
Real-Time Strategy Game Micro for Tactical Training
Simulations

Sushil J. Louis, Tianyi Jiang, Siming Liu
Evolutionary Computing Systems Lab
University of Nevada, Reno, Nevada

sushil@cse.unr.edu

ABSTRACT
Complex, realistic scenarios in training simulations can benefit
from good control of large numbers of simulation entities. How-
ever, training simulations typically focus on simulation physics and
graphics over the intelligence required to control large numbers of
entities. Real-Time Strategy games, on the other hand, have evolved
to make tradeoffs between the AI needed and human interaction
required to control hundreds of entities in complex tactical skir-
mishes. Borrowing from work in real-time strategy games, this
paper attacks the problem of controlling groups of heterogenous
entities in training simulations by using a genetic algorithm to
evolve control algorithm parameters that maximize damage done
and minimize damage received during skirmishes in a real-time
strategy game-like simulation. Results show the emergence of com-
plex, coordinated behavior among groups of simulated entities.
Evolved behavior quality seems to be relatively independent of the
underlying physics model but depends on the initial dispositions
of entities in the simulation. We can get over this dependence and
evolve more robust high performance behaviors by evaluating fit-
ness in several different scenarios with different initial dispositions.
We believe these preliminary results indicate the viability of our
approach for generating robust, high performance behaviors for
controlling swarms of entities in training simulations to enable
more complex, realistic training scenarios.
ACM Reference Format:
Sushil J. Louis, Tianyi Jiang, Siming Liu. 2018. Real-Time Strategy Game
Micro for Tactical Training Simulations. In GECCO ’18 Companion: Genetic
and Evolutionary Computation Conference Companion, July 15–19, 2018,
Kyoto, Japan. ACM, New York, NY, USA, Article 4, 8 pages. https://doi.org/
10.1145/3205651.3208288

1 INTRODUCTION
Our research focuses on Real-Time Strategy (RTS) games which
map to a broad category of strategic and tactical planning problems
in defense applications. The game genre has become a popular
research platform for the study of Computational and Artificial
Intelligence (CI and AI). In RTS games, players need to establish
bases, collect resources, and train military units with the aim of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan
© 2018 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-5764-7/18/07. . . $15.00
https://doi.org/10.1145/3205651.3208288

eliminating their opponents. RTS games have a number of proper-
ties that make them interesting for AI research [7, 27]. The dynamic
environment of RTS games requires strategic, tactical, and reactive
planning under uncertainity provided by a fog of war. There is no
one optimal strategy; for every strategy, there is a counter, and
misleading the opponent is one of the keys to winning. Figure 1
shows a screenshot from Starcraft 2, the most popular RTS game.

Underlying every RTS game is a simulation engine simulating the
physics of entities, combat, and game outcomes. If we consider more
realistic physics for entities and better battle damage assessment, an
RTS game is a wargaming simulation and can be used for simulation
training.

In RTS games, the term “Macro” specifies the strategic planning
dealing with economy building and choosing the types and num-
bers of units to produce. “Micro” refers to the fine-grained, nimble,
player control of units and unit groups during a skirmish to inflict
maximum damage on the enemy while sustaining minimal damage
to friendly units. In this paper, we mapmicro to control of simulated
teammates and opponents in training simulations. Althought, most
RTS games only allow maneuvering in two dimensions, we attack
the problem of generating good micro for realistic 3D maneuver-
ing in simulations. RTS games, being primarily for entertainment,

Figure 1: A screenshot of gameplay in Starcraft 2, a popular
RTS game

make tradeoffs between human and AI roles in controlling entities.
For example, consider a scenario where we would like to have one
group of units harass an opponent group of units. In an RTS game,
a player would have to rapidly execute several mouse and keyboard
commands in order to harass the opponent. In competition and for

https://doi.org/10.1145/3205651.3208288
https://doi.org/10.1145/3205651.3208288
https://doi.org/10.1145/3205651.3208288

GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan Sushil J. Louis, Tianyi Jiang, Siming Liu

fun, gaining such fast micro skills helps differentiate players and
RTS games therefore tradeoff simpler AI for more human control.
Although simulation training can take advantage of interaction
design and the simple unit AI in RTS games, training applications
usually need to make the opposite tradeoff. We want to reduce the
micro burden on the trainer by increasing AI competence. That
is, unlike in an RTS game where heavy player micro harrases the
opponent, simulation training would prefer providing harass as an
actual command to be invoked by the trainer.

