 movements decreases the performance
of obtained ES.

5.5 Analysis of Results for DCMP
The capability of an EA for finding ES that solve different kinds of
mazes not used during the Evolution (generalization), is evaluated
on the four DCMP datasets (See Section 4.2). Figure 10 shows the
hit percentage obtained with both EPM and 500LEPM, after having
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(a) (b)

Figure 9: Hit percentage when evaluating in SCMP (30 repe-
titions): (a) boxplot of EPM, (b) boxplot of 500LEPM

performed 30 repetitions on the DCMP1 dataset. In this dataset
mazes with connectivity of 0%, 15% and 30% are used in the EP.
Notice that, with DCMP1 EPM can generalize maze ES for mazes
with connectivity 50% and 75% that behaves almost as well as mazes
with connectivity 0% and 25%, despite these kinds of mazes being
not used in the EP. Therefore, we can conclude that EPM can find ES
for solving some kinds of mazes different from the ones used in the
EP. Moreover, Figure 10 also shows that mazes with connectivity
100% are the hardest to solve, and 500LEPM behaves clearly worse
than EPM when finding general ES by using DCMP1.

(a) (b)

Figure 10: Hit percentage vs connectivity when evaluating
in DCMP1 (30 repetitions): (a) boxplot of EPM, (b) boxplot
of 500LEPM

Figure 11 shows the hit percentage obtained with both EPM and
500LEPM, after having performed 30 repetitions on the DCMP2
dataset. Notice that, the median for all connectivities is lower and
the spread is greater than in Figure 10. This result suggests that, it
is harder for EPM and 500LEPM to find ES for solving other kinds
of mazes when using mazes with connectivity of 40%, 60% and 80%.
Additionally, EPM can generalize ES that in some cases solve mazes
with connectivity 0%, 25% and 50%. Nevertheless, both EAs obtain
better ES for mazes with connectivity of 75% when DCMP1 is used
instead of DCMP2. This suggests that the training set affects the
generalization capability of an EA, and this analysis can be used to
identify which sets increase this capability.

Figure 12 shows the hit percentage obtained with both EPM and
500LEPM, after having performed 30 repetitions on the DCMP3
dataset. Contrary to what is shown in Figure 10 and Figure 11,
EPM and 500LEPM can generate better ES for solving mazes with
connectivity of 100%, when mazes with connectivities of 70%, 85%
and 100% are used in the EP.

Figure 13 shows the hit percentage obtained with both EPM and
500LEPM, after having performed 30 repetitions on the DCMP4
dataset. Notice that, EPM and 500LEPM cannot obtain results that

(a) (b)

Figure 11: Hit percentage vs connectivity when evaluating
in DCMP2 (30 repetitions): (a) boxplot of EPM, (b) boxplot
of 500LEPM

(a) (b)

Figure 12: Hit percentage vs connectivity when evaluating
in DCMP3 (30 repetitions): (a) boxplot of EPM, (b) boxplot
of 500LEPM

performs well for mazes with connectivity of 0% and 100%, despite
these kinds of mazes being used in the EP. This suggests that, to use
mazes with characteristics similar to the ones tested, not always
generates ES that behaves well with the testing set.

(a) (b)

Figure 13: Hit percentage vs connectivity when evaluating
in DCMP4 (30 repetitions): (a) boxplot of EPM, (b) boxplot
of 500LEPM

Finally, EPM obtains quite more general maze solving ES than
500LEPM for all kinds of mazes in the testing set. This suggests
that EPM is better than 500LEPM when finding ES for the DCMP.
This allows us to compare the generalization capability of EAs.

6 CONCLUSIONS
In this paper, a new benchmark, for testing the capability of EAs
to generate maze solving ES is introduced. This benchmark solves
three problems commonly found in other benchmarks: small maze
set, all mazes belonging to the same kind of maze, and biased meth-
ods for choosing starting locations. The first problem can be solved
by increasing the amount of mazes, however, doing this in a wrong
way leads to the second problem. For this reason the CoMGA is
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proposed, mazes generated using CoMGA exhibit a property called
connectivity which can be used to control the diversity of the sets.
For solving the third problem, this paper proposes a new method
that takes into account the positions of maze goals for choosing
starting locations.

