
Adversarial Co-evolution of A�ack and Defense in a Segmented
Computer Network Environment

Erik Hemberg
MIT, CSAIL

Cambridge, Massachusetts
hembergerik@csail.mit.edu

Joseph R. Zipkin
MIT Lincoln Laboratory
Lexington, Massachusetts
joseph.zipkin@ll.mit.edu

Richard W. Skowyra
MIT Lincoln Laboratory
Lexington, Massachusetts
richard.skowyra@ll.mit.edu

Neal Wagner
MIT Lincoln Laboratory
Lexington, Massachusetts
neal.wagner@ll.mit.edu

Una-May O’Reilly
MIT, CSAIL

Cambridge, Massachusetts
unamay@csail.mit.edu

ABSTRACT
In computer security, guidance is slim on how to prioritize or con-
�gure the many available defensive measures, when guidance is
available at all. We show how a competitive co-evolutionary al-
gorithm framework can identify defensive con�gurations that are
e�ective against a range of attackers. We consider network segmen-
tation, a widely recommended defensive strategy, deployed against
the threat of serial network security attacks that delay the mission
of the network’s operator. We employ a simulation model to inves-
tigate the e�ectiveness over time of di�erent defensive strategies
against di�erent attack strategies. For a set of four network topolo-
gies, we generate strong availability attack patterns that were not
identi�ed a priori. Then, by combining the simulation with a co-
evolutionary algorithm to explore the adversaries’ action spaces,
we identify e�ective con�gurations that minimize mission delay
when facing the attacks. The novel application of co-evolutionary
computation to enterprise network security represents a step to-
ward course-of-action determination that is robust to responses by
intelligent adversaries.1

CCS CONCEPTS
• Theory of computation→ Evolutionary algorithms; • Net-
works→ Network reliability;

KEYWORDS
cybersecurity, co-evolution, network, evolutionary algorithms
1DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlim-
ited.
This material is based upon work supported by the Assistant Secretary of Defense
for Research and Engineering under Air Force Contract No. FA8721-05-C-0002 and/or
FA8702-15-D-0001. Any opinions, �ndings, conclusions or recommendations expressed
in this material are those of the author(s) and do not necessarily re�ect the views of
the Assistant Secretary of Defense for Research and Engineering.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-5764-7/18/07. . . $15.00
https://doi.org/10.1145/3205651.3208287

ACM Reference Format:
ErikHemberg, Joseph R. Zipkin, RichardW. Skowyra, NealWagner, andUna-
May O’Reilly. 2018. Adversarial Co-evolution of Attack and Defense in a
Segmented Computer Network Environment. In GECCO ’18 Companion:
Genetic and Evolutionary Computation Conference Companion, July 15–19,
2018, Kyoto, Japan. ACM, New York, NY, USA, 8 pages. https://doi.org/10.
1145/3205651.3208287

1 INTRODUCTION
Network security is a serious and growing problem [1]. Frequently,
attackers introduce malware into networks to achieve any num-
ber of malicious purposes, including stealing data or turning the
network’s operation to their own ends. Once an attacker has com-
promised a device on a network, they can often move laterally to
connected devices, akin to contagion. Depending on the attacker’s
intent, the e�ects can be devastating. In 2012, an attacker pene-
trated the network of Saudi Aramco, the national oil company of
Saudi Arabia. The attacker moved laterally to spread malware to
as many as 30,000 network devices, which were rendered not only
inoperable but unrecoverable [3].

In this work, we assume a network supports an enterprise in
carrying out its business or mission, and an adversary employs
availability attacks against the network to disrupt this mission.
Speci�cally, the attacker starts by using an exploit to compromise
a vulnerable device on the network. This in�icts a mission delay
when a mission critical device (mission device) is infected. Then,
the attacker moves laterally to compromise additional devices and
maximally delay the mission; see Figure 1.

We examine a defensive measure called network segmentation,
which divides the network topologically into enclaves that serve
as isolation units to deter inter-enclave contagion. A network en-
clave is a section that is partitioned from the rest of the network.
Enclaves can vary in size, position, and even vulnerability to attack
due to the software services they host. Network segmentation de-
sign is a tradeo� space: a more segmented network provides less
mission e�ciency because of increased overhead in inter-enclave
communication. However, smaller enclaves contain compromise by
limiting the spread rate, and their cleansing incurs fewer mission
delays. Network operators can also use monitoring capabilities and
network cleansing policies to detect and disentrench attackers, but
more rigorous applications of these measures also come with in-
creased costs. Network monitoring is often performed using taps,

GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan E. Hemberg et. al.

Defender Mission

Enclave 1
Tap level
Mission devices
Cleansing

Enclave 3
Tap level
Mission devices
Cleansing

Enclave 4
Tap level
Mission devices
Cleansing

Enclave 2
Tap level
Mission devices
Cleansing

Attacker

Exploit Strength
Duration

Exploit Strength
Duration

.

.

.

Time

Figure 1: The attacker uses a series of propagating exploits
with varying strength and step-by-step duration to delay
the defender’smission. The defender network is partitioned
into enclaveswith varying vulnerability levels. Each enclave
has some share of mission devices, a monitoring tap and the
ability to be cleansed of malware.

a physically dedicated hardware device, with varying sensitivity
depending on con�guration and monitoring organization.