We use a genetic algorithm to tune the parameters of a kiting
algorithm for RTS games that corresponds well to a harass algo-
rithm in simulation training for groups composed from two types
of entities. Results show that by tuning these parameters we can
evolve robust, high performing harassing (and other) behavior. Our
approach can evolve such behaviors for different sets of entity prop-
erties, works in two and three dimensions, and under a variety of
starting initial conditions. These preliminary results indicate the vi-
ability of our approach for providing transparent AI for controlling
training simulation entities. Videos at https://bit.ly/2IpNFjb show
the kinds of complex behavior that emerge.

The next section provides an overview of related work. We de-
scribe our control algorithms, representation, and underlying sim-
ulation environment in Section 3. Experimental results and dis-
cussion follow. The last section provides conclusions and future
work.

2 RELATEDWORK
Good micro for skirmishes in battle or more generally, coordinated
group behavior for adaptive agents, has applications in many fields
from wargaming and training to modeling industrial agents, robot-
ics, simulations, and video games [4, 8, 10, 14, 16, 19, 20, 24, 26, 29,
32]. Although flocking, swarming, and other distributed control
algorithms [8, 29] drawn from observing natural behavior have
been studied, we are interested in simulation training for tacti-
cal and strategic battles rather than the precursor navigation and
movement control that these algorithms provide. In RTS games,
there is strong research interest in generating good micro since
this can lead to your winning skirmishes even when your forces
are outnumbered or otherwise disadvantaged. This paper focuses
on evolutionary computing approaches to generating coordinated
autonomous behaviors (micro) for groups of simulation units (or
entities). Specifically, we use a genetic algorithm for searching
through the space of kiting algorithm parameters to find parameter
sets that lead to good micro. The kiting algorithm specifies how to
select targets, when to run away, when to run back, and how and
where to move as a group. Since the genetic algorithm searches
through the space of the kiting algorithm’s parameters, we consider
it a meta algorithm and name our approach meta search.

Within the broader gaming community, Yannakakis [33] evolved
opponent behaviors while Doherty [12] evolved tactical team be-
havior for teams of agents. Although these approaches are viable,
they have only been studied in two dimensions and without the
range of unit properties in our work. Many other approaches use
potential fields and influence maps to direct movement and so we
describe such prior work next.

In physics, a potential field is usually a distance dependent vec-
tor field generated by a force. Well designed combinations (usually
linear vector sums) of several attractive and repulsive potential
fields can lead to fairly complex observed behavior [6]. Potential
fields were introduced into robotics as a method for real-time obsta-
cle avoiding navigation and have been used in many video games
for controlling multi-unit group movement [14, 21, 26, 29]. In this
context, Hagelback and Johnson used potential fields to drive micro
in ORTS, a research RTS and partial clone of Starcraft, a very popu-
lar commercial RTS [2, 17]. Using some of this earlier work, meta
search evolves potential field parameters associated with friendly
units as they maneuver during skirmishes.

An influence map structures the world into a 2D or 3D grid
and assigns a value to each grid element or cell. Early work in
RTS games used influence maps for spatial reasoning to evolve a
LagoonCraft RTS game player [25]. Much other work uses influ-
ence maps for spatial reasoning in games and there are multiple
approaches to designing influence maps [5, 9, 28, 30]. Closer to our
work, Uriarte used influence maps for generating kiting behavior
for their Starcraft player, named Nova’s, micro [31]. Our approach
when played against Nova, learned to tune algorithm parameters
to beat Nova [22]. In our 3D experiments with two types of units
called zealots and vultures (borrowed from Starcraft), eight vultures
(fragile, fast, longer ranged units) learn to disperse and kite a much
larger number (50) of baseline zealots (robust, relatively slow, short
ranged units) while suffering relatively little or no damage. Further-
more, we show that our approach is not dependent on the physics
used by the units by exploring several different sets of unit speeds,
accelerations, and turn rates. Results show that we can evolve high
performance micro under several different sets of physics parame-
ters, and that the evolved parameter values adapt reactive behaviors
to these physics parameters well. Finally, when groups composed of
both zealots and vultures fight against equivalent (same numbers of
zealots and vultures) opponents, zealots and vultures learn different
strategies and learn to cooperate in defeating opponents.

The next section describes our simulation test-bed, and the 3D
physics model for unit movement. Section 4 specifies our represen-
tation and describes the parallel genetic algorithm used to evolve
control algorithm parameters. We then provide and discuss our re-
sults. The last section draws conclusions and points out directions
for future work.