The benchmark proposes two problems to test EA: SCMP and
DCMP. The SCMP is designed to test how capable is an EA for
producing ES that solve mazes with the same connectivity. The
other problem (DCMP) is designed to test if obtained ES can solve
different kinds of mazes not used in the EP (generalization). A
Dataset for each problem is built, and then two EA are tested on this
dataset. In addition, a metric is presented to assess the performance
of EAs, allowing the comparison among them. Results show that the
proposed problems (SCMP and DCMP) are able to test the capability
of an EA for finding ES that solve both similar and diverse kinds
of mazes. Moreover, both can be used to identify in which kind of
mazes an EA presents difficulties, and if these difficulties increase
or decrease when the connectivity changes. Additionally, results
indicates that testing on DCMP datasets allow us to determine what
kinds of mazes increases the performance of an EA.

ACKNOWLEDGMENTS
The authors would like to thank Rodrigo Moreno for all his help in
writing this document.

REFERENCES
[1] 2017. Hydrodynamic assessment of planing hulls using overset grids. Applied

Ocean Research 65 (2017), 35–46. https://doi.org/10.1016/j.apor.2017.03.015
[2] Norio Baba and Hisashi Handa. 1994. Genetic Algorithm Applied to Maze Passing

Problem of Mobile Robot - A Comparison with the Learning Performance of
the Hierarchical Structure Stochastic Automata. 12, IEEE World Congress on
Computational Intelligence (1994), 2690–2695. https://doi.org/10.1109/ICNN.
1994.374647

[3] Johannes Feldmaier and Klaus Diepold. 2014. Path-finding using reinforcement
learning and affective states. Proceedings - IEEE International Workshop on Robot
and Human Interactive Communication 2014-October, October (2014), 543–548.
https://doi.org/10.1109/ROMAN.2014.6926309

[4] Loukas Georgiou and William J Teahan. 2009. Constituent Grammatical Evo-
lution. Proceedings of the Twenty-Second International Joint Conference on
Artificial Intelligence Constituent (2009), 1261–1268. https://doi.org/10.5591/
978-1-57735-516-8/IJCAI11-214

[5] Loukas Georgiou andWilliam J Teahan. 2012. Constituent Grammatical Evolution,
Ph. D. thesis. (2012).

[6] V Scott Gordon and Zach Matley. 2004. Evolving Sparse Direction Maps for
Maze Pathfinding. 1, Congress on Evolutionary Computation (2004), 835–838.
https://doi.org/10.1109/CEC.2004.1330947

[7] John H. Holand. 1984. Genetic Algorithms and Adaptation. In: Selfridge O.G.,
Rissland E.L., Arbib M.A. (eds) Adaptive Control of Ill-Defined Systems. 16 (1984),
317–333. https://doi.org/10.1007/978-1-4684-8941-5_21

[8] Andy Keane. 2015. Genetic Programming , Logic Design and Case-Based Reason-
ing for Obstacle Avoidance. 9th International Conference on Learning and Intel-
ligent Optimization (2015), 104–118. https://doi.org/10.1007/978-3-319-19084-6

[9] G. Klančar, S. Blažič, and A. Zdešar. 2017. C2-continuous path planning by com-
bining bernstein-bézier curves. ICINCO 2017 - Proceedings of the 14th International
Conference on Informatics in Control, Automation and Robotics 2, Icinco (2017),
254–261. https://doi.org/10.5220/0006406602540261

[10] John R. Koza. 1992. Genetic Programming On the Programming of Computers by
Means of Natural Selection. MIT Press, Cambridge.

