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ABSTRACT
This work formalizes a multi-objective evolutionary approach for
the segmentation issue according to Piecewise Linear Representa-
tion. It consists in the approximation of a given digital curve by a
set of linear models minimizing the representation error and the
number of such models. This solution allows the final user to decide
from the best array of best found solutions considering the different
objectives jointly. The proposed approach eliminates the difficult
a-priori parameter choices in order to satisfy the user restrictions
(the solution choice is performed a-posteriori, from the obtained
array of solutions) and allows the algorithm to be run a single time
(since the whole Pareto front is obtained with a single run and dif-
ferent solutions may be chosen at different times from that Pareto
front in order to satisfy different requirements). This solution will
be applied to Petroleum Industry in particular to the problem of
identifying resources from extraction areas in order to optimize
their operational costs and production capacity.
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1 INTRODUCTION
Digital curves domain, leaded by the importance of human process-
ing and understanding of visual information, established its roots
with the psychological studies performed in the middle fifties [2].
One of the main keys to the study of this domain is the represen-
tation performed over the original data. The goal of this represen-
tation is to cover the main characteristics of a given shape with
the least amount of data. This dimensionality reduction performs
several objectives. On the one hand, it reduces the storage capacity
required for the obtained time series, and, on the other hand, it has
an immense impact on the efficiency of the subsequently applied
methods, such as feature extraction [24].

Segmentation processes may resort to different representations,
being Piecewise Linear Representation (PLR, also named Piecewise
Linear Approximation, PLA, or polygonal approximation) among
the most extended options. This scope has been deeply analyzed
and used according to a data mining perspective [12, 18, 21] and also
as a digitization method [22, 32]. Several works have detailed the
characteristics of PLR segmentation which have led to its extensive
use: simplicity, locality, generality, compactness and ease of use
[18, 32]. PLR segmentation is based on the approximation of a curve
(or, more generally, a certain time series) T with length n by means
of a set of K segments (where K << n), approximating each of
these segments by a linear model. It can be also described as the
process of searching the dominant points of a given curve, being
these points the edges of the segments in the previous definition.

Polygonal approximation techniques are offline segmentation
processes (since they require the whole curve they will be applied
to) which can be divided into three different categories: sequential
approaches, split and merge approaches and heuristic search ap-
proaches. Sequential and split and merge approaches have a strong
dependency on the initial steps of their algorithms (either in the
form of the starting point for the scanning or the initial segmen-
tation performed). The outcome of these methods is extremely
sensible to their segmentation criterion parameters (such as error
tolerance), values which may not be easy to determine. On the other
hand, heuristic based approaches are computationally expensive,
being not guaranteed to be optimal.
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Most of the different presented techniques share the lack of
a direct mechanism to control the number of segments obtained
(and through it, the compression performed over the original data),
even though indirect mechanisms may exist (e.g., error tolerance
indirectly controls segment length, which along with the number
of elements in the original data determines the number of segments
in the final representation). Other alternatives, such as evolutionary
approaches, allow the choice of the number of segments but lose
the control over the approximation error. Comparisons between
different algorithms, especially in the data mining domain [18]
are usually performed according to the error value obtained by
the representation, not considering the cost of that error. Some
techniques do take into account the number of segments of the
obtained representation (such as in [29], where each cycle tries to
obtain the longest possible segments with the lowest possible error
value) but, since those objectives are in conflict, it is performed
by what, in the multi-objective community, is usually referred to
as a priori techniques: in order to deal with different objectives in
conflict jointly, a decision maker (DM) determines the importance
of each of the objectives and, according to that importance, their
joint value is calculated and used by underlying algorithms[4].

The previous argumentation introduces segmentation as a multi-
objective optimization problem (MOOP, [3]): segmenting a digital
curve implies optimizing a set of objective functions in conflict
(the considered error of the segmentation and the compression
required in order to obtain that error) obtaining values for them
which are acceptable to the decision maker [25]. This definition
leads to the question of who should play the decision maker role in
a segmentation algorithm. Most presented approaches assign this
role to the algorithm designer.