3 SIMULATION ENVIRONMENT
Our research platform is an easily parallelizable, speed adjustable,
naval simulation built on top of the Ogre3D graphics engine [1, 3].
Figure 2 shows a screenshot from our simulator. Note that our
simulation’s graphics engine runs on a separate thread and can be
turned off, a useful feature for use with evolutionary computing
techniques. We modeled game play in FastEcslent to be similar to
StarCraft but with a navy-relevant, open ocean setting.

In our experimental scenarios, each player controls a group of
units modeled from StarCraft and each group fights against the
other within a limited time duration. The units used in our simula-
tion reflect vultures and zealots in StarCraft. A vulture moves fast
with a ranged weapon but is vulnerable with low hit-points which
makes it easy to destroy. A zealot is a melee unit and moves less fast

https://bit.ly/2IpNFjb

Real-Time Strategy Game Micro for Tactical Training Simulations GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan

Figure 2: A screenshot from FastEcslent.

Table 1: Unit properties defined in FastEcslent

Property Vulture Zealot
Hit-points 80 160
MaxSpeed 64 40
MaxDamage 20 16 × 2
Weapon’s Range 256 224
Weapon’s Cooldown 1.1 1.24

but has high hit-points and so is harder to destroy. Table 1 shows
properties of interest for both the vulture equivalents and zealot
equivalents used in FastEcslent. Since our research focuses on skir-
mish scenarios suitable for decision making training simulations,
we disabled “fog of war" in our experiments.

Game units are controlled by providing them a desired heading
(dh), a desired altitude (da), and a desired speed (ds). We use the
following physics equations to control units in our simulation.
An entity’s current speed depends on the entity’s acceleration rs ,
simulation time step δt , and desired speed ds

s = s ± rs × δt

where the ± depends on whether the desired speed is less than
(−) or greater than (+) current speed. Speeds are clamped to stay
between 0 and a maximum speed that depends on the type of entity.
We set a maximum altitude for units to 1000 (and minimum of 0)
and used a climb rate, rc , for every unit. Like for speed, the heading
and altitude of an entity given by

h = h ± rt × δt

and
a = a ± rc × δt

where h represents heading, a is altitude, rt is rotation speed, and
rc is climbing rate. From speed, heading, and altitude, we then
compute 3D entity velocity (v⃗) and position (p⃗) as follows

v⃗ = (s × cos (h), 0, s × sin(h))

p⃗ = p⃗ + v⃗ × δt

p⃗.y = a

(1)

Here, the xz-plane is the horizontal plane, the y-coordinate is alti-
tude, and we assume the entity is facing toward its heading on the
xz-plane.

We represent enemy spatial information using a 3D Influence
Map (IM) to provide possible move-to locations. The 3D enemy IM is
specified by two parameters,weight and the range. We use a cell size
of 64 × 64 × 64 pixels to reduce the computational load of updating

Figure 3: A 3D influence map. Cubes represent unit influ-
ence with blue for friendly and red for enemies. The rest of
our figures and movies only show the 2D projection of this
map on the water surface so we can actually see unit actions

the 3D IM. A unit occupying an influnce map cell gives the cell
the value weight and this influence extends to range neighboring
cells in all three dimensions. The value at a cell is then the sum of
all units that influence that cell. The GA evolves the weight and
the range parameters of the 3D IM and units move towards the
cell with lowest value. We update the 3D enemy IM over multiple
frames within a total of three seconds to avoid slowing down our
simulations. Once we know where to move, we use potential fields
to move our group to that location.

Equation 2 describes the standard Potential Field (PF) function.

F⃗ = cd⃗e (2)

Here F⃗ is the 3D potential field used by the entity, with d⃗ being
the distance vector from the enemy entity. c and e are evolvable
parameters representing the coefficient and the exponent. We use
one attractor PF and one repulsor PF to control entity movement.

P⃗F = cad⃗
ea + cr d⃗

er

where ca and ea are attractor force parameters, and cr and er
parameters for the repulsor force. Once our forces get close to
the opponent, a parameterized reactive control algorithm taken
from [11] controls unit movement and targetting. These reactive
control algorithm parameters are then tuned by the genetic algo-
rithm to generate high performance micro that maximizes fitness.
Algorithm 1 specifies the control algorithm with the targeting and
kiting portions outlined. The algorithm has three major parts. First,
Rnt specifies a radius around the current target within which to find
the next target. Second, a single parameter HPef controls targeting
and tells us when to target a specific enemy unit as opposed to the

GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan Sushil J. Louis, Tianyi Jiang, Siming Liu