Our high-level goal is a methodology to identify the most ef-
fective defender parameters (enclave topology, device-to-enclave
placement and monitoring strategy) against serial propagating mal-
ware attacks. Our system, named AVAIL, has two components: a
simulation evaluated in a segmented network environment, and a
competitive co-evolutionary framework with �tness evaluated by
the simulation. The simulation component, see Alg. 1, evaluates
the parameters for the defender and gradual contagion spread rates
for the attacker. The co-evolutionary component seeks strategies
for the defender and attacker that aim to, respectively, minimize
and maximize mission delay against all adversary strategies.

Course-of-action recommendation in computer security is often
hampered by failure to account for the adversary’s intelligence
and freedom of action [14]. AVAIL uses co-evolution to simulate an
attacker adapting to the defender’s decisions. Decision makers can
consult its results to guide their selection of a robust topology and
accompanying enclave con�guration. Depending on the parameters
with which AVAIL’s co-evolutionary algorithm has been run, they
can compare results in terms of mean expected utility, best-worst-
case utility, or even a Pareto front trading o� utility with di�erent
attacks. Here, AVAIL returns mean expected mission delay.

The major contributions of this work are as follows: (1) We show
how to model the dynamics of network segmentation and avail-
ability attacks with a competitive co-evolutionary algorithm and
simulation model. AVAIL’s co-evolutionary algorithm a) represents
serial propagating attacks that are proceeding in steps and are char-
acterized by the contagion strength and duration, b) represents
enclave con�gurations by tap sensitivity and mission device shares,
and c) optimizes a minimax mission delay �tness objective. (2) We
conduct an empirical study to demonstrate how to generate a priori
unknown attacks and assess the performance of an enclave defense
against them. (3) Our study optimizes the best con�guration defense
under the metric of expected utility, but our experiments could be
repeated with other metrics, e.g. best-worst-case delay. (4) Our
application of co-evolutionary algorithms to enterprise network
security decision-making is novel.

In Sec. 2 we present related work. Sec. 3 introduces the network
simulator and the co-evolutionary algorithm. Sec. 4 details the
experiments and analyzes them. Sec. 5 concludes.

2 RELATEDWORK
We describe network segmentation in Sec. 2.1, network security
modeling and simulation using evolutionary algorithms in Sec. 2.2,
and evolutionary algorithms for network security in Sec. 2.3.

2.1 Network segmentation
Network defense measures vary by what network layer they work
on, their presumed threat model and what strategy they realize [9,
11]. One such category of defenses is network segmentation, the
practice of introducing heterogeneity into network topology and
connectivity. Two related network-segmentation strategies sug-
gested in [11] are segregating networks and functions (SNF) and
limiting workstation-to-workstation communication (LWC). Prior
work has found both these strategies e�ective in containing net-
work attacks [20]. SNF partitions a network into enclaves based on
the constituent resources’ functional requirements and attendant
security risks. Under this strategy, for example, devices hosting
private personnel data would be placed in a separate, more pro-
tected enclave than devices hosting public-facing Web services,
which are vulnerable to attack due to ease of access to their in-
terfaces. Implementation tools include �rewalls, network egress
and ingress �lters, application-level �lters, and hardware [6]. LWC
regulates network communications more granularly than SNF, es-
sentially placing each device into its own enclave, toward enforcing
the principle of least privilege [20], a computer-security heuristic
stating that “every program and every user of [a] system should
operate using the least set of privileges necessary to complete the
job” [16]. Between SNF and LWC are a range of possible variations
on network segmentation at various levels of granularity.

2.2 Security Modeling and Simulation
Modeling and simulation comprise a powerful approach, “mod-
sim”, to investigating general security scenarios [17] and computer
security in particular [8, 18, 22]. Mod-sim is often necessary because
search and outcome spaces are too complex for analytical solution,
but testbeds can have long experimental cycle times and require
wasted attention to irrelevant detail. Mod-sim systems range in
complexity, level of abstraction and resolution.

The mod-sim system for security risk assessment of network
segmentation architectures (NSM) of Wagner et al. [20] is the most
closely related to AVAIL, though more complex and controlled by
multiple realistically chosen parameters. It models low-level net-
work functionality and investigates abstract functions of a network
being segregated according to the principle of least privilege. We
distill AVAIL’s enclave vulnerability parameter values from the
Wagner et al. NSM study [19], which models changes in network se-
curity levels with a continuous-time Markov chain with parameters
set by actual captured network data. In contrast to NSM, AVAIL has
a more abstract and simpler network model and mission simulation
and a di�erent threat model; see Sec. 3.1. We refer to the network
segmentation security assessment model of Wagner et al. as NSM.

2.3 Co-evolutionary Search Algorithms
Co-evolutionary algorithms explore domains in which the quality
of a candidate solution is determined by its ability to successfully
pass some set of tests. Reciprocally, a test’s quality is determined by

Adversarial Co-evolution in a Segmented Computer Network Environment GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan

its ability to force errors from some set of solutions. For example, in
AVAIL, candidate enclave con�gurations, i.e. solutions, are successful
to the extent that they minimize mission delay against availability
attack strategies, i.e. tests. Attack strategies are successful if they
maximize mission delay. In competitive co-evolution the search is
an arms race with adversarial interaction between test and solution,
both evolving with opposite objectives [13].

