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ABSTRACT
Feature selection is an essential problem in pattern classifi-
cation systems. The entire performance of the classifier is
highly affected by the quality of the selected features. In this
paper, we address this problem by integrating feature selec-
tion with the clustering process. A novel feature-modulated
classification algorithm is proposed to improve the classifi-
cation accuracy. We use a rough sets approach for feature
selection based on a scatter search meta-heuristic scheme.
The proposed approach sifts a compact subset of character-
izing features in multi-class systems according to the cluster-
ing performance. To verify the effectiveness of our method,
experimental comparisons are carried out on eleven bench-
mark datasets using two typical classifiers. The results in-
dicate that the proposed method has a remarkable ability
to generate effective reduced-size subsets of salient features
while yielding significant classification accuracy.
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Data mining techniques are usually used to understand
existing patterns in the data and to generate predictive or
statistical models that could describe the data behavior and
its changes [3, 5]. While data mining includes an extensive
variety of data processing and manipulation problems, ma-
chine learning methods are essential tools in data mining
[20].

Feature selection or attribute reduction is a standout amon-
gst major problems in the field of machine learning. The
fundamental purpose behind feature selection is to decide
which minimal feature subset should be selected in order to
retain a high accuracy in representing the whole feature set.
So, feature selection ends up being the way toward finding
a subset of condition features that is necessary and suffi-
cient to describe the decision feature or target related to the
original set of features in a given information system [36].

One of the most important requirements for feature se-
lection is to develop smart methods with abilities to handle
imprecise and inconsistent information such as noisy, irrel-
evant, or misleading features [25, 26]. Rough set theory is
a powerful concept that could handle uncertainty, vague-
ness, and inconsistent data. Based on rough set concepts,
the feature selection or attributes reduction problem can be
formulated to predict decision concepts based on a subset
of features or attributes similar to that decision obtained
by the original feature set [35, 28]. Feature selection al-
gorithms vary in terms of their sophistication level. One
can build a simple feature selection mechanism by collecting
the common strongly relevant features in addition to some
other weakly relevant features. Using mutual information
and discernibility matrix are very common concepts in fea-
ture selection [33, 37]. Moreover, advanced mechanism were
built using global search methods or metaheuristics to solve
such problem, such as tabu search, simulated annealing, ge-
netic algorithm, ant colony optimization, and others [1, 11,
29, 30].

Data classification is another main problem of data min-
ing. Several real world applications are formulated or trans-



ferred to classification of giving data such as document clas-
sification, speech recognition, object classification in com-
puter vision, etc. [19]. Therefore, there is a great need to
develop powerful and accurate classifiers to fit the growth of
such classification problems especially for applications that
need quick real-time response. To solve the general data
classification problem, three main steps are implemented.
The first step is to select a training dataset with class la-
bels. Then, a model or description for each class is devel-
oped by studying the relations between the attributes of the
data elements in each class. Finally, the prediction quality
of the obtained model is evaluated. Several theoretical and
heuristic methods have been developed in order to enhance
the quality of classification models [22, 21].

The size of data objects and/or data features is not usu-
ally large in several applications. The process of collecting
such application data does not consider data mining as the
main purpose behind collecting that data. Therefore, there
are high possibilities of finding data redundancy or feature
irrelevancy. Hence, searching the sample space is needed
in order to extract the valuable information from the given
data. Searching such spaces usually suffers from high com-
putational time complexity. A practical remedy is to reduce
the search space dimensionality and predict compact models.
In practical classification applications, the training data usu-
ally contain large numbers of features and a limited number
of sample objects. Examples of such cases are spam email
classification, URLs ranking, gene selection from microarray
data, etc. [34, 10]. Actually, the classification accuracy can
be improved by applying an effective feature reduction [14].
Moreover, the classification processing time can be reduced
if we could use less number of features which representing
the whole feature set.

In this work, we propose a Scatter Search Rough Set At-
tribute Reduction (SSAR) algorithm for the feature subset
selection. Then, we investigate the effect of SSAR on im-
provement of the classification accuracy of two clustering
algorithms: Simulated Annealing combined with ellipsoidal
clustering technique (AELC) [13], and K-Means Cloning
(KMC) algorithm presented in [12]. Furthermore, we com-
pare our approaches with two other algorithms, Artificial
Bee Colony (ABC) algorithm [16] and Particle Swarm Op-
timization (PSO) [4]. Eleven benchmark datasets are used
for testing and evaluation purposes in order to demonstrate
the effectiveness of the proposed methodology.