Algorithm 1 Reactive Control Algorithm
UpdatePosition();
nearbyUnits← FindNearbyUnits(enemies, Rnt);
highFocusUnit← GetHighFocusUnit(nearbyUnits);

// Targeting
if lowUnit.healthPercentage < HPef then

Target← lowUnit
else if GetNumberOfAttackers(highFocusUnit) > 0 then

Target← highFocusUnit
else

Target← closestUnit
end if

// Kiting
if Weapon.cooldownTimer < (St * Weapon.cooldownRate) then

return
end if
if Weapon.cooldownTimer ≤ 0 then

IM← GetEnemyIM();
Unit← IM.getLowestValueUnit();
UpdateSquadState();
if distanceFrom(Target) > seekRange then

UnitAI.SetCommand(MoveTowards(Unit));
return;

end if
UnitAI.SetCommand(Attack(Target));

else
KitingPos← IM.GetKitingPos(position, Target.position, Dkb)
if distanceFrom(Target) < (Target.Weapon.range + Dk) then

if Weapon.range > Target.Weapon.range then
MoveTowards(KitingPos)

else if BeingTargetedBy(enemies) and healthPercentage < HPf b
then

MoveAwayFrom(Target);
end if

end if
end if

most high value unit or the closest unit. Third, four parameters
determine kiting behavior. St is the freeze time after each firing.
Dkb , what distance to move away when kiting and Dk , the distance
from a target at which units begin kiting. Finally, HPf b determines
when units flee.

The genetic algorithm thus evolves the values of a total of 12
parameters. Two 3D IM parameters, four PF parameter, and six
reactive control parameters. These parameters are encoded into a
51-bit string chromosome.

The control algorithm is not hard to understand and therefore
can be validated by training instructors and subject matter experts.
However, finding the values of these parameters for a specific op-
posing force can be very time consuming and not a good use of
time for a human. A genetic algorithm maximing damage done and
minimizing damage received enables quick parameter tuning and
saves valuable subject matter expert time.

4 REPRESENTATION
We use the following following fitness function to evolve friendly
vulture’s control parameters against a fixed set of enemy zealots.

f itness = damaдe + (HP × 400) (3)

damaдe represents the total damage, in hitpoints, dealt by friendly
units to enemy units and HP is the total remaining hit-points of all
friendly units at the end of a game. This equation seeks to maximize
damage done to opponent units while minimizing damage received
by friendly units. The 400 weight balances the relative worth of
vultures and zealots and enables vultures to avoid over aggressive
combat.

When evaluating amember of the genetic algorithm’s population,
we use the parameter set specified by the individual to control
friendly entities in our simulation against an opponent AI. The
simulation runs for a fixed time or until one side loses all units.
We then compute the fitness function and return the fitness to the
genetic algorithm. Since we have to run the simulation for every
individual for every generation of the algorithm, we used a simple
parallel master slave genetic algorithm in which all individuals are
evaluated in parallel. This was an elitist genetic algorithm where
offspring compete with each other as well as their parents for
populations slots [15, 18]. We used a population size of 50 and
run the parallel GA for 60 generations. The probability of 4-point
crossover was set to 0.88 and the probability of bit-mutation was
0.01. These values were experimentally determined to work well.

We implemented a baseline AI to control the enemy zealots in all
scenarios used in this study. Enemy zealots controlled by the base-
line AI will move toward and attack the closest opponent unit. In
these experiments, eight (8) vultures skirmished against 50 baseline
zealots. Initial results on experimental scenarios where each player
controls a group of units initially positioned in opposite corners on
a map without any obstacles or neutral entities were encouraging.
With the two groups of units on opposite sides of the map and the
baseline AI controlling zealots, meta search evolved effective micro
for 3D vultures achieving on average 93.6% of maximum possible
fitness over 30 runs of the genetic algorithm with different random
seeds [23].

5 RESULTS
We did two kinds of experiments to show the robustness of our meta
search approach and suitability for simulation training applications.
In the first set of experiments we investigated the effect of chang-
ing unit physics parameters. Good performance under different
maneuvering characteristics not only indicates that the approach
works across different physics, but also shows which physics pa-
rameters have the largest effect on effectiveness. All code for all our
expirements is at https://bit.ly/2IpNFjb along with videos showing
the emerging entity behaviors. Table 2 shows the the two physics

Table 2: Physics Parameters

Property P1 P2 P3 Description
Sm 64 64 64 Maximum Speed
Rm 60 75 90 Maximum Rotation Speed
Am 55 85 115 Maximum Acceleration

https://bit.ly/2IpNFjb

Real-Time Strategy Game Micro for Tactical Training Simulations GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan

parameters that we considered varying. Rm , the rotation speed and
Am , the acceleration. Varying the maximum speed significantly
affects vulture effectiveness and we left it at a fixed value.