Two different segmentations show different values for their ob-
jective functions, namely the error function and the number of
segments. The suitability of the representation depends on its par-
ticular application. Some may require a certain maximum error
value, while others, due to their costly processing, may require
a number of segments as low as possible. The range of possible
processes is huge, from fast similarity search [17] or data mining
approaches [19] up to optical character recognition applications
[27] or applications in the air traffic control domain [15]. Also, each
of these processes may require different priorities for the differ-
ent objective functions, and these requirements may change over
time (e.g, different classifications may be preferred according to
different available computer resources). This argumentation leads
to the assignment of the decision maker role to the final user of the
algorithm, considering as well that this DM may have changing
preferences at different instants of time.

Available algorithms generally assume the algorithm designer
to be also the DM, performing an a priori dealing of the objectives
in conflict, usually by means of an aggregating function [35]. This
implies that the algorithm designer establishes the importance of
the different objectives, and afterwards codifies it into the algo-
rithm running cycle. In other cases, the control over the secondary
objective function may be implicit: as explained before, algorithms
with a certain error tolerance as one of their input parameters may
vary the compression value accordingly to that parameter value.
This would imply that, for a scenario where the requirements of the
decision maker (the final user) may change over time, the original

data would have to be stored and the algorithm rerun with different
parameters in order to deal with those different requirements. It is
important to highlight that the choice of those parameters in order
to meet certain requirements (especially regarding the implicit ob-
jective function values) can get to be very difficult to be performed
accurately.

The objective of this work is to propose amulti-objective solution
based on genetic algorithms for the PLR segmentation problem to
cope with the previous requirements: allowing the final user to
decide from the best array of best found solutions considering the
different objectives jointly (which will constitute the Pareto Front
of the problem). The proposed approach eliminates the difficult a
priori parameter choices in order to satisfy the user restrictions (the
solution choice is performed a posteriori, from the obtained array
of solutions) and allows the algorithm to be run a single time (since
the whole Pareto front is obtained with a single run and different
solutions may be chosen at different times from that Pareto front
in order to satisfy different requirements).

2 OVERVIEW OF SEGMENTATION
TECHNIQUES

One of the difficulties of detailing with the state of the art for the
segmentation domain are the different naming conventions which
similar algorithms receive in the different domains where they are
applied [18]. A clear example of these different naming conventions
may the Ramer algorithm, [28]. That name is used in the image
processing field, while in cartography is known as the Douglas
Peucker algorithm [8], or the Iterative End-Point Fits algorithm,
usually referred to in the machine learning community [9]. Another
commonly used name for this approach is the Top-Down algorithm
[18].

The objective of this section is to provide an insight into some
different alternatives available in the segmentation domain follow-
ing the classification provided in the previous introduction section.
This description of different algorithms will be used as the basis
for the proposal of the multi-objective technique presented in this
work, and at the same there provide a considerable understanding
of the approaches which have been taken to deal with the segmen-
tation issue. For formalization purposes, we will start defining the
components of the given time series with equation 1, where xi and
yi are the plane coordinates of the point and ti is the timestamp of
the point’s reception. If we are dealing with a closed curve with-
out an explicit timestamp, that equation can be adapted following
equation 2.

t = { ®pi }, ®pi = (xi ,yi , ti ), i = 1, (1)

t = { ®pi }, ®pi = (xi ,yi , i), i = 1, . . . ,n (2)
Teh and Chin algorithm [36] is based on the concept of the region

of support [20]: this concept states that each boundary point of a
closed curve must have its own view of the curve, being relevant
points those which have a meaningful view of the curve which
blocks the view of other non-relevant points.