[11] Joel Lehman and Kenneth O Stanley. 2010. Efficiently Evolving Programs through
the Search for Novelty. Proceedings of the Genetic and Evolutionary Computation
Conference (2010). https://doi.org/10.1145/1830483.1830638

[12] Joel Lehman and Kenneth O Stanley. 2011. Improving Evolvability through Nov-
elty Search and Self-Adaptation. 19, IEEE International Conference on Evolution-
ary Computation (2011), 2693–2700. https://doi.org/10.1109/CEC.2011.5949955

[13] Enrique Naredo, Paulo Urbano, and Leonardo Trujillo. 2016. The training set and
generalization in grammatical evolution for autonomous agent navigation. Soft
Computing (2016), 1–8. https://doi.org/10.1007/s00500-016-2072-7

[14] Vinicius Paulo LOliveira, Eduardo FD Souza, and Claire Le Goues. 2016. Improved
Crossover Operators for Genetic Programming for Program Repair Vinicius. 9962
(2016), 112–127. https://doi.org/10.1007/978-3-319-47106-8

[15] Chengshan Qian, Xinfeng Shen, Yonghong Zhang, Qing Yang, Jifeng Shen, and
Haiwei Zhu. 2017. Building and Climbing based Visual Navigation Framework
for Self-Driving Cars. Mobile Networks and Applications (2017), 1–15. https:
//doi.org/10.1007/s11036-017-0976-9Building

[16] David Shorten and Geoff Nitschke. 2014. How Evolvable is Novelty Search ?
1, IEEE International Conference on Evolvable Systems (2014), 125–132. https:
//doi.org/10.1109/ICES.2014.7008731

[17] David Shorten and Geoff Nitschke. 2015. Evolving Generalised Maze Solvers.
EvoApplications (2015), 783–794. https://doi.org/10.1007/978-3-319-16549-3

[18] Paulo Urbano, Enrique Naredo, and Leonardo Trujillo. 2014. Generalization
in Maze Navigation Using Grammatical Evolution and Novelty Search. 3rd
International Conference on the Theory and Practice of Natural Computing
(2014), 35–46. https://doi.org/10.1007/978-3-319-13749-0_4

[19] Roby Velez and Jeff Clune. 2014. Novelty Search Creates Robots with General
Skills for Exploration. Proceedings of the Genetic and Evolutionary Computation
Conference (2014), 737–744. https://doi.org/10.1145/2576768.2598225

[20] David Bruce Wilson. 1996. Generating Random Spanning Trees More Quickly
than the Cover Time. Proceedings of the twenty-eighth annual ACM symposium
on Theory of computing (1996), 296–303. https://doi.org/10.1145/237814.237880

[21] Jie Xu and Craig S. kaplan. 2007. Image-guided maze construction. 26 (2007).
https://doi.org/10.1145/1275808.1276414

https://doi.org/10.1016/j.apor.2017.03.015
https://doi.org/10.1109/ICNN.1994.374647
https://doi.org/10.1109/ICNN.1994.374647
https://doi.org/10.1109/ROMAN.2014.6926309
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-214
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-214
https://doi.org/10.1109/CEC.2004.1330947
https://doi.org/10.1007/978-1-4684-8941-5_21
https://doi.org/10.1007/978-3-319-19084-6
https://doi.org/10.5220/0006406602540261
https://doi.org/10.1145/1830483.1830638
https://doi.org/10.1109/CEC.2011.5949955
https://doi.org/10.1007/s00500-016-2072-7
https://doi.org/10.1007/978-3-319-47106-8
https://doi.org/10.1007/s11036-017-0976-9 Building
https://doi.org/10.1007/s11036-017-0976-9 Building
https://doi.org/10.1109/ICES.2014.7008731
https://doi.org/10.1109/ICES.2014.7008731
https://doi.org/10.1007/978-3-319-16549-3
https://doi.org/10.1007/978-3-319-13749-0_4
https://doi.org/10.1145/2576768.2598225
https://doi.org/10.1145/237814.237880
https://doi.org/10.1145/1275808.1276414

	Abstract
	1 Introduction
	2 Maze Generation
	2.1 Simply Connected Mazes Generation
	2.2 Connectivity Based Maze Generation Algorithm
	2.3 Connectivity
	2.4 Selecting a Main Goal

	3 Selecting Starting Locations
	4 Dataset
	4.1 Software
	4.2 Benchmark Problems
	4.3 Data Representation

	5 Evaluating Evolutionary Algorithms
	5.1 Benchmarked Methods
	5.2 Experimental Settings
	5.3 Performance Metric
	5.4 Analysis of Results for SCMP
	5.5 Analysis of Results for DCMP

	6 Conclusions
	Acknowledgments
	References