Selection pressure in an co-evolutionary algorithm is di�erent
from that in an evolutionary algorithm because, in the former, a
solution’s performance is contextual, i.e. depends on what tests it
has faced. This implies that co-evolutionary algorithms may not
only face the problem of local optima but also encounter problem-
atic dynamics where tests are unable to put pressure on solutions to
improve, or drive toward a solution that is the a priori intended goal.
This issue has been addressed in co-evolutionary literature, and
there are some suggested remedies to speci�c pathologies [2, 4, 13].
They embody a general approach that includes maintaining diver-
sity to generate a search gradient and using more explicit memory,
e.g. an Hall of Fame an archive to monitor progress [10].

AVAIL uses Grammatical Evolution (GE), an algorithm that has
been paired with competitive co-evolution, e.g., in [7]. AVAIL bears
similarity to CANDLES [15], which models high-level attack and
defense strategies using high-level representations of their behav-
iors. It supports a qualitative analysis. AVAIL is also similar to RI-
VALS [5], which uses competitive co-evolution and adapts abstract
denial-of-service attack strategies against a mission executing on a
peer-to-peer network. Both RIVALS and AVAIL incorporate an avail-
ability measurement into both adversaries’ objectives. In contrast to
RIVALS and CANDLES, AVAIL (1) focuses on network segmentation
as a defensive measure with enclave cleansing as local mitigation,
(2) assumes a serial, propagating availability attack threat model,
and (3) executes with a defensive enclave vulnerability parame-
ter that inherits a degree of validation from the actual captured
network data upon which it is based.

3 METHODS
Table 1 presents the notation we use in describing our methods. In
Sec. 3.1 we present AVAIL’s threat model. In Sec. 3.2 we present its
enclave network simulation. In Sec. 3.3 we describe its competitive
co-evolutionary framework.

3.1 Threat Model: Availability Attacks
Our threat model assumes attacks that diminish the availability of
mission devices. The attacker starts by in�ltrating each enclave
and compromising a single device. The attack then spreads after
some duration and attempts to compromise other devices within
the enclave. Compromised mission devices contribute to mission
delay. All events (actions and their outcomes) are probabilistic.

3.1.1 Defense Model. We use the following:
• The defender’s objective is to minimize mission delay.
• Only some devices, the mission devices, contribute to the mis-

sion. The defender partitions a quantity of mission devices among
enclaves at outset of the mission.

• The defender deploys in each enclave a tap, a monitoring tool
to detect device compromise. This tap alerts upon successful detec-
tion depending on the spread of compromise within the enclave

Table 1: Notation for AVAIL network enclave simulator.

Symbol Description
N Number devices, including mission devices
M Number of mission devices; partitioned over en-

claves by defender
T Simulation time, T 2 T
m Mission delay,m 2 N,m  T
E The list of enclaves, E = {e0, . . . , ek }, k 2 N
e An enclave; it is the tuple e = hD, �, �, s, n i
D.all A list of all devices, D = {d0, . . . , dn�1 }
D.compromised compromised devices list
D.uncompromised uncompromised devices list
� Vulnerability of enclave, � 2 [0 . . . 1]
� Contagion rate, � 2 R, � � 0
B Attacker contagion rate budget B � �
s Tap sensitivity of enclave; s 2 R, s > 0
I (t) Number of infected devices at time t, I 2 N, I � 0
n Number of devices in enclave, n 2 N

and its sensitivity level. At high sensitivity it can possibly alert even
though no mission devices are compromised (a false positive).

• A tap alert, whether a true positive or a false positive, trig-
gers an enclave cleansing. Cleansing takes down and reboots all
devices in the enclave simultaneously, removing the compromise
but increasing mission delay.

3.1.2 A�ack Model. We use the following:
• The attacker’s objective is to maximize mission delay.
• The attacker trades o� the goal to compromise more devices

with the need to evade detection, which becomes more likely as
more devices are compromised. Thus, after compromise, an attack
may wait before spreading.

• An attack expends e�ort, i.e. requires strength, to overpower
a device’s defensive measures. Attack strength is a �xed budget
resource that is divided evenly between each step of the attack and
across enclaves.

• Successful compromise depends on attack strength and en-
clave vulnerability.

• The attack spreads without cost but does not know where
mission devices are and cannot speci�cally target them.

• Attack spread follows an epidemic model [20] based on a
“dumb” worm [23]; see Eq. (1).

3.2 Enclave Network Simulation
We provide all simulation software under the MIT License2. It
should be consulted for precise design and implementation details.

The key simulation inputs are a network topology of enclaves,
the vulnerability levels of each enclave, and the attack and de-
fense genomes passed by the co-evolutionary framework. Alg. 1
���������� decodes the defense genome to set up tap sensitivity
and partition mission devices across the enclaves and the attack
genome to schedule when attacks spread and the strength of each
attack step.

2The link to the code repository will be made available upon acceptance.

GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan E. Hemberg et. al.

Alg. 2 �������� is called after initialization. Each time step, every
enclave is updated for additional compromise, checked for compro-
mise detection, and cleansed and reset if there is a detection. Then,
mission delay is tallied. Function ����������������� refers to tap
sensitivity and the count of compromised devices to probabilisti-
cally determinewhether an alert occurs. Function ��������������
increments the compromised devices. Spread occurs at rate � fol-
lowing the logistic function in Eq. (1). The initial stage of growth of
compromised devices is approximately exponential. As saturation
sets in, the growth slows and it progresses towards maturity. The
number of infected devices, I : N! R, I (t), is modeled by

I (t) = nI0e�t

n + I0(e�t � 1)
. (1)

Here, t 2 N is time, I (0) is number of infected devices at time 0,
n 2 N is number of devices and � > 0 is growth rate, i.e. an indicator
of attack strength. We use I (0) = 1.

