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ABSTRACT
The paper presents how Extremal Optimization can be used in a
parallel multi-objective load balancing algorithm applied in exe-
cution of distributed programs. Extremal Optimization is used to
find task migration which dynamically improves processor load
balance in a distributed system. In the proposed multi-objective
approach we use three objectives relevant to distributed processor
load balancing in execution of program tasks. They are: compu-
tational load balance of processors, the volume of inter-processor
communication and task migration metrics. In the algorithms ad-
ditional criteria are used which are based on some knowledge on
the influence of the computational and communication loads on
task execution. The proposed algorithms are assessed by simulation
experiments with distributed execution of program macro data flow
graphs. Two methods of finding compromise solutions based on
the Pareto front were used: one based on a geometric (Euclidean)
distance of solutions and the second one based on the Manhattan
(taxicab geometry) distance. The influence of the distance geometry
on the final solutions is discussed.

CCS CONCEPTS
• Mathematics of computing → Evolutionary algorithms; •
Applied computing→Multi-criterion optimization anddecision-
making; • Computing methodologies → Shared memory algo-
rithms; Discrete-event simulation;
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1 INTRODUCTION
Extremal Optimization (EO) [1, 2] is a nature inspired optimiza-
tion method which has small computational complexity and low
memory requirements. These features make EO a promising ap-
proach to be applied in the algorithms for processor load balancing
in distributed systems. In several previous papers [4–7] we have
examined how EO could be applied to processor load balancing
in execution of distributed programs specified as macro data flow
graphs. The discussed algorithms concerned processor load bal-
ancing using both sequential and parallel single objective EO ap-
proaches. Based on these algorithms and experimental results we
have noticed that a multi-criteria load balancing approach could
improve the load balancing algorithms by taking into account more
complex optimization aims. It served as inspiration for a multi-
criteria approach to load balancing [8], in which we considered
three parameters of program execution in cluster environments:
computational load of processors, inter-processor communication
intensity and somemetrics relating to the quality of task migrations.
In our previous papers on single criterion load balancing based on
EO we have assumed the EO global fitness function which was a
linear combination of the three parameter kinds. Consequently, in
the current paper, we have taken a multi-objective approach and
defined separate optimization objectives based on some modifica-
tions of the three mentioned criteria with unchanged general load
balancing optimization axes. It enabled obtaining better quality of
load balancing than with the single criterion approach.

The three objectives have been included into the currently stud-
ied parallel multi criteria EO algorithm. Its general structure con-
sists in defining parallel branches in which series of steps are ex-
ecuted with the use of the dynamically changing three objectives
(acting as EO global fitness functions). For each objective respective
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methods of the EO solution element selection for improvement
were used (implied by EO local fitness functions). The algorithm
delivered the Pareto front of the optimization results and also the
final compromise solutions obtained by finding the solutions which
minimize the distance of the Pareto solutions to an ideal point with
respect to a given norm. In the case of our target of load balanc-
ing, we have examined two norms: the Euclidean distance in a
three-dimensional Cartesian space and the Manhattan distance.

The focus of the current paper is primarily on developing foun-
dations for the multi criteria EO-based load balancing methodol-
ogy in general. In this aspect, the proposed program and system
metrics used as the base of the load balancing algorithms enable
particular heuristics which have originality features. Good reviews
and classifications of classic load balancing methods are presented
in [3, 10, 11]. Good reviews of load balancing methods based on
evolutionary algorithms including EO are contained in [6, 7, 12, 13].
When we scan load balancing methods known in the literature or
we analyze features of current parallel computing environments
with load balancing, we notice that except of our works none of
others includes EO as the distributed processor load balancing al-
gorithm component. So, the approaches proposed in this and our
previous papers have clear originality features, employ low compu-
tational complexity and limited use of memory space of EO in load
balancing. In the proposed algorithms, a special parallel EO-GS
approach (EO with a Guided Search) is applied which assures that
selection of a new solution from the neighbourhood is guided by
some knowledge of the problem.