We get the theoretical maximum performance when our vultures
suffer no damage and eliminate all zealots. This works out to a the-
oretical maximum fitness value of 19200. Figure 4 shows the overall

	0

	4000

	8000

	12000

	16000

p1 p2 p3 p4

Fi
tn
es
s 11013.3

15297.3
15773.3

17975

Figure 4: Average ofmaximumfitness of the AI player using
the realistic physics P1, P2, P3, and the game-like physics P4
over 30 runs.

performance of the evolved players using physics P1, P2, and P3.
We also considered unrealistic game physics with instantaneous
turns and the ability to reach maximum speed instantaneously. The
bar labeled P4 denotes performance under this kind of physics. The
results show that P4 units without realistic physical limits have,
as might be expected, the highest performance (93%). When com-
paring units moving under more realistic physics, as in training
simulations, we find that high values of rotation speed and acceler-
ation P3 and P2 performed similarly to P4 with only a 10% relative
performance loss. Both eliminate almost all the opponent zealots
while losing only one vulture at the end of the skirmish. Finally,
slower accelerating and turning units (P1) do worst. Over several
other experiments, we also find that acceleration is more important
than turning rate in our simulation because units need not face
the target to fire. All these results are averages over 30 runs of the
genetic algorithm.

These results show that the meta search approach works across
multiple physics implementations and is able to tune an under-
standable (transparent) control algorithm to these different physics
characteristics. However, our approach has two drawbacks. First,
we require an existing opponent, the equivalent of our baseline
AI, to evolve against. We are working on co-evolutionary meta-
search to tackle this issue [13]. Second, we have not fully addressed
the question of robustness. That is, does this approach work with
groups composed of multiple unit types and across multiple differ-
ent scenarios?

We attack these issues by investigating groups composed from
vultures and zealots skirmishing against an identical opponent
group in five different scenarios. The GA in this case tunes a total

of 24 parameters, 12 for vultures and 12 for zealots. We encode all
parameters into a 51 × 2 = 102-bit string and run the simulation to
return a fitness. In this study, Equation 4 determines fitness.

f itness = Damaдez + Damaдev + 160Hf z + 400Hf v (4)

Damaдez and Damaдev are the total damage done by friendly
zealots and vultures, Hf z and Hf v are the remaining hit point
(HP) of friendly zealots and vultures. Again, the equation aims to
maximize damage done to opponent units and minimize damage
received by friendly units. The vulture in StarCraft requires more
resources than the zealot. Hence, we weight vulture as 400 and
zealot as 160 based on prior research [11].

As pointed out earlier, we get within 93% of optimal on average
over 30 runs when evolving vultures against a baseline zealot AI
(ZAI). However, in this work, each side has two types of units:
zealots and vultures and we need a baseline AI that controls both
types of units to evolve against. We thus evolved the zealot and
vulture opponent AIs separately. To generate a good opponent
zealot AI, we used the approach in [23] to evolve a good zealot AI by
evolving zealot micro parameters against ZAI. The best individual
over 30 runs against ZAI, became our opponent zealot AI.

We then evolved a vulture opponent AI against this new oppo-
nent zealot AI. As before, the best individual over 30 runs against
the opponent zealot AI, became our new opponent vulture AI. To
test the performance of the new opponent AI, we ran it against
3000 random enemies and obtained an average fitness of 55% of
maximum. Anything over 50% usually means that we won the
skirmish.

The five scenarios are described below. Our side is blue (dark)
and the opponent is white1 and we start with the Line Formation
scenario shown in Figure 5. This deployed

Figure 5: Line Formation

units in a line formation with 10 zealots in front and 5 vultures
behind. Such a formation puts durable units (zealots) in front of
fragile units (vultures) to protect fragile units, and enable valuable
fragile units to do more damage and stand longer. Second, the
Surround scenario surrounds blue force with white as shown in
Figure 6.

1We wanted red versus blue but settled for white versus blue since both red and blue
are dark colors and difficult to differentiate in black and white print.

GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan Sushil J. Louis, Tianyi Jiang, Siming Liu

Figure 6: Surround

Third, the Trapped scenario surrounds white force with blue and
is the inverse of Surround. In the fourth scenario, called Random,
all units started with random position and orientation.