Algorithm 1 Network and Enclave initialization
Require: E, set of enclaves; � , vulnerability of each enclave; attack plan and defense con�g
1: function ����������(�)
2: m 0; mission delay
3: for e 2 E do
4: e .D .all UniformlyInsert(non-mission devices)
5: e .� vulnerability . From simulation initialization
6: e .D .all Insert(mission-devices) . From defense con�guration
7: e .s tap sensitivity . From defense con�guration
8: �������������(D)
9: ������������������(� , duration) . From attack plan
10: m ��������(E, T)

11: function �������������(D)
12: shu�e(D.all)
13: D.compromised ;
14: D.uncompromised D.all

Algorithm 2 Enclave network simulation
Require: E, enclaves; T , Simulation time, � , Vulnerability, s , Tap sensitivity
1: function ��������(E, T)
2: for t . . .T do
3: for e 2 E do . For each enclave
4: ��������������(�, e .D) . infection spread
5: needs-cleansing = �����������������(e .D.compromised, s)
6: if needs-cleansing then
7: ���������������(e .D .all ,m)
8: �������������(e .D)
9: else
10: m ��������������������(e .D.compromised)

11: function �����������������(compromised, s)
12: threshold |compromised | ⇤ s
13: . Sensitivity of tap and compromised devices
14: return random(0.0 . . . n) < threshold . Is tap triggered

15: function ���������������(D,m)
16: for d 2 D do
17: if d 2 mission-device-set then
18: m ��������������������()
19: cleanse(D) . Cleanse the devices

20: function ��������������(�, D, �, t)
21: if (random() < �) then
22: I

�
ne� t

n+(e� t �1)

⌫
. Total compromised devices

23: � I I � |D.compromised | . Newly compromised devices
24: Insert(D.compromised,Remove(D.Uncompromised,�I))

Attacker
Population

Fitness

Evaluation

Simulation

Selection Variation

Selection Variation
Fitness

Evaluation

Simulation

Defender

Population

Figure 2: Alternating co-evolutionary algorithm.

3.3 Co-evolutionary Framework
The co-evolutionary framework, see Figure 2, consists of (1) attack
and defensive con�guration representations, (2) a competitive co-
evolutionary algorithm, and (3) an interface to the simulation.

AVAIL uses grammars to represent attacks and defensive con�g-
urations; see Figure 3 and 4. Grammars facilitate the expression
and exploration of complex attack sequences and defender strate-
gies. It also eases the incorporation of domain knowledge into
future work. Speci�cally, AVAIL uses Grammatical Evolution (GE)
to de�ne its genomes method. GE uses a variable-length integer
representation [12] with low locality operators [21].

AVAIL evolves two populations with tournament selection and
standard crossover and mutation. One population comprises at-
tacks and the other defenses. Each generation, competitions are
formed by pairing attack and defense. The populations are evolved
in alternating steps: �rst the attacker population performs selection,
variation, and evaluation against the defenders and replacement,
and then the defender population performs selection, variation,
and evaluation against the attacker population and replacement.
Each attacker–defender pair is dispatched to the simulation, which
returns the mission delay resulting from the attacker’s attack on the
defender’s network con�guration. Mission delay is then converted
directly into attack �tness and negated for defender �tness. Each
attacker is competed against all defenders one at a time and each
defender against all attackers one at a time.

4 EXPERIMENTAL SETUP
4.1 Co-evolutionary Framework Setup
The experiments are designed to create a baseline and investigate
the performance of evolutionary search and co-evolutionary search
on a network segmentation problem. For this study comparing
evolutionary algorithms is out of scope, and is deferred to future
work. Table 2 presents the co-evolutionary algorithm parameters.
The GE grammars used here are foremost a proof-of-concept and
provide am agile and �exible platform. In addition, the grammars
are simple to avoid the locality issues related to GE [21]. Moreover,
the GE implementation does not use any wrapping and implements
caching to reduce the number of redundant �tness evaluations. The
�tness is calculated as the average of the mission delay,m, returned
by the simulator, see Alg. 2. The attacker objective is to maximize
the mission delay, and the defender objective is to minimize it.

AVAIL’s attack grammar enables an attacker to explore many
short and weak attacks, fewer strong attacks, or a mixture. Strength
and duration of an attack are subject to the attacker’s overall budget;
see Figure 3. The grammar uses start symbol <attack_plan>. Note,
<attack_plan> rule is recursive so it can vary in length.

Adversarial Co-evolution in a Segmented Computer Network Environment GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan

Table 2: Co-evolutionary GA parameters

Parameter Value
Population size 30
Generations 30
Crossover Probability 0.8
Mutation Probability 0.1
Max Length 100
Tournament Size 2
Elite size 1
Attack competitions 30
Defender competitions 30
Attacker objective maximize mission delay
Defender objective minimize mission delay

Figure 3: Attacker grammar
<attack_plan> ::= <attack> | <attack> <attack_plan>
<attack> ::= (<strength_share>, <time_share>)
<strength_share> ::= 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10
<time_share> ::= 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10

Figure 4: Defender for grammar for E2
<config> ::= <tap_sensitivity>, <num_mission_devices>;

<tap_sensitivity>, <num_mission_devices>;
<tap_sensitivity> ::= 0.00 | 0.01 |...| 1.50
<num_mission_devices> ::= 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10

A decoded <attack_plan> consists of one or more attacks each
of duration � and strength � . The <time_share> genes are decoded
with reference to each other and the total simulation time. Shares
are summed and the duration of each attack is its share over the sum
times the total time. The <strength_share> genes are decoded
with reference to each other and the total attack budget B. Shares
are summed and the strength of each attack is its share over the sum
times the budget. For example, given attacker time budget T = 100,
attack budget B = 2.0, an attacker with genome (1, 3), (1, 2) decodes
to � = 1.0 for t = [0, . . . , 60] and � = 1.0 for t = [41, . . . , 100].