The algorithms presented in the current paper are improved ver-
sions of the EO-based load balancing algorithms presented in [5–7]
by using a multi-objective optimization approach. Large surveys
on general methods of multi-objective optimization can be found
in [17, 18]. Extensive surveys on multi-objective optimization meth-
ods combined with evolutionary algorithms in general can be found
in [19, 20]. These surveys are too extensive to be discussed here.
Some useful papers which support the general multi-objective op-
timization technology are presented in [21–26]. Multi-objective
approach applied to EO has already been discussed in several pa-
pers [27–30]. They propose basic methods of multi-objective op-
timization and cover different technical aspects of this approach.
However, they are oriented towards generalized optimization prob-
lems and do not cover specific multi-objective evolutionary algo-
rithms applied to processor load balancing.

The separability between the local fitness values for particular
solution components and the global fitness values is not straight-
forward in EO-based load balancing algorithms. The relevant data
cannot be expressed by any simple analytical formulae and should
be based on measurements done in a real system. The simplest way
was to evaluate them by simulating the application behaviour in a
given system, what in fact we were doing using the DEVS-based
simulator [15]. The algorithms were assessed by experiments with
simulated load balancing of distributed program represented as
macro data flow graphs. The experimental results obtained by sim-
ulation compared the compromise solutions obtained using our
multi-criteria parallel EO-GS approach with those of a classical EO-
GS algorithm with the mentioned above singular local and global
fitness functions. The superiority of the multi-objective approach

against the mentioned above single-objective one has been demon-
strated. The experimental results indicate also that, in general, both
metrics, Manhattan and Euclidean, may be useful for certain types
of application graphs. However, for application graphs used during
the experimental research, the Manhattan distance is more effective,
since it reduces the number of migrations more strongly.

The paper is organized as follows. In Section 2 the EO principles
are re-called. Section 3 describes the processor load balancing ap-
proach based on the proposed multi-objective parallelized EO-GS
algorithm. Section 4 presents the experimental assessment of the
proposed load balancing approach.

2 EXTREMAL OPTIMIZATION ALGORITHMS
Extremal Optimization is a nature-inspired, local search optimiza-
tion heuristic. It was proposed by Boettcher and Percus [1], fol-
lowing the Bak–Sneppen approach of self–organized dynamic crit-
icality [14]. As an attractive optimization method for NP–hard
combinatorial problem, it is also used in many other optimization
domains.

A probabilistic version of EO (τ–EO) operates on a single solution
S consisting of a given number of components si , each of which is a
variable of the problem. At each algorithm iteration, a local fitness
value ϕi is assigned to each of them. Then, for a minimization
problem, the components are ranked in decreasing order of local
fitness values. The worst component sj is of rank 1, while the best
one is of rank G, where G is the number of components. Then, a
distribution probability over the ranks k is considered as follows:
pk ∼ k

−τ , 1 ≤ k ≤ G for a given value of the parameter τ . Finally,
at each update, a rank k is selected according to pk so that the
component si of rank k randomly changes its state and the solution
moves to a neighboring one, S ′ ∈ Neigh(S), unconditionally. At the
end of iteration, the global fitness Φ(S ′) is computed, and the new
solution S ′ is saved if its global fitness value is better than that of
the best solution found so far. The only parameters are the total
number of iterationsNiter and the probabilistic selection parameter
τ . For minimization problems τ–EO proceeds as in the Algorithm 1.