When evolving in each of these scenarios, fitness is evaluated
only on the scenario. Our fifth and last scenario is different and
we evaluate fitness by evaluating chromosomes in each of the four
scenarios above and summing the fitnesses. All skirmishes pit a
group composed of 5 vultures and 10 zealots against an identical
opponent.

In our first experiment with heterogeneous groups, we start by
setting the blue group on the right side and the enemy group on
the left side. We then ran the GA 30 times with 50 population size
and for 60 generations. Figure 7 shows that our GA can find an
average of maximum fitness over 30 runs of 5510 out of a possible
maximum fitness of 7200 which is 5510/7200 = 76.5% of maximum.
Note again that values above 50% mean that blue beat white.

	1000

	2000

	3000

	4000

	5000

	6000

	0 	10 	20 	30 	40 	50 	60

Fi
tn
es
s

Number	of	Generations

Avg	Max

5510.4

Avg	Avg
Avg	Min

Figure 7: GA performance on Line Formation.

Blue surrounds white in the second scenario as shown in Figure 6.
This scenario specifies an aggressive stance with a high probability
of destroying all enemies in a short time period. The GA settings are
the same as in the previous experiment. Figure 8 shows our GA can
find an average maximum fitness of 5182 which is 5182/7200 = 72%
of maximum.

	1000

	2000

	3000

	4000

	5000

	0 	10 	20 	30 	40 	50 	60

Fi
tn
es
s

Number	of	Generations

Avg	Max

5182

Avg	Avg
Avg	Min

Figure 8: GA performance on Surround.

	1000

	2000

	3000

	4000

	5000

	0 	10 	20 	30 	40 	50 	60

Fi
tn
es
s

Number	of	Generations

Avg	Max

4855.6

Avg	Avg
Avg	Min

Figure 9: GA on combined scenario.

The GA converges smoothly in the third experiment as well and
we get to 74% of maximum when white surrounds blue. Despite
random positioning being rare in simulations and in games, we
generate randoms positions for all units initially and then use the
same set of randomly generated initial positions in each run of
the GA. The GA does relatively poorly and barely manages to win
against white reaching 51.5% of optimal on these random scenarios.

The results from these first four experimental scenarios show
that we are able to achieve performance between 50% and 80% of
maximum. Note that although we know that 7200 is the theoretical
maximum fitness achievable, when evolving against the opponent
AI, we do not expect our units to survive unscathed and get to the
theoretical maximum. In order to inflict damage, our units have to
take damage and any fitness over 50% of maximum implies that we
destroyed all enemy units while some of our units survived.

We can now test how a solution evolved in one scenario performs
on another scenario and evaluate solution robustness. We chose
the best individual from all 30 runs on one scenario and tested this

Real-Time Strategy Game Micro for Tactical Training Simulations GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan

Table 3: Performance on training and testing scenarios.

Line Trapped Surround Random Avg
on others

Line 79% 48% 52% 59% 53%

Trapped 37% 80% 57% 52% 48.7%

Surround 42% 63% 77% 55% 53.3%

Random 45% 71% 68% 77% 61.3%

Combined 77% 63% 67% 71% 69.5%

Table 4: Average performance across 50 different random
scenarios.

Scenario Avg over 50 random scenarios
Line 47%
Trapped 46%
Surround 43%
Random 49%
Combined 56%

individual’s robustness in other scenarios. The first four rows of
Table 3 show these results. If we consider the scenario in which
a solution evolves as the training scenario and the rest as testing
scenarios, the boxed values show performance on training scenarios.
We can see that good performance on the training scenario does not
guarantee good performance on test scenarios. In addition, none
of the individuals do well on the Random scenario. These results
indicate that generalization remains elusive and we address this
issue next.

We did a fifth set of experiments where we combined all four
scenarios into one fitness function so that we can find a solution that
generalizes better. Figure 9 shows that the GA can find a maximum
average fitness of 4855 which is 4855/7200 = 67% of maximum. The
last row of Table 3 shows that the best solution from the combined
scenario does the best across all scenarios including random. These
results suggest that we need to train in diverse scenarios to evolve
robust solutions that perform well in never-before seen scenarios.

To confirm this, we tested each of the best solutions from the five
experiments on 50 different scenarios where all units are randomly
positioned. Again we can see that the solution from the combined
scenario does statistically significantly better. This testing provided
even stronger evidence that evolving in a variety of scenarios results
in more robust performance.

6 CONCLUSIONS AND FUTUREWORK
This paper shows that genetic algorithms can reliably evolve high
quality, robust, 3D micro behaviors for entities under multiple
physics models for single and multi unit type groups. The genetic
algorithm tunes the parameters of our transparent control algo-
rithm that uses potential fields to guide unit movement and uses
influence maps to determine vulnerable positions to attack. The
representation and evolutionary approach seems to generalize well
and produces different high performing micro behaviors tuned to
the physics of the entities being controlled.