The rest of the paper is structured as follows: in Sec-
tion 2, we briefly review the principles of rough set and
scatter search meta-heuristic. In Sections 3, we explain the
main components of the proposed modulated-classification
method. Then, the experiments and results are presented
and discussed in Sections 4 and 5, respectively. The conclu-
sion and remarks for future work are provided in Section 6.

2. PRELIMINARY TECHNIQUES
In the rough set framework, an attribute subset is called

a reduct if it has a minimal size and the same distinction
power as all of the entire attribute set. Obtaining reducts of
an information system is a one of the main problems in the
rough set theory [24, 25, 15, 32]. Calculating reducts of an
information system is needed to extract rule-like knowledge.
Clearly, attribute reducts should maintain minimal redun-
dancy as well as retaining the representational power. There
are several attempts in the literature to develop efficient al-

gorithms for estimation of useful reduction of information
systems, e.g. [18].

We propose a rough set feature selection algorithm that
is based on a search method called Scatter Search (SS). We
use SS to select more efficient feature subsets that can op-
timally model the original feature set for the sake of better
accuracy. This reduced feature set is then incorporated in
the unsupervised classification process.

2.1 Rough Set Theory
The rough set (RS) theory is one of the data mining tech-

niques that are mainly used for dimensionality reduction of
data sets and for discovering hidden patterns and generating
decision rules [29, 24, 25]. RS is a system for identifying and
recognizing regular patterns in input data, particularly if the
given data is incomplete and/or has uncertainty. The estab-
lishments of RS depend on the set approximation on clas-
sification space. RS looks at objects that are characterized
by the same information as indiscernible given the available
information about them. The most informative attributes
are selected in order to make the minimal subset of reducts
using RS. These attributes contain conditional attributes,
which are most predictive to class attributes. Therefore,
unnecessary and uncertain attributes can be removed from
the dataset with minimal information loss.

Assume S = (U,A) is an information system with a non-
empty set of objects U and a non-empty set of attributes A.
For a subset of attributes B ⊆ A, an equivalence relation
IND(B) can be computed on the set U as [29, 36]:

IND(B) = {(ξ, η) ∈ U × U |∀b ∈ Bb(ξ) = b(η)}.

This relation is called the indiscernibility relation and its
partitions are denoted by U/IND(B).

Assume that U can partitioned into n classes Xi, 1 ≤ i ≤
n, by mean of IND(B). Then, the entropy of an attribute
set B ⊆ A can be defined as:

H(B) = −
n∑

i=1

(p(Xi))log(p(Xi)), (1)

where p(Xi) = |Xi|/|U |, and |.| is the cardinality.
The conditional entropy of an attribute set E ⊆ A with

reference to another attribute set B can be defined as fol-
lows:

H(E|B) = −
n∑

i=1

(p(Xi))
m∑

j=1

(p(Yj |Xi))log(p(Yj |Xi)), (2)

where

p(Yj |Xi) = |Yj ∩Xi|/|Xi|,
U/IND(D) = {Y1, Y2, . . . , Ym},
U/IND(E) = {X1, X2, . . . , Xn},

for 1 ≤ i ≤ n, 1 ≤ j ≤ m.

2.2 Scatter Search
Scatter Search (SS) is an evolutionary algorithms which

starts with a limited number of solutions. At each itera-
tion, some of the best and diverse solutions are selected for
combination. Then, trial points can be generated from this
combination process. These processes are reiterated until no



more new solution can be found [9]. The structure of the
SS has much flexibility than most of other evolutionary al-
gorithms. Moreover, SS invokes an adaptive memory-based
search in order to achieve more efficient global search [17].

Several hard optimization problems could be solved by SS
since it can be applied to both combinatorial and continuous
optimization problems. The search process on SS takes place
in a systematic way unlike to the random designs of other
methods. Glover [7, 8] introduced the reference set of solu-
tions and several guidelines. He suggested a five-procedure
structure as follows:

1. Diversification Generation Procedure to generate pop-
ulation P .

2. Improvement Procedure to transform a solution into
one or more enhanced solutions.

3. Reference Set Update Procedure to build the reference
set.

4. Subset Generation Procedure to generate subsets of ref-
erence set as an initial stage to produce new combined
solutions.