To foster the convergence speed of EO optimization, we have
proposed a modified version of τ–EO algorithm, called Extremal

Algorithm 1 Extremal Optimization algorithm (EO)
1: initialize configuration S at will
2: Sbest ← S
3: while total number of iterations Niter not reached do
4: evaluate ϕi for each variable si of the current solution S
5: rank the variables si based on their fitness ϕi
6: choose the rank k according to the distribution probability

k−τ so that the variable sj with j = π (k) is selected
7: choose S ′ ∈ Neigh(S) such that sj must change
8: accept S ← S ′ unconditionally
9: if Φ(S) < Φ(Sbest) then
10: Sbest ← S
11: end if
12: end while
13: return Sbest and Φ(Sbest)
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Optimization with Guided Search (EO-GS) [5, 6]. In EO-GS, some
knowledge of the problem properties is used during the next so-
lution selection in consecutive EO iterations with the help of an
additional local target functionωs . The value of this function is eval-
uated for all neighbours Neigh(S) of rank k . Then, the neighbour
solutions are sorted and assigned GS-ranks д with the use of the
function ωs . The new state S ′ ∈ Neigh(S) is selected in a stochastic
way using the exponential distribution with the selection probabil-
ity p ∼ Exp(д, λ) = λe−λд . Due to this, better neighbour solutions
are more probable to be selected. The bias to better neighbours is
controlled by the λ parameter.

3 LOAD BALANCING BASED ON THE
PARALLEL MULTI-OBJECTIVE EO

In the paper we propose Parallel Multi-Objective EO-GS-based
load balancing algorithm for a cluster of multi-core processors
interconnected by a message passing network. In our approach, the
classical EO-GS method is extended in two ways. First, we use a
multi-objective approach in which we apply a number of objectives
supporting the load balancing problem. Second, our algorithm is
a parallelized version of EO-GS, following our previous research,
presented in [8]. In the following sections we describe our multi-
objective approach for load balancing of distributed programs and
its parallel extension.

3.1 Processor load balancing scheme
The goal of the load balancing algorithms is to dynamically con-
trol assignment of program tasks tk ,k ∈ 1, . . . , |T | to processors
(computing nodes) n,n ∈ 0, 1, . . . , |N | − 1, where T and N are the
sets of all the tasks and the computing nodes, respectively. Load
balancing actions are performed on-line to dynamically preserve
the even distribution of application tasks on processors. The goal
is the minimal total program execution time, achieved by task mi-
gration between processors. The load balancing method is based
on a series of steps in which detection and correction of processor
load imbalance is done, Fig. 1. The imbalance detection relies on
some run-time infrastructure which observes the state of proces-
sors in the executive computer system and the execution states of
application programs.

When load imbalance is discovered, processor load correction
actions are launched. For them a multi-objective EO-GS algorithm
is executed to identify the tasks which need migration and the
processor nodes which will be migration targets. Following this,
the required physical task migrations are performed with the return
to the load imbalance detection.

To evaluate the load of the system two indicators are used. The
first is the computing power of a node n: powerCPU(n), which is
the sum of potential computing powers of all the active cores on
the node, available for application execution. The second is the
percentage of the CPU power available for application threads on
the node n: timeCPU(n), periodically estimated on computing nodes.

System load imbalance I is a Boolean variable defined based on
the difference of the CPU availability between the currently most
heavily and the least heavily loaded computing nodes:

I = max
n=0, ..., |N |−1

(timeCPU(n))− min
n=0, ..., |N |−1

(timeCPU(n)) ≥ α (1)

Figure 1: The general scheme of load balancing based on
Multi-Objective EO with guided search.

The load imbalance equal true requires a load correction. The value
of α is determined experimentally (during experiments we set it
between 25% and 75%).

An application is characterized by two programmer-supplied
parameters, based on the volume of computations and commu-
nications tasks: com(ts , td ) is a communication metrics between
tasks ts and td , wp(t) is a load weight metrics introduced by a task
t . com(ts , td ) and wp(t) metrics can provide exact values, e.g. for
well-defined tasks sizes and inter-task communication in regular
parallel applications, or only some predictions, e.g. when the exe-
cution time depends on the processed data. Even when the values
are exact, we assume that there can some fluctuations of tasks exe-
cution or CPU power availability, so the dynamic load balancing is
required.

A task mapping solution S is represented by a vector µ(S) =
(µ1, . . . , µ |T |) of |T | integers ranging in the interval {0, 1, . . . , |N | −
1}. µi = j means that the solution S maps the i–th task ti onto the
computing node j.