The paper also shows that the approach extends to multi-unit
groups and we find that training on multiple scenarios leads to
more robust solutions that perform better on new test scenarios.
Compared to solutions that only trained on one scenario, solutions
trained on multiple scenarios performed significantly better on
50 randomly generated scenarios. Videos at https://bit.ly/2IpNFjb
show some of these solutions and the complexity of the behavior
that emerges.

We currently require an opponent AI to evolve against. To elim-
inate this requirement, we plan to investigate a co-evolutionary
approach to generate robust control for groups of units in simula-
tions and in games. In addition, we are interested in investigating
applyingmeta-search to groups of unmanned vehicles and to groups
composed from many types of units.

7 ACKNOWLEDGEMENTS
This work was in part funded by grant N00014-15-1-2015 and
N00014-17-1-2558 from the Office of Naval Research. Any opin-
ions, findings, and conclusions or recommendations expressed in
this material are those of the author(s) and do not necessarily reflect
the views of the Office of Naval Research.

REFERENCES
[1] 2002. Ogre3d. (2002). https://www.ogre3d.org/
[2] 2010. Starcraft. (2010). http://us.battle.net/sc2
[3] 2016. Fast Evolutionary Computing Systems Lab ENTity engine. (2016). https:

//ecsl.cse.unr.edu
[4] M. Barbuceanu andM.S. Fox. 1995. COOL: A language for describing coordination

in multi agent systems. In Proceedings of the First International Conference on
Multi-Agent Systems (ICMAS-95). Citeseer, 17–24.

[5] Maurice Bergsma and Pieter Spronck. 2008. Adaptive spatial reasoning for
turn-based strategy games. Proceedings of AIIDE (2008).

[6] Valentino Braitenberg. 1986. Vehicles: Experiments in synthetic psychology. MIT
press.

[7] Michael Buro. 2003. Real-time strategy games: A new AI research challenge.
Proceedings of the 18th International Joint Conference on Artificial Intelligence.
International Joint Conferences on Artificial Intelligence (2003), 1534–1535.

[8] Y.L. Chuang, Y.R. Huang, M.R. D’Orsogna, and A.L. Bertozzi. 2007. Multi-vehicle
flocking: scalability of cooperative control algorithms using pairwise potentials.
In Robotics and Automation, 2007 IEEE International Conference on. IEEE, 2292–
2299.

[9] Holger Danielsiek, R Stuer, Andreas Thom, Nicola Beume, Boris Naujoks, and
Mike Preuss. 2008. Intelligent moving of groups in real-time strategy games. In
Computational Intelligence and Games, 2008. CIG’08. IEEE Symposium On. IEEE,
71–78.

[10] P. Dasgupta. 2008. A multiagent swarming system for distributed automatic
target recognition using unmanned aerial vehicles. Systems, Man and Cybernetics,
Part A: Systems and Humans, IEEE Transactions on 38, 3 (2008), 549–563.

[11] Tyler DeWitt, Sushil J Louis, and Siming Liu. 2016. Evolving micro for 3d real-
time strategy games. In Computational Intelligence and Games (CIG), 2016 IEEE
Conference on. IEEE, 1–8.

[12] D. Doherty and C. OâĂŹRiordan. 2006. Evolving tactical behaviours for teams
of agents in single player action games. In Proceedings of the 9th International
Conference on Computer Games: AI, Animation, Mobile, Educational & Serious
Games. 121–126.

[13] R. Dubey, J. Ghantous, S. Louis, and S. Liu. 2018. Evolutionary Multi-objective
Optimization of Real-Time Strategy Micro. ArXiv e-prints (March 2018).
arXiv:1803.10316

[14] M. Egerstedt and X. Hu. 2001. Formation constrainedmulti-agent control. Robotics
and Automation, IEEE Transactions on 17, 6 (2001), 947–951.

[15] L.J. Eshelman. 1991. The CHC adaptive search algorithm: How to have safe
search when engaging in nontraditional genetic recombination. Foundations of
genetic algorithms (1991), 265–283.

[16] J. Ferber and O. Gutknecht. 1998. A meta-model for the analysis and design of
organizations in multi-agent systems. In Multi Agent Systems, 1998. Proceedings.
International Conference on. IEEE, 128–135.