5. Solution Combination Procedure to produce one or more
new combined solution from each subset generated by
the Subset Generation Procedure.

3. METHODOLOGY
In this section, we discuss the components of the proposed

algorithm. These components can be summarized as follows:

• An attribute reduction technique based on the scatter
search for attribute reduction (SSAR). The main tar-
get of this technique is to reduce the dimensionality of
classification space.

• Data clustering techniques based on modified two ver-
sions of K-means methodology called K-mean cloning
(KMC) [12] and adaptive ellipsoidal clustering (AELC)
[13]. These techniques are used to extract features of
each class via the training data.

• An unsupervised classification system to predict the
class of a given data instance using the trained classi-
fier that is obtained by the clustering techniques.

3.1 Scatter Search for Attribute Reduction
A feature selection technique, called Scatter Search Rough

Set Attribute Reduction (SSAR), has been presented in [36].
The SSAR methods tries to find subsets of attributes that
could replace the whole attribute set without losing merits
of predicting the decision attribute.

The SSAR starts with a population of solutions which are
coded in binary vectors. The dimension of each solution
equals the number of conditional attributes |C|. In this cod-
ing system, the value 1 for a component i, i = 1, . . . , |C|,
means that the i-th condition attribute is contained in the
contained in this solution. Otherwise, the solution excludes
this i-th condition attribute. Those solutions are evaluated
based on two criteria:

• Their entropy values:

– The entropy functions given by Equations (1) and
(2) are evaluated for the generated solutions in
order to estimate their quality. Then, solutions
with lower entropy values are favored.

• The cardinality of the condition attribute subsets rep-
resented by those solutions:

– If the compared solutions have the same entropy
value, then the solution with lower cardinality are
favored.

The SSAR method modifies the main structure of SS,
given in Section 2.2, in which six procedures instead of five
are used. The new added procedure is:

6. Intensification Procedure to refine best solutions found
so far.

3.2 Data Clustering by KMC and AELC
A cluster validity method is exploited as an additional cri-

terion to determine the appropriate clusters. The methods
proposed adaptive spherical and ellipsoidal clustering tech-
niques combined with simulated annealing, named (KMC)
[12] and (AELC) [13], respectively. AELC expands the scope
from dealing with data involving certain solid patterns, such
as spherical clusters as in KMC, to handle other categories
containing ellipsoidal clusters and non-symmetric forms. Sil-
houette Function (SF) [27] is known as the best for auto-
matic clustering analysis, especially in determining the op-
timal clusters of the type of circular or spherical clusters.
This should be effective in the case that the number of clus-
ters is not known. KMC and AELC have improved the per-
formance of the silhouette width-based objective function in
combination with the nearest-neighbor algorithm to be more
extensive by giving priority to the appropriate/optimal num-
ber of localities in ellipsoidal clusters. So, AELC presented
a new method for assignment of data instances based on el-
liptical rules, instead of relying on K-mean, which fails to
cluster data instances that have ellipsoidal patterns.

The main idea of the proposed algorithms is to utilize
simulated annealing heuristics to generate non-local trials
for the cluster centers in order to find better solutions. Sim-
ulated annealing is used with KMC and AELC algorithms
while retaining all the previous steps of SSAR. The proce-
dure is shown as follows:

1. Initialization: Choose K centroids randomly as initial
centers, the cooling schedule parameters: initial tem-
perature, final temperature and cooling rate.

2. Generation: A trial solution selects a neighbor solu-
tion and calculates the corresponding data clustering
quality.

3. Clusters Determination Procedure: The crucial step is
how to optimally select the next cluster(s) for splitting
or merging. Split and merge by SF issues criterion
functions to choose clusters to be split or merged and
evaluate the cluster structure changes.

4. Splitting / Merging Procedures: New clusters are cre-
ated by either merging two smaller clusters into a big-
ger one or splitting a larger cluster into two or more
smaller ones.



Figure 1: The flowchart of the proposed method



At each stage, where new solutions are to be generated, the
method of assignment of points will be applied. KMC and
AELC can determine the optimal number of clusters after
improving the search method and point assignment to the
best given clusters. Moreover, AELC is expandable to dif-
ferent data forms, especially the ellipse clusters.