3.2 Multi-objective Extremal Optimization
In our solution we solve a processor load balancing problem in
execution of distributed programs with the use of a multi-objective
EO-GS algorithm (MOEO-GS), shown as Algorithm 2. The pro-
posed MOEO-GS algorithm follows the general scheme of EO-GS
approach described in the section 2, with the exception that it uses
a set of EO local and global fitness functions and maintains the
Pareto front of non-dominated solutions.

During an iteration, the selection and solution improvement
are performed using a single objective (i.e. a single EO local and a
respective single global fitness functions). It is selected in a proba-
bilistic way from the MO objectives specified for our load balancing
problem (the local and global fitness functions used in our MOEO-
GS algorithm are defined in the Subsection 3.4).

The Pareto front is analyzed at the end of the algorithm to deliver
the Sbest solution. To approximate the optimal solution we look
for the so-called compromise solution, e.i. the solution as close as
possible to the ideal point. The compromise solution Sbest is selected
from DS using given a distance measure. In our implementation
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Algorithm 2Multi-objective EO with Guided Search (MOEO-GS)
1: initialize configuration S at will
2: Sbest ← S
3: DS ← ∅ {the set of non-dominated solutions (Pareto-front)}
4: while total number of iterations Niter not reached do
5: c ← a criterion for evaluation in the current iteration
6: evaluate ϕi,c for each variable si of the current solution S
7: rank the variables si based on their local fitness ϕi,c
8: choose the rank k according to k−τ so that the variable sj

with j = π (k) is selected
9: evaluate ωs for each neighbour Sv ∈ Neigh(S, sj ), generated

by sj change of the current solution S
10: rank neighbours Sv ∈ Neigh(S, sj ) based on the target func-

tion ωs
11: choose S ′ ∈ Neigh(S, sj ) according to the exponential distri-

bution
12: accept S ← S ′ unconditionally
13: if S is non-dominated then
14: include S in DS, remove dominated solutions from DS
15: end if
16: end while
17: select Sbest from DS using Φ(S)
18: return Sbest and Φ(Sbest)

Algorithm 3 Parallel Multi-objective EO-GS (PMEO)
1: initialize S using current nodes load state
2: Sbest ← S
3: while number of outer iterations Nouter not reached do
4: distribute Sbest on processors p ∈ {1, . . . , P}
5: parallel for on processors p ∈ {1, . . . , P} do
6: execute sequential MOEO-GS on processor p with the

number of iterations Ninner {the inner loop}
7: Sp ← result of MOEO-GS
8: end for
9: gather Sp from processors p ∈ {1, . . . , P}
10: Sbest ← find the best value of Sp,p ∈ {1, . . . , P}
11: end while
12: return Sbest and Φ(Sbest)

of the algorithm we use alternatively two distance metrics: the
Manhattan norm (taxicab geometry [9]) and the Euclidean norm.

3.3 Parallel MOEO-GS
A parallel version of the EO algorithm that has been used in the
multi-objective load balancing algorithm reported in this paper uses
the sequential MOEO-GS as its basic building block. The general
scheme of the algorithm is presented in Alg. 3. The algorithm begins
with an initialization of the EO starting “best” solution based on
current loads of all computing nodes in the distributed application.
Next, a parallel part of the algorithm starts, with parallel iterative
execution of sequential versions of EO.

The algorithm consists of two loops: the outer main global data
exchange loop and the inner parallel EO loop nested inside the
outer loop. The inner loop is executed in parallel branches of the

algorithm scheme. The inner loop body represents a sequential EO
algorithm executed a number of times. These can be classic EO,
EO-GS, or multi-objective EO which was described in the previous
section.