[17] J. Hagelbäck and S.J. Johansson. 2008. Using multi-agent potential fields in real-
time strategy games. In Proceedings of the 7th international joint conference on

https://bit.ly/2IpNFjb
https://www.ogre3d.org/
http://us.battle.net/sc2
https://ecsl.cse.unr.edu
https://ecsl.cse.unr.edu
http://arxiv.org/abs/1803.10316

GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan Sushil J. Louis, Tianyi Jiang, Siming Liu

Autonomous agents and multiagent systems-Volume 2. International Foundation
for Autonomous Agents and Multiagent Systems, 631–638.

[18] John Henry Holland. 1992. Adaptation in natural and artificial systems: an in-
troductory analysis with applications to biology, control, and artificial intelligence.
MIT press.

[19] N.R. Jennings. 1993. Commitments and conventions: The foundation of coordi-
nation in multi-agent systems. Knowledge Engineering Review 8 (1993), 223–223.

[20] N.R. Jennings. 1995. Controlling cooperative problem solving in industrial multi-
agent systems using joint intentions. Artificial intelligence 75, 2 (1995), 195–240.

[21] O. Khatib. [n. d.]. Real-time obstacle avoidance for manipulators and mobile
robots. The international journal of robotics research 5 ([n. d.]).

[22] S. Liu, S. Louis, and C. Ballinger. 2016. Evolving Effective Micro Behaviors in
Real-Time Strategy Games. IEEE Transactions on Computational Intelligence and
AI in Games PP, 99 (2016), 1–1. https://doi.org/10.1109/TCIAIG.2016.2544844

[23] Siming Liu, Sushil J Louis, Tianyi Jiang, and Rui Wu. 2017. Increasing physics
realism when evolving micro behaviors for 3D RTS games. In Evolutionary Com-
putation (CEC), 2017 IEEE Congress on. IEEE, 2465–2472.

[24] M.J. Matarić. 1995. Designing and understanding adaptive group behavior. Adap-
tive Behavior 4, 1 (1995), 51–80.

[25] C. Miles, J. Quiroz, R. Leigh, and S.J. Louis. 2007. Co-Evolving Influence Map Tree
Based Strategy Game Players. In Computational Intelligence and Games, 2007. CIG
2007. IEEE Symposium on. 88 –95. https://doi.org/10.1109/CIG.2007.368083

[26] R. Olfati-Saber, J.A. Fax, and R.M. Murray. 2007. Consensus and cooperation in
networked multi-agent systems. Proc. IEEE 95, 1 (2007), 215–233.

[27] Santiago Ontañon, Gabriel Synnaeve, Alberto Uriarte, Florian Richoux, David
Churchill, Mike Preuss, et al. 2013. A Survey of Real-Time Strategy Game AI
Research and Competition in StarCraft. IEEE Transactions on Computational
Intelligence and AI in games 5, 4 (2013), 1–19.

[28] Mike Preuss, Nicola Beume, Holger Danielsiek, Tobias Hein, Boris Naujoks,
Nico Piatkowski, Raphael StuÌĹer, Andreas Thom, and Simon Wessing. 2010.
Towards intelligent team composition and maneuvering in real-time strategy
games. Computational Intelligence and AI in Games, IEEE Transactions on 2, 2
(2010), 82–98.

[29] C.W. Reynolds. 1987. Flocks, herds and schools: A distributed behavioral model.
In ACM SIGGRAPH Computer Graphics, Vol. 21. ACM, 25–34.

[30] Penelope Sweetser and Janet Wiles. 2005. Combining influence maps and cellular
automata for reactive game agents. Intelligent Data Engineering and Automated
Learning-IDEAL 2005 (2005), 209–215.

[31] Alberto Uriarte and Santiago Ontañón. 2012. Kiting in RTS Games Using Influ-
ence Maps. In Eighth Artificial Intelligence and Interactive Digital Entertainment
Conference.

[32] P. Vadakkepat, K.C. Tan, and W. Ming-Liang. 2000. Evolutionary artificial poten-
tial fields and their application in real time robot path planning. In Evolutionary
Computation, 2000. Proceedings of the 2000 Congress on, Vol. 1. IEEE, 256–263.

[33] G.N. Yannakakis and J. Hallam. 2004. Evolving opponents for interesting interac-
tive computer games. From Animals to Animats 8 (2004), 499–508.

https://doi.org/10.1109/TCIAIG.2016.2544844
https://doi.org/10.1109/CIG.2007.368083

	Abstract
	1 Introduction
	2 Related Work
	3 Simulation Environment
	4 Representation
	5 Results
	6 Conclusions and Future Work
	References