The defender grammar enables the defender to partition the mis-
sion devices in quantity across the network’s enclaves and set the
sensitivity s of the taps; see Figure 4. The defender does not need an
explicit budget since the mission delay is in�uenced by how much
cleansing is done; this depends in turn on the <tap_sensitivity>.
The grammar start symbol is <config>. It sets up a �xed-length
genome with two con�guration properties for each enclave. An
example of a two-enclave con�guration is shown in Figure 4. At
decoding, mission devices are grouped in enclaves in enclave index
order. For example, if enclave 1 of 4 receives 10 devices, there are no
mission devices in the other enclaves. If there are mission devices
unassigned after decoding, they are distributed uniformly over the
enclaves. Non-mission devices are assigned to enclaves uniformly.

4.2 Experimental Procedure
Our scenarios, see Table 3, are based on a network with N = 250 de-
vices includingM = 10 mission devices. An experimental scenario
is {topology, vulnerability levels, attack duration budget, attack
strength budget}. We study 4 possible enclave topologies: Figure 5,

Table 3: AVAIL simulation parameters

Parameter Value
Number of non-mission de-
vices (N)

250

Number of mission devices (M) 10
Attacker Exploit Strength bud-
gets (B)

0.5, 1.25, 2.0

Attacker Time budget 100
Defender tap level range [0, . . . , 1.5]
Defender enclaves 1, 2, 4, 16 (see Table 4)
Experiment Setup
GA-DEFENSE Fixed Attacker, Evolved Defender
GA-ATTACK Fixed Defender, Evolved Attacker
COEV Co-evolving Defender and Attacker

Table 4: Experimental enclave vulnerabilities. Each element
in the list is the vulnerability level of an enclave.

Name |E | Vulnerability levels �
E1 1 0.954
E2 2 [0.954, 0.44]
E4 4 [0.48, 0.762, 0.827, 0.762]
E16 16 [0.761, 0.762, 0.828, 0.387, 0.393, 0.387, 0.397, 0.416,

0.419, 0.241, 0.239, 0.235, 0.241, 0.243, 0.245, 0.321]

|e | 2 {1, 2, 4, 16}. We run the NSM [19] framework over multiple
trials with varying input and use the trials’ average vulnerability
for each enclave to set up scenario enclave vulnerability levels, see
Table 4. The parameters for NSM are derived from historical secu-
rity data [19] to strength the realism of the mod-sim. The attack
duration budget is always T = 100 and the strength budget, B is a
value from: {0.5, 1.25, 2.0}. For brevity we refer to the topologies as
E1, E2, E4, E16, refer to the vulnerability levels as non-uniform (see
Table 4), omit T and only include B when contextually necessary.
We do 30 independent runs for each experiment. In each �tness
evaluation in each experiment, we run 10 independent trials of
the network simulator to average the simulation values over. The
simulation runs for T = 100 time steps.

We conduct three di�erent experiments and report results that
are the average of 30 runs, except for COEV where we show a ran-
domly selected run that is consistent with the others:
GA-DEFENSE: We use GE to evolve defenders against each of 5 di�er-
ent non-evolving attacks, see Table 5 with B = 2.0. We compare the
4 enclave topologies each with enclave vulnerabilities, see Table 4,
thus the scenarios are {E1|E2|E4|E16, 100, 2.0}
GA-ATTACK:We use GE to evolve attacks against a non-evolving
defense with uniform tap levels and device sharing across enclaves.
We compare the 4 enclave topologies with enclave vulnerabilities,
thus the scenarios are {E1|E2|E4|E16, 100, 0.5|1.25|2.0}
COEV: Co-evolved Attacks and Defenses with GE. We use AVAIL

to co-evolve the attacks and defenses in response to each other’s
populations with B = 2.0. We compare the 4 enclave topologies
with enclave vulnerabilities, see Table 4, thus the scenarios are
{E1|E2|E4|E16, 100, 2.0}

GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan E. Hemberg et. al.

(a) 2 enclaves (b) 4 enclaves (c) 16 enclaves e1, . . . , e16

Figure 5: Experimental enclave topologies, i0 is an Internet connected enclave, s* are services (connections) between enclaves.

Table 5: Static attack plan, budget T = 100, B = 2.0. Attack
<strength_share> (decoded to �) and <time_share> per at-
tack

Name <strength_share> <time_share>
A5-I [1, 2, 3, 4, 5] [1, 1, 1, 1, 1]
A1 [1] [1]
A2-I [1, 3] [1, 2]
A10 [1, 1, 1, 1, 1, 1, 1, 1, 1, 1] [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

4.3 Experiments and Results
4.3.1 Evolving A�ackers. We start our investigation with the

GA-ATTACK experiment regarding size of enclave. Here our research
question is the relative merit of each enclave size. We �nd the great-
est mission delay each enclave size would su�er by using the GA to
optimize and identify the strongest attack. Recall that the attacker’s
budget is evenly divided per enclave before the per enclave budget
is then divided across an attack according its <strength_share>.