When all the parallel inner EO loops are terminated, the solu-
tion with the best value Sbest_p among the global fitness function
gathered from all parallel branches is registered as the current best
in the outer loop. Next, the algorithm enters the solution exchange
phase, in which an initial starting EO solution from previous itera-
tions is identified for the next outer loop iteration. The solution is
next distributed among P parallel branches of the scheme. Then,
the next parallel EO algorithm outer loop iteration starts.

If the total number of EO iterations to be executed in P parallel
branches is denoted asNiter then the number of inner loop iterations
in a single parallel branch is equal to Niter/P . Parallel branches are
executed on separate cores of a multicore processor we use for the
algorithm.

3.4 Global and local fitness functions
In our algorithm, we use three objective functions oriented on
supporting the load balancing problem: total computational load
unbalance in execution of application tasks on processors, total
volume of communication between tasks placed on different com-
puting nodes and task migration number which should be possibly
small in fighting imbalance of processor loads. Since MOEO-GS
is a minimization algorithm, it looks for the solutions with lower
values of the global fitness (or components with lower values of
the local fitness, respectively).

The definitions of fitness functions use two auxiliary formulas:

nwp(S,n) =
∑

t ∈T :µt=n
wp(t) (2)

WT =
∑
t ∈T

wp(t)/
∑

n=0, ..., |N |−1
powerCPU(n) (3)

where nwp(S,n) is the sum of computational load of program tasks
allocated to processor n in the solution S , andWT is the average
computational weight of program tasks attributed to one unit of
computational power of processors.

A load imbalance normalization constant is equal to maximal
numerical value of the imbalance (i.e. when all tasks are assigned
to the slowest processor):

Dnorm = (|N |−2)∗WT +
∑
t ∈T

wp(t)/ min
n=0, ..., |N |−1

powerCPU(n) (4)

The first objective concerns the reduction of the computational
load imbalance among executive processors in the system during
a given phase of distributed program execution i.e. defined by the
current MOEO-GS solution S . The global fitness functions Φ(S) for
computational load unbalance (objective U) is defined as follows:

Φ1
U (S) =

{
1 exists at least one free node
deviation(S)/Dnorm otherwise

(5)
where:

deviation(S) =
∑

n=0, ..., |N |−1
| nwp(S,n)/powerCPU(n) −WT | (6)
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The function Φ1
U (S) represents the numerical load imbalance met-

rics in the solution S . It is equal to 1 when in S there exists at least
one unloaded (empty) computing node, otherwise it is equal to the
normalized absolute load deviation of tasks from average load in S .

The local fitness function for MOEO-GS algorithm for the objec-
tive 1 is designed as follows:

ϕU (t) = γ ∗ load(µt ) + (1 − γ ) ∗ (1 − ldev(t)) (7)

where the function load(n) indicates how much the load of node n,
which executes t , exceeds the average load of all nodes. It is nor-
malized versus the heaviest load among all the nodes. The function
ldev(t) is defined as the difference between the load metrics of the
task t and the average task load on the node µt , normalized versus
the highest such value for all tasks on the node [6].

The second objective for the MOEO-GS algorithm is the global
EO-GS fitness function Φ(S) for external communication (objective
C) defined as follows:

ΦC (S) =
∑

s,d ∈T :µs,µd

com(s,d)/
∑

s,d ∈T

com(s,d) (8)

The functionΦC (S) ∈ [0, 1] represents the impact of the external (i.e.
inter-node) communication between tasks on the quality of a given
mapping S . It is a quotient of the sum of external communication
volume and the total communication volume in a program. When
all tasks are placed on the same node ΦC (S) = 0, when tasks are
placed so that all communication is external ΦC (S) = 1.

The local fitness function for objective 2 is designed as follows:

ϕC (t) = 1 − attr(t) (9)

where the attraction of the task t to its executive computing node
attr(t) is defined as the amount of communication between task t
and other tasks on the same node, normalized versus the maximal
attraction inside the node [6].