3.3 Data Classification
Clustering is a technique for unsupervised learning in which

observations are gathered to be in similar clusters in some
sense. In this paper, a new modulation classification method
based on the combination of feature selection and clustering,
in which a new algorithm is introduced to extract key fea-
tures. KMC and AELC clustering are modified and adopted
to recover cluster forms within variable number of clusters.
Hence, a cluster validity measure is calculated to extract key
features, which discriminate different modulation types.

The main hypothesis can be summarized as follows: If
the main classification algorithm is applied at the first stage
on a full features/attributes dataset, the performance will
be degraded. This is because feature selection and classifi-
cation techniques have been applied independently without
considering the interaction between them. Therefore, SSAR
will be applied to extract reducts before the classification
procedure for improved performance.

SSAR and AELC algorithms have been modified to deal
with classification problem. The main algorithm is shown in
Figure 1 consists of three major components:

1. Calling SSAR to find a minimal subset of features (in
case of using classification of salient features only).

2. Calling the KMC or AELC clustering algorithm to pre-
dict accuracy of the classifier for the considered fea-
tures of data.

3. Calculation of the classification accuracy.

The clustering methodology in the proposed framework,
which is shown in Fig. 1, introduces the following new ele-
ments:

• The classification accuracy is computed in ’Accuracy
Estimation’ Step after getting the clusters centers. If
such accuracy is acceptable, then the steps, with shaded
boundary, ’Diverse Cluster Centers’ and ’Cluster Merg-
ing & Splitting’ for changing the cluster number, are
disabled.

• Another diversification technique, called ’Cluster Cen-
ter Perturbation’ is used to find new diverse centers
without changing the number of clusters.

4. EXPERIMENTAL SETUP
In this section, we describe the experimental setup that

was used to evaluate the proposed algorithm. Eleven classifi-
cation datasets from the well-known UCI database [2] repos-
itory, are used to evaluate the classification performance.
The datasets are described in Table 1. For comparison pur-
poses, these eleven benchmark are chosen exactly the same
as in [16]. 75% of data are randomly picked for training,
and the remaining 25% of data are used for testing. The
exact sizes of the train and test sets are shown in the last
two columns of Table 1.

Table 1: Descriptive statistics of the datasets used
in experimentation.

Dataset Instance Feature Class Train Test

Balance 625 4 3 469 156

Cancer 569 30 2 427 142

Cancer-Int 699 9 2 524 175

Credit 690 15 2 518 172

Diabetes 768 8 2 576 192

E. coli 327 7 5 245 82

Glass 214 9 6 161 53

Horse 364 26 3 273 91

Iris 150 4 3 112 38

Thyroid 215 5 3 162 53

Wine 178 13 3 133 45

4.1 Datasets
Brief descriptions of the datasets used in the quantitative

evaluation experiments as are stated as follows:
The “Balance” dataset was collected to model psycholog-

ical experimental results. Each instance represents a posi-
tion of the balance scale tip: to the right, tip to the left, or
balanced. The dataset includes 4 attributes, 3 classes and
there are 625 instances. Those instances are split into 469
for training and 156 for testing.

The “Cancer” dataset represents “breast cancer Wisconsin
- Diagnostic” dataset, while “Cancer-Int” dataset is based on
the “breast cancer Wisconsin - Original” dataset. They are
diagnosis of breast cancer, with two outputs for tumor cat-
egories: either benign or malignant. The first one includes
569 instances, 30 attributes and the second one includes 699
instances and 9 attributes.

The “Credit” (the Australian credit card) dataset is for
assessment of credit cards applications. The assessment de-
pended on 14 attributes, including six numeric values and
eight discrete ones. There are 690 applicants in total and
the output has two classes.

The “Diabetes” dataset is a binary classification dataset
to diagnose diabetes as positive or negative. The dataset
has 768 instances. We used 576 instances for training and
the remaining 192 for testing. There are eight attributes for
each instance.

The original dataset of “Escherichia coli” (E. coli) contains
336 instances composing eight classes. Three out of these
eight classes contains five or less instances. Therefore, the
instances of these three classes, exactly nine instances, are
discarded. So, only a total of 327 instances from five classes
with seven inputs are considered. 245 out of them are used
for training and the remaining 82 instances for testing.