Based on the threat model and the known e�cacy of network seg-
mentation [20], we would expect E1, the single enclave, to perform
poorly and su�er from the most mission delay while only requiring
one attack. Per Figure 6 and Table 6, this is con�rmed. We would
also expect the bene�t of additional enclaves to increase to some
critical size after which they no longer are helpful because devices
are so few per enclave that the �rst step of any attack compromises
them. Finding this size is challenging due to additional factors such
as the relative number of mission devices to non-mission ones and
the attack strength. We observe that mission delay decreases with
enclave size growing from E1 to E16 with the exception that, for
attack strength budgets B = 0.5 and B = 0.125, the mission delay
E4 su�ers is less than that of the mission delay E16 su�ers – E2
(46.8 to 81.8) for attack budgets (0.5, 1.25, 2.0), E4 (6.5, 14.3, 26.9)
and E16 (16.8, 16.7, 16.9). This highlights a critical threshold in
sizing. If a network expects attacks of low strength, i.e. is able to
bound its expectation of the attacker’s resources below the amount
equivalent to B = 0.125, 4 enclaves are better. But when attacks of
high strength are anticipated, i.e. the attacker’s resources are more
than B = 1.25, 16 enclaves are better. With 4 enclaves, mission
devices can be hidden well enough among non-mission devices
so that, for weak attacks, they resist compromise very well. We
experimented with E=5,...,16 and con�rmed the critical threshold

Figure 6: Evolving attacks against di�erent network archi-
tectures. Best solution is shown. X-axis shows generation
and Y-axis shows �tness value. Each line shows a di�erent
attacker strength budget (B)

at E=4. These �ndings are consistent with the acknowledgment
in computer security that the design of defensive measures must
be dictated by the expected strengths of attackers: a nation–state
threat actor requires di�erent approaches than “script kiddies” out
for monetary gain or enjoyment.

With 16 enclaves, both the 240 non-mission and 10 mission
devices are sparsely distributed across the enclaves. In these sparse
enclaves they are more susceptible to attack, regardless of strength.
This is rational: there is only 1 or 0 mission devices per enclave, so
propagating an attack is not as e�ective at delaying the mission
(when each attack is 5 time steps) as simply re-infecting the enclave
with greater odds of infecting amission device immediately.With 16
enclaves, an e�ective attack appears to have a plan of approximately
17 attacks.

In Table 6 we see a di�erence in the number of enclaves that the
best attacker selects for attack plans of more attacks, both based
on the strength budget and on the number of enclaves. Against E1
a higher budget gives more attacks. Conversely, against E4 a lower

Adversarial Co-evolution in a Segmented Computer Network Environment GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan

Table 6: GA-ATTACK: Evolved attacker solutions (best per run).

Experiment Fitness Number of attacks <time_share>
(Mean±Std) (Mean±Std) (Mean±Std)

E1 B=0.5 98.451 ± 1.470 1.000 ± 0.000 5.161 ± 2.411
E1 B=1.25 100.582 ± 0.459 1.677 ± 0.467 5.404 ± 3.398
E1 B=2.0 101.254 ± 0.386 2.355 ± 0.478 5.452 ± 3.184
E2 B=0.5 46.825 ± 2.849 1.000 ± 0.000 5.226 ± 2.837
E2 B=1.2 71.840 ± 1.821 1.000 ± 0.000 5.871 ± 2.970
E2 B=2.0 81.782 ± 1.336 1.000 ± 0.000 5.097 ± 2.798
E4 B=0.5 6.485 ± 0.293 5.710 ± 2.035 6.107 ± 2.598
E4 B=1.25 14.312 ± 0.955 1.000 ± 0.000 6.065 ± 2.782
E4 B=2.0 26.909 ± 1.418 1.000 ± 0.000 6.419 ± 2.916
E16 B=0.5 16.816 ± 0.571 17.742 ± 3.162 5.744 ± 2.724
E16 B=1.25 16.742 ± 0.460 17.484 ± 3.732 5.631 ± 2.695
E16 B=2.0 16.856 ± 0.519 17.258 ± 2.615 5.536 ± 2.654

budget gives more attacks. There is no noticeable di�erence in the
average duration of any attack step.

4.3.2 Evolving Defenders. We proceed to the GA-DEFENSE exper-
iment. Here our research question is still the relative merit of each
enclave size, but we use the GA to optimize enclave con�gurations
(mission device placement and tap sensitivity) under attacks that
vary in how many are in a plan. Recall that the attacker’s budget is
evenly divided per enclave before the per enclave budget is then
divided across an attack according its genome’s <strength_share>
genes. All attackers have the same budget regardless of how many
attacks they have in plan, so those with longer plan launch weaker
attacks. Mission delay results are shown in Figure 7. Table 7 shows
the same data in detail numerically.

As we expect, a single-enclave con�guration is highly susceptible
tomission delay. A single attack, A1, delays themission signi�cantly
more (mission delay = 86.2) than attacks in a plan with A10, due
to attack weakness and the large number of devices in the enclave,
hardly in�icting any delay at all (mission delay = 1.5). Scanning
Table 7 column-wise, the same trend is seen for 2 and 4 enclaves.
However for 16 enclaves, there is an in�ection at A5 (5 attacks in a
plan). With 10 attacks in a plan, the in�icted mission delay is higher
than with 5.