In [36] the proposal is based on the difficulty of determining the
curvature for a digital curve, which, in the real Euclidean plane,
can be easily defined with equation 3. The functions to determine
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discrete curvature are named measures of significance [30]. Three
different measures of significance are used: the k cosine measure,
the k curvature measure and the 1 curvature measure. The k cosine
measure was introduced in [31] and is shown in equation 4. The k
curvature measure was introduced in [14] and is shown in equation
5. Finally, the 1 curvature measure is derived from the previous
measure (where k = 1), and is shown in equation 6.

d2y
dx 2

[1 + (dydx )
2]3/2

(3)

cosik =
®aik · ®bik

| ®aik | | ®bik |
(4)

CURik =
1
k

−1∑
j=−k

fi−j −
1
k

k−1∑
j=0

fi−j (5)

CURi1 = fi+1 − fi (6)
Marji and Siy algorithm [22] relies on the concept of support

arms. This means that they do not use the region of support to
calculate a significance measure of the boundary points, but instead
compute the strength of the end points of their calculated regions
of support, both in clockwise and counterclockwise directions. This
strength is determined by the frequency of their choice. The idea is
supported on an ideal corner shape, where the corner point would
be chosen as an endpoint for all the different points in the shape,
and thus, chosen as the relevant point.

To determine both support arms, the function shown in equation
7 is maximized, where Ljk is the length of the segment joining
points pj and pk and Ejk is the sum of the squared perpendicular
distances of the points contained between pj and pk to that seg-
ment. This is performed increasing the length of the region until
that increase makes the function obtain a lower value. When that
happens, the previous end point is considered the support point. k
variable has an initial value of j + 2 or j − 2, depending on which
support arm is being calculated.

F = Ljk − Ejk (7)
Genetic algorithms have been used to deal with the polygonal

approximation issue in a variety of ways [13, 26, 37, 39, 40]. These
different approaches share many characteristics, such as the cod-
ification used, while they differ in specific choices, such as the
crossover or mutation operators used.

In Yin algorithm, from the formulation of the problem presented
in equations 1 and 2, the codification proposed is a string of 1’s
and 0’s as presented in equation 8, where ai = 1 implies that ai
is a dominant point. The required fitness function of the genetic
algorithm is expressed in equation 9, where R is a constant and
E(α) is the approximation error between the segmentation result
and the original data. Two different approximation error functions
are proposed in the paper, the maximum error (E∞, equation 10)
and the integral square error (E2(α), equation 11). In both cases,
ei (α) is the distance between pi and the nearest line segment.

α = a1,a2, . . . ,an (8)

f (α) = R − E(α) (9)

E∞(α) = max
1≤i≤n

ei (α) (10)

E2(α) =
n∑
i=1

[ei (α)]
2 (11)

The algorithm uses an elitist strategy [13], where the fittest string
in each generation is always taken to the following one. The rest of
the genetic algorithm parameters are a population size of 100 and a
number of generations of 100.

[37] proposes several modifications over Yin algorithm, mainly
to increase the speed required to obtain the solution. An additional
table is added to the genetic algorithm, determining the probability
of pointpi to be a break point regarding the current population. This
probability is based on the k-cosine measure of significance (equa-
tion 4). The proposed probability function is shown in equation 12,
where Z is the population size.

PB (i) =

∑Z
j=1 cosik j + 1

2Z
(12)

The algorithm uses the same operators presented in Yin algo-
rithm, but adds a divide-and-conquer technique based on the break
point detection. Once a point has been determined to be a break
point, the GA divides the chromosome in two parts according to the
break point position and continues to be executed over both parts
separately. The final solution is built upon the partial solutions of
the different GAs built in this manner. The configuration parame-
ters used are also different (a fact which does affect the number of
generations required, even though no discussion was included in
the work), setting the initial values of the population size to 60, the
crossover probability to 0.6 and the mutation probability to 0.3.