The third objective for the MOEO-GS algorithm is concerned
with task migrations induced by the current EO-GS solution S
in terms of the computational load imbalance. The global EO-GS
fitness function for migration (objective M) corresponds to the
number of migrations:

Φ1
M (S) = migration(S) (10)

migration(S) = |{t ∈ T : µSt , µS∗t }|/|T | (11)
where: µSt is the current node of the task t in the solution S , and
µS∗t is the node of the task t in the initial solution at the start of
the algorithm. The function Φ1

M (S) ∈ [0, 1] is a migration number
metrics. It is equal to 0 when there is no migration, when all tasks
have to be migrated Φ1

M (S) = 1, otherwise 0 ≤ Φ1
M (S) ≤ 1.

The local fitness function ϕM (t) for migration objective Φ1
M (S)

is designed as follows:

ϕM (t) =

{
1 when task t is migrated
0 otherwise (12)

The ϕM (t) local fitness function forces the migration of already
migrated tasks, thus increasing the probability that finally more
tasks will occupy their initial computing nodes.

An alternative version of the global fitness functions ΦU (S)
for the computational load unbalance objective is based on the mi-
gration quality coefficient. The function improvement(n) indicates

how much the current placement of tasks on a node n improves
(i.e. decreases) the load imbalance of the application, comparing
the initial task placement:

improvement(n) = |
nwp(S,n)

powerCPU(n)
−WT | − |

nwp(S∗,n)
powerCPU(n)

−WT |

(13)
where S is the currently considered solution and S∗ is the initial
task placement at the start of the algorithm.

Φ2
U (S) =

totalimpr(S) + 1
2

(14)

where:

totalimpr(S) =
∑
n=0, ..., |N |−1 improvement(n)

Dnorm
(15)

The function totalimpr(S) ∈ [−1, 1] indicates whether there is the
improvement (when totalimpr(S) < 0) or deterioration (when > 0)
in the total load balance in the system comparing the initial place-
ment of tasks of the application. In such a way the task placement
which ensures the best total processors balance improvement is a
preferred outcome of the algorithm.

To summarize, the following two parallel MOEO-GS variants
were designed: MO-1 which uses Φ1

U (S),ΦC (S),ΦM (S) global fit-
ness functions and MO-2 with Φ2

U (S),ΦC (S),ΦM (S) global fitness
functions, respectively. These variants use the respective local fit-
ness functions, defined in equations 7, 9 and 12, which match the
used global fitness functions, respectively.

4 EXPERIMENTAL ASSESSMENT
In this section we present experimental assessment of the algo-
rithms. The experiments have been conducted using simulated
execution of application programs in a distributed system. The
applied simulator was built following DEVS discrete event system
approach [15].

The simulated model of execution corresponds to parallelization
based on message-passing, using the MPI library for communica-
tion. The general structure of a program resembled typical numeri-
cal programs or physical phenomena simulations. The exemplary
programs were modeled as Temporal Flow Graphs, TFG, [16]. In
the TFG model, program consists of a set of modules called phases,
composed of parallel tasks, Fig. 2. Tasks of the same phase can
communicate. At the boundaries between phases there is a global
exchange of data.

During experiments we used a set of 11 synthetic exemplary
programs, which were randomly generated. The number of tasks
in an application varied from 64 to 1000. The communication to
computation ratio C/E (the quotient of the communication time to
the execution time) for applications was in the range [0.05, 0.20].

During the experimental research, two parallel MOEO-GS vari-
ants were used:MO-1 andMO-2. Moreover, both MOEO-GS vari-
ants can use different method of selection of a compromise solution
among the set of non-dominated solutions included in the Pareto
front. As we already have shown in Subsection 3.4, methods based
on a geometric distance (Euclidean) and the Manhattan distance are
used. They are denoted as MO-1E, MO-1M and MO-2E, MO-2M,
respectively.
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Figure 2: The general structure of exemplary applications.