As the number of enclaves increases, the e�ectiveness of a single
attack, A1, drops (Mission delays are E1 = 86.2, E2 = 9.3, E4 = 4.7,
E16 = 2.7). This trend is the same for two attacks in a plan, A2. In
contrast, both A5 and A10 have an in�ection point at two enclaves.
They drop in e�ectiveness from one to two enclaves but increase
in e�ectiveness when defended by E4 and E16. One can see this by
scanning Table 7 row by row.

We examined the best defensive con�gurations across enclave
sizes and attack sizes. They are easiest to decipher at E2, E4 with
E16 being generally too complex. With E2 and E4, we generally see
that the defenders evolve to place mission devices in enclaves of low
vulnerability and they cleanse these enclaves more frequently (i.e.
they have a greater tap sensitivity in enclaves of low vulnerability)
or at least the same frequency as the other enclaves. This is rational
because of the need to protect the mission devices from compromise.
The results are consistent with sound security guidance to practice
active management of enterprise network resources.

Table 7: GA-DEFENSE: Evolved defender �tness (-Mission De-
lay) best per run.

A/D E1 E2 E4 E16
(Mean±Std) (Mean±Std) (Mean±Std) (Mean±Std)

A1 �86.2 ± 1.764 �9.3 ± 0.611 �4.7 ± 1.163 �2.7 ± 0.128
A2 �69.6 ± 1.748 �6.0 ± 0.591 �3.2 ± 0.407 �4.1 ± 0.226
A5 �22.4 ± 1.098 �1.1 ± 0.168 �1.9 ± 0.240 �6.5 ± 0.238
A10 �1.5 ± 0.206 �0.4 ± 0.069 �1.6 ± 0.207 �7.1 ± 0.317

Figure 7: Evolving defense against di�erent network archi-
tectures. Best �tness of defender over generations strength
B = 2.0. Each line shows a di�erent attacker. Defender �t-
ness is cut o� at �30, see Table 7 for all defender �tness val-
ues at last generation.

We can also frame a best-worst-case question: What is the best
enclave size given the worst-case mission delay of any enclave? In
this case, E1, E2, E4 all are most hurt by a single attack and E16 by
a plan of 10 attacks, and E4 has the lowest mission delay. Therefore,
against all attacks in this set, a good choice would be 4 enclaves.
This con�rms the intuition that some but not too many enclaves are
advantageous. This question can be posed also from the attacker’s
perspective: what is the ideal number of attacks to launch in a plan
given the least mission delay of each attack plan? The data indicates
that, if the attacker didn’t know enclave sizes, it should launch a
plan of 2 attacks because the best-worst-case mission delay is 3.2.

4.3.3 Co-evolving a�ackers and Defenders. To end, we inves-
tigate COEV where, repeatedly, �rst the defenders test and evolve
then the attackers respond to the adapted defenders and evolve
themselves. This is a more realistic view of the adversarial arms
race. Results for best, population mean and worst �tness from an
example run are shown in Figure 8.

For one enclave we see that the best attacker and best defender
�tness track the population mean �tnesses. The mission delay os-
cillates at 90 ± 5. This is higher than when defenders, GA-DEFENSE,
can evolve to minimize a non-evolving attack (for A1, A2, A5 and

GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan E. Hemberg et. al.

(a) Example for E1 (b) Example E2

(c) Example for E4 (d) Example E16

Figure 8: Example from co-evolution showing best, worst
andmean �tness of defender and attacker solution over gen-
erations strength B = 2.0. Green denotes attacker and black
denotes defender. Solid line showsmean�tness, wide dashes
shows best �tness and narrow dashes shows worst �tness.

A10), re�ecting adaptability of attackers in response to defenders. It
is lower than when attackers, GA-ATTACK can evolve against a non-
evolving defender, this time re�ecting the adaptability of defenders
in response to attackers. This observation extends to enclave sizes
2, 4, and 16. The results are intuitive. An evolving population per-
forms better against a static adversary than against an adversary
that can itself evolve in reaction. In addition, the population as-
pect of evolutionary and co-evolutionary algorithms impacts the
general robustness of adversaries’ strategies because one strategy
is “competed” against many of its adversary’s strategies. In sum-
mary, the expectations from the co-evolutionary experiments and
understanding the upper-bound, lower-bound, and best-worst-case
scenarios of the experiments are all helpful in supporting deploy-
ment decisions and estimations of risk.

5 CONCLUSIONS AND FUTUREWORK
We have focused on one particular network security measure, net-
work segmentation. We combined mod-sim and competitive co-
evolutionary algorithms into a system that allows di�erent enclave
topologies to be compared, each optimized to minimize mission
delay by the evolutionary adaptation of its defensive con�gura-
tion against attack strategies optimized to maximize mission delay.
We also examined evolution of attackers and defenders separately
when their adversary did not evolve. We were able to evaluate
mission delay under realistic enclave vulnerability levels that we
obtained from the high �delity mod-sim NSM of [19]. This novel
application of co-evolutionary computation to enterprise network
security represents a step toward course-of-action determination
that is robust to responses by intelligent adversaries. Future work
on the competitive co-evolutionary framework will extend it with

run-result archiving, Hall of Fame analysis and visualizations to
improve user decision support. Future security-oriented work will
investigate alternative threat models with increased adversarial
complexity, as well as larger networks. Future work could also
include validation via testbed emulation or live experiment with
users to support our results.