The “Glass” dataset was generated to classify glass types.
Those types are vehicle windows, tableware, float processed
building windows, non-float processed building windows, head
lamps, or containers. Nine attributes are based on chemical
measurements determines one of six types of glass including
17, 13, 70, 76, 29, and 9 instances of each class, respectively.
A total of the instances is 214 which are split into 161 for
training and 53 for testing.

The “Horse” dataset can be used to predict the fate of



a horse with a colic and to classify an expectation of the
horse survival, death, or being euthanized. The dataset is
generated based on the Horse Colic data with 364 instances
and 27 attributes.

The Iris dataset includes 150 objects of flowers from the
Iris three species: Setosa, Versicolor, and Virginica. Each of
the three classes includes 50 instances with four variables;
petal length, petal width, sepal length, and sepal width.

The “Thyroid” dataset contains a diagnosis of thyroid, re-
gardless of whether it is hyper or hypo-function. Five inputs
are used to classify three classes of thyroid function as be-
ing over function, normal function, or under function. The
dataset was collected to contain 215 patterns and 5 features.

The “Wine” dataset was generated from chemical analysis
processes of wines that were obtained from three different
cultivators. The data analysis processes could distinguish
between three types of wines. That dataset contains 178
objects of wine samples with 13 attributes.

5. RESULTS AND DISCUSSION
For each dataset, the value of the Classification Error Per-

centage (CEP) is reported as the percentage of the incor-
rectly classified instances of the test datasets. Each instance
is classified by assigning it to the class whose the closest Eu-
clidean distance center to the center of the clusters. The
assigned class is compared with the ground truth and for
match/mismatch decision. CEP is calculated as the ratio
between the number of misclassified and total instances, as
shown in the following equation:

CEP = 100× Pvm

Pv

where Pvm refers to the number of misclassified instances in
the test and Pv is the total size of the test dataset.

The classification results are presented in Table 2 for the
following clustering algorithms: a) AELC, b) KMC, c) Honey
Bees Dancing Language (HBDL) [23], d) Artificial Bee Colony
(ABC), which is originally designed by simulating the forag-
ing behavior of honey bees for numerical optimization prob-
lems [16], and e) Particle Swarm Optimization (PSO), which
mimics the social behavior of a swarm of birds flying to des-
tinations [4]. Table 2 shows the raw classification results
without any attribute reduction.

As shown in Table 2, AELC and KMC algorithms out-
performs ABC and PSO algorithms in 6 problems, whereas
the ABC algorithm results are better than that of AELC
algorithm only for one dataset, the Cancer and Credit prob-
lems. The same performance is repeated for the other four
datasets, the Balance, Cancer-Int, Iris, and Wine problems
in terms of classification error. KMC algorithm results are
better than those of the ABC algorithm in five datasets,
while the latter shows better results in four datasets. More-
over, their results are neutral in terms of classification er-
ror for two datasets: the Iris and Wine. Also, AELC algo-
rithm outperforms KMC algorithm in five datasets, whereas
KMC algorithm result is better than that of AELC algo-
rithm only for two datasets, the Glass and Horse problems,
and the same results are for the other four datasets. More-
over, the average percentages of the classification error for
four datasets are identical for AELC and for ABC.

In Table 3, the classification error percentages of AELC
and KMC algorithms on eight real-world benchmark clas-
sification datasets are presented. The symbols n and ns

Table 2: CEP values of the used classifiers without
attribute reduction.

Dataset AELC KMC HBDL ABC PSO

Balance 15.38 24.35 13.56 15.38 25.47

Cancer 2.11 8.45 2.67 2.81 5.80

Cancer-Int 0 0.57 1.34 0 2.87

Credit 19.18 34.30 10.07 13.37 22.96

Diabetes 21.87 21.87 19.89 22.39 22.50

E. coli 9.87 11.11 13.27 13.41 14.63

Glass 32.07 26.41 40.01 41.50 39.05

Horse 30.76 27.47 37.63 38.26 40.98

Iris 0 0 0.34 0 2.63

Thyroid 1.88 1.88 2.74 3.77 5.55

Wine 0 0 1.28 0 2.22

denote the total number of the original features and the
selected ones, respectively. The averages of the processing
time in seconds for running each method are also given in
Table 3. These time averages are denoted by TAELC and
TKMC for running AELC and KMC without feature selec-
tion, and denoted by T s

AELC and T s
KMC in the case of using

feature selection, respectively.
As shown in Table 3, SSAR could find a smaller number of

features for different datasets. For example, SSAR selected
two features out of a set of 30 features in the cancer dataset.
It also selected five features out of a set of 26 features in the
horse dataset. Moreover, SSAR could help both methods to
severely reduce the processing time.