4.1 Performance of the presented algorithms
To assess performance of the presented multi-objective algorithms,
we used two reference single objective load balancing algorithms
based on sequential EO. One (denoted as SO-C) aims in balancing
exclusively computational loads of processor nodes. It is based on a
classical sequential EO without guided search. The second one (de-
noted as SO-WS) is based on a single objective EO with the guided
search and is using a global fitness functionwhich is a weighted sum
of the three aforementioned criteria (see Subsection 3.4) according
to the equation:

ΦWS(S) = ΦC (S)∆1 + ΦM (S)∆2 + Φ
1
U (S)[1 − (∆1 + ∆2)] (16)

where ∆1 and ∆2 are weights from the range (0,1).
Load-balanced execution was studied in systems containing from

2 to 32 homogeneous processors. The parameters used inMOEO-GS,
the load balancing control and theweighted sum of the global fitness
function of the single objective EO-WS were selected based on
experiments, presented in [4, 5]. We applied such parameter values
for which balanced performance between application speedup and
migration count was obtained: α = 0.5, τ = 1.5, λ = 0.14,Niter =
500, β = 0.5,∆1 = 0.13,∆2 = 0.17,γ = 0.75.

Our simulation environment allowed us to model the task migra-
tion cost. We have assumed the cost of migration of a single task
to be equal to 20% of the task computational weight, as a medium
migration cost between 0% and 40% considered also in further ex-
periments. Besides the paralel speedup, we collected the migration
statistics to better characterize our proposed parallel MOEO-GS
algorithms. It gives the average total number of task migrations in
application execution.

During the experiments, we assumed the number of iterations
for EO and MOEO Niter = 500 and the exchange rate of solutions
between parallel branches every 25 inner iterations. We used P = 4
parallel branches, thus, the inner loop count is 25, and the outer
count is 5 (4 × 5 × 25 = 500).

The results are averages of 10 runs. For each run 4 different meth-
ods of initial task placements (random, round-robin, METIS graph
partitioning, packed /i.e. round-robin mapping of equal groups of

tasks/) were used. Thus, the result for each parameter set is an
average of 40 runs.

The summary of results for the entire set of used applications
is presented in Fig. 3 and 4. The first one presents the parallel
speedup of applications as a function of the number of the simulated
computing nodes. The graph shows the average speedup for all
applications with irregular communication pattern. It can be noted
that regardless of the method used to select a final, compromise
solution, multi-criteria algorithms generally achieve better speedup
than their sequential counterparts. It can also be noted that for

Figure 3: Application parallel speedup.

Figure 4: The number of task migrations per single applica-
tion execution.

Figure 5: Application speedup improvement versus SO-C for
execution on 32 computing nodes.
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Figure 6: The Pareto front for single execution of MO-2 for
P9F exemplary application run on 32 computing nodes.

Figure 7: The Pareto front for single execution of MO-2 for
P9A exemplary application run on 32 computing nodes.

variantMO-2, there is a greater variation in results depending on the
method used to select a compromise solution. For the applications
used during the experiments, the method based on the Manhattan
distance gives better results.

A similar situation occurs for the number of migrations (Fig. 4).
With the exception of MO-2E, the parallel load balancing algorithms
are characterized by a smaller (sometimes much smaller) number
of migrations required for application load balancing. The results
for the number of migrations are correlated with the results for the
speedup: the lower the number of migrations in the application,
the greater the speedup. We also collected the results for a variable
migration cost. The speedup âĂŃâĂŃfor the varying migration
weights is shown in Fig. 5. These results confirm the hypothesis
that the speedup correlates with the number of migrations. It can be
noted that the algorithms that give the smallest number of migra-
tions give much better speedup for the increasing cost of migration.
This result also explains the large variation in the speedup results
for the MO-2E and MO-2M algorithms. This is due to the fact that
the MO-2M variant of the algorithm is able to find a good balance
with fewer number of migrations, which gives big gains when the
migration is expensive.