REFERENCES
[1] Akamai Technologies. 2017. State of the Internet quar-

terly security reports. (2017). https://www.akamai.
com/us/en/about/our-thinking/state-of-the-internet-report/
global-state-of-the-internet-security-ddos-attack-reports.jsp

[2] Josh C Bongard and Hod Lipson. 2005. Nonlinear system identi�cation using
coevolution of models and tests. IEEE Transactions on Evolutionary Computation
9, 4 (2005), 361–384.

[3] Christopher Bronk and Eneken Tikk-Ringas. 2013. The cyber attack on Saudi
Aramco. Survival 55, 2 (2013), 81–96.

[4] Sevan Gregory Ficici. 2004. Solution concepts in coevolutionary algorithms. Ph.D.
Dissertation. Citeseer.

[5] D. Garcia, A. Erb Lugo, E. Hemberg, and U. O’Reilly. 2017. Investigating Coevo-
lutionary Archive Based Genetic Algorithms on Cyber Defense Networks. In
Proceedings of the 19th Annual Conference on Genetic and Evolutionary Computa-
tion (GECCO ’17). ACM, 8. https://doi.org/10.475/1234

[6] Robert Gezelter. 2015. E-commerce and Web server safeguards. In Computer
Security Handbook (6th ed.), Seymour Bosworth, Michel E. Kalbay, and Eric
Whyne (Eds.). Wiley.

[7] Robin Harper. 2014. Evolving robocode tanks for Evo robocode. Genetic Pro-
gramming and Evolvable Machines 15, 4 (2014), 403–431.

[8] Mona Lange, Alexander Kott, Noam Ben-Asher, Wim Mees, Nazife Baykal,
Cristian-Mihai Vidu, Matteo Merialdo, Marek Malowidzki, and Bhopinder Mada-
har. 2017. Recommendations for Model-Driven Paradigms for Integrated Ap-
proaches to Cyber Defense. arXiv preprint arXiv:1703.03306 (2017).

[9] Stuart McClure, Joel Scambray, and George Kurtz. 2009. Hacking exposed: net-
work security secrets and solutions. (2009).

[10] Thomas Miconi. 2009. Why coevolution doesnâĂŹt "work": superiority and
progress in coevolution. In European Conference on Genetic Programming. Springer
Berlin Heidelberg, 49–60.

[11] National Security Agency Information Assurance Directorate. 2013. IAD’s top
10 information assurance mitigation strategies. (2013).

[12] Michael O’Neill and Conor Ryan. 2003. Grammatical evolution: evolutionary
automatic programming in an arbitrary language. Vol. 4. Springer.

[13] Elena Popovici, Anthony Bucci, R Paul Wiegand, and Edwin D De Jong. 2012.
Coevolutionary principles. In Handbook of Natural Computing. Springer, 987–
1033.

[14] Antonio Roque. 2018. Validating computer security models. arXiv preprint
arXiv:1710.01367 (2018).

[15] George Rush, Daniel R Tauritz, and Alexander D Kent. 2015. Coevolutionary
Agent-based Network Defense Lightweight Event System (CANDLES). In Pro-
ceedings of the Companion Publication of the 2015 on Genetic and Evolutionary
Computation Conference. ACM, 859–866.

[16] Jerome H. Saltzer and Michael D. Schroeder. 1975. The protection of information
in computer systems. Proc. IEEE 63, 9 (1975), 1278–1308.

[17] Milind Tambe (Ed.). 2012. Security and Game Theory: Algorithms, Deployed
Systems, Lessons Learned. Cambridge University Press.

[18] Brian Thompson, James Morris-King, and Hasan Cam. 2016. Controlling risk
of data ex�ltration in cyber networks due to stealthy propagating malware. In
Military Communications Conference, MILCOM 2016-2016 IEEE. IEEE, 479–484.

[19] Neal Wagner, Cem Şafak Şahin, Jaime Pena, James Riordan, and Sebastian Neu-
mayer. 2017. Capturing the security e�ects of network segmentation via a
continuous-time Markov chain model. In Proceedings of the 50th Annual Simula-
tion Symposium. ACM.

[20] Neal Wagner, Cem Ş Şahin, Michael Winterrose, James Riordan, Diana Hanson,
Jaime Peña, and William W Streilein. 2016. Quantifying the mission impact of
network-level cyber defensive mitigations. The Journal of Defense Modeling and
Simulation: Applications, Methodology, Technology (2016).

[21] Peter A Whigham, Grant Dick, James Maclaurin, and Caitlin A Owen. 2015.
Examining the Best of Both Worlds of Grammatical Evolution. In Proceedings of
the 2015 on Genetic and Evolutionary Computation Conference. ACM, 1111–1118.

[22] Michael LWinterrose and KevinMCarter. 2014. Strategic evolution of adversaries
against temporal platform diversity active cyber defenses. In Proceedings of the
2014 Symposium on Agent Directed Simulation. Society for Computer Simulation
International, 9.

[23] Shui Yu, Guofei Gu, Ahmed Barnawi, Song Guo, and Ivan Stojmenovic. 2015.
Malware propagation in large-scale networks. IEEE Transactions on Knowledge
and Data Engineering 27, 1 (2015), 170–179.