The positive effect of attribute reduction is obvious, when
we look at the classification error percentage. For example,
in the horse dataset, AELC produced a CEP of 30.7692%
with all features, while CEP is 24.1758% with a reduced
feature set of five. Similarly, AELC produced a CEP of
28.3019% with the substantially reduced number of features
of two, while CEP is 32.0755% with all of the nine features.
Other similar types of scenarios can also be noticed for all
the rest of datasets in AELC. Therefore, we may conclude
that AELC has powerful searching abilities to obtain high
quality solutions. On the other hand, KMC produced small
CEP of features reduced for all classes datasets, We can ob-
serve that for the performance of AELC and KMC of salient
features ns, the CEP of KMC was better than AELC for
glass dataset of 22.6415% when compared to 28.3019% of
AELC, whereas AELC was the best of KMC for the rest of
the datasets.

The Wilcoxon rank-sum test [6, 31] is invoked to check the
statistical significance differences between the obtain results
in Table 3. The statistical test results are recorded in Table
4, and the level of significance for these results is 0.05. The
statistical tests show the significant reduction in processing
time in classification with feature selection compared to clas-
sification without feature selection. Moreover, there are no
significant differences in classification rates between the two
cases.

From these results, we can appreciate the effect of inte-
grating the attribute reduction with classifiers in terms of
simplifying the input feature space and achieving better pro-



Table 3: Performance of AELC and KMC for all features and the effect of attribute reduction on the
classification accuracy. The symbols n and ns denote the total number of the original features and the
selected ones, respectively. Averages of processing times are provided in seconds.

Results with all features Results with selected features

n AELC KMC TAELC TKMC ns AELC KMC T s
AELC T s

KMC

Cancer 30 2.1127 8.4507 2163 1723 2 16.9014 16.9014 140 116

Cancer-Int 9 0 0.5747 827 647 4 1.7241 2.2989 339 282

Diabetes 8 21.8750 21.8750 787 617 3 24.4792 27.08 278 231

E. coli 8 9.8765 11.1111 369 280 3 6.1728 9.8765 121 100

Glass 9 32.0755 26.4151 270 205 2 28.3019 22.6415 55 45

Horse 26 30.7692 27.4725 1186 948 5 24.1758 26.3736 220 183

Iris 4 0 0 99 66 3 0 2.7027 57 47

Wine 13 0 0 322 242 5 0 2.3256 107 89

Table 4: Rank-Sum test for the comparison results
in Table 3

Best
Comparisons R+ R− p-value Method
n ns 36 0 0.0009 ns

AELC AELC/FS 19.5 16.5 0.9596 –
KMC KMC/FS 9 27 0.6227 –
TAELC T s

AELC 36 0 0.0148 T s
AELC

TKMC T s
KMC 36 0 0.0207 T s

KMC

cessing time and classification performance, or at least with
acceptable loss in the worst cases of classification.

6. CONCLUSION
In this paper, we proposed an approach to modulate unsu-

pervised clustering process by attribute reduction. Reducing
the input feature dimensionality achieves two benefits. The
first is the simplification of the input feature space, and con-
sequently the decrease of the computational requirements
of the used classifiers. The second benefit is reducing the
redundancy of the input features, which can negatively af-
fect the classification accuracy in many cases. Rough sets
and scatter search are used for attribute reduction along
with two classifiers, AELC and KMC. The performance of
the proposed approach was evaluated using eleven different
benchmarks. The classification of the used two classifiers
was compared before and after attribute reduction. For com-
pleteness purposes, the classification results of other three
classifiers were presented for the evaluation datasets with-
out attribute reduction. The evaluation results supported
the effectiveness of the proposed approach in removing re-
dundancies of the input feature space.
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