In addition to presenting the results for the parallel MOEO-GS
method, the aim of the research was also to determine the impact
of the method used to select a compromise solution on the quality
of results. For this purpose, during the experimental research, the

resulting Pareto front was recorded for each execution of theMOEO-
GS algorithm. The charts of sample, representative Pareto front sets
are shown in Fig. 6 and 7. They show the result for one algorithm
execution, whereby the set of all non-dominated solutions was
chosen for which the values of communication objective were equal
to 1 (i.e., the entire application communication was external and
occurred between different computing nodes). By omitting the
communication criterion, it was possible to draw the Pareto front
set on the plane. Fig. 6 and 7 show also the best solutions chosen
when the Euclidean distance or the Manhattan distance was used.
The final compromise solution found by eachmethod is also marked
using an arrow. It can be noted that the resulting Pareto front curves
for applications used during the experiments are not convex.

4.2 The role of the communication criterion
During the analysis of the Pareto sets for individual executions of
exemplary applications, it was observed that very often all non-
dominated solutions had the value of the communication criterion
equal to 1 (maximum). This means that all communication was
external and occurred between different computing nodes. The
analysis showed that this phenomenon results from the structure
of applied exemplary applications. Due to the irregular nature of
communication, there is a very little probability of finding a dis-
tribution of tasks on processors so as to optimize communication
(to make it internal within one node). The bigger the application,
the harder it is to find such a distribution. This is confirmed by the
results of the experimental research. For the smaller P9A graph
(320 tasks) about 50% of the non-dominated solutions had the value
of the communication criterion less than 1. For the largest used
application (P9F, 1000 tasks) only 2% of solutions had the value of
the communication criterion less than 1.

This means that for graphs with an irregular communication
structure, the communication criterion (C) plays an auxiliary role
only. During the operating of theMOEG-GS algorithm, the optimiza-
tion of unbalance (U objective) and optimization of the migration
number (M objective) are of fundamental importance.

4.3 Experimental results summary
Exemplary Pareto front charts indicate that for the applications
used in the experimental studies, Euclidean and Manhattan metrics
find compromise solutions from Pareto fronts completely distant
from each other. This is due to the substantial difference in the
cutting curve for these measures. For the Manhattan distance, it is
rhomboid, whereas for the Euclidean, it is elliptical. In the examples
given, the Manhattan distance prefers solutions with fewer migra-
tions, but with a slightly larger computing node unbalance than the
Euclidean distance. The Euclidean metrics prefers solutions with
the least possible computing node unbalance.

It should be noted that for given applications the Pareto curve
is not convex, thus in general it is not possible to convert one
distance metrics to another by changing the weights of individual
optimization criteria. Some solutions can never be chosen as a
compromise by Manhattan and vice versa: the Euclidean metrics
will never choose some solutions as compromise, regardless of the
weights used.



GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan I. De Falco et. al.

In general, this means that both metrics, Manhattan and Eu-
clidean, may be useful for certain types of applications. The research
shows that for application graphs with an irregular communication
patterns, the Manhattan distance is more effective. It reduces the
number of migrations more strongly. It is also consistent with the
results for various migration weights, in which the metrics that
strongly reduce the number of migrations (ie. Manhattan based MO-
1M, MO-2M) give better results than Euclidean when the migration
weight increases.

5 CONCLUSIONS
The paper has presented a parallel multi-objective approach ap-
plied to Extremal Optimization used in processor load balancing in
execution of distributed programs. The presented algorithms are
based on EO with Guided Search which improves the convergence
of the entire algorithm. In the multi-objective EO approach, three
objectives relevant in processor load balancing for distributed ap-
plications are simultaneously controlled: total computational load
balance, total volume of external communication and the num-
ber of task migration. Different global fitness function variants
for computational load balancing were designed and verified. The
proposed algorithms were assessed by simulation experiments on
EO-controlled execution of macro data flow graphs of distributed
programs. The experiments have shown that the multi-objective
approach added to the EO algorithms for load balancing has im-
proved the quality of obtained results. The paper provides also a
more detailed coverage of the internal properties of the proposed
multi-objective algorithms including the analysis of the Pareto front
itself.
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