It is remarkable that both algorithms require an input parameter:
the number of segments in the solution. This fixed number of seg-
ments is the factor which creates the need for operators which do
not alter the number of dominant points in the parents (if we are
dealing with the crossover operator) or in the original individual
(in the case of the mutation operator).

3 MULTI-OBJECTIVE APPROACH TO
SEGMENTATION PROCESSES

The traditional criteria used in the data mining community to de-
termine the quality of a segmentation process [18, 21], are the
following:

(1) Minimizing the overall representation error, total_error ,
(2) minimizing the number of segments such that the represen-

tation error is less than a certain value,
max_seдment_error , and

(3) minimizing the number of segments so that the total repre-
sentation error does not exceed, total_error .

These criteria highlight the importance of the number of seg-
ments, but the comparisons performed, for instance, in the one of
the source works for those criteria, [18], are based only on the qual-
ity of the segmentation obtained, neglecting the cost of that quality.
From the definition of the input data included in equations 1 and 2,
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we may formalize the definition of a segmentation process of (13),
where each Bm would be the set of resultant segment, delimited
by the dominant points at their extremes, kmin and kmax , and the
number of those segments must be lower than n, the number of
points in the original data.

S(t) = {Bm },Bm = { ®pi }, with
i = kmin , . . . ,kmax ,

m ∈ [1, . . . ,n − 1].
(13)

Considering the previously stated criteria, we need to perform
that segmentation according to a set of different objective func-
tions which have to be minimized jointly, and which are in conflict.
That problem matches perfectly the definition for a multi-objective
optimization problem. The textual definition for these problems
by [25] states that a multi-objective optimization problem can be
defined as the problem of finding a vector of decision variables
which satisfies constraints and optimizes a vector function whose
elements represent the objective functions. These functions form a
mathematical description of performance criteria which are usually
in conflict with each other. Hence, the term optimize means finding
such a solution which would give the values of all the objective
functions acceptable to the decision maker. As seen in section ??, it
may be formalized following equation 14.

fp : χ → ℜ, F (x) = (f1(x), . . . , fk (x))minx ∈ℜF (x)

such that

{
дi (x) ≤ 0 i = [1 . . .n]
hj (x) = 0 j = [1 . . .m]

(14)

Combining the segmentation problem formulation with the gen-
eral multi-objective problem formulation according to the previous
criteria, we obtain equation 15, which is the general formulation for
the problem. E(S(t), t), is the approximation error between the out-
put segments of the process and the original data and E(S(Bm ),Bm )

is the approximation error between the segment created by the
dominant points of segment Bm (the edges of the segment) and the
original points contained in Bm .

Bm =®x j , such that
j ∈ [kmin , . . . ,kmax ],m ∈ [1, . . . ,p],
p < n → min{E(S(t), t),p}
E(S(t), t) ≤ total_error
∀m,E(S(Bm ),Bm ) ≤ max_seдment_error

(15)

Once the problem has been formalized (this formalization had
been initially required in chapter ??, to define the proper qual-
ity metrics), it is interesting to analyze the ways in which this
multi-objective formulation has been tackled in the available al-
gorithms. There are, basically, three different ways to deal with a
multi-objective problem, [4]. The definitions in the reference are
restricted to multi-objective problems solved by means of evolu-
tionary algorithms, but most of the definitions can be generalized
to different approaches:

• A priori techniques: These techniques require the DM, in
general, to define the importance of the different objective

functions in the MOP. The MOP is, with the use of these im-
portance factors, reduced to a single objective optimization
problem.

• Progressive techniques: These techniques require the direct
interaction of the DM during the search process, combining
cycles of search and decision making.

• A posteriori techniques: A posteriori techniques seek for
Ptrue and PFtrue [16], trying to perform a search as wide-
spread as possible to generate as many elements as possible
from the Pareto Set.

Ptrue is the Pareto Optimal Set and PFtrue is the Pareto Optimal
Front. The Pareto Optimal Set is the set of solutions where, changing
their values, cannot improve one of the objective functions with-
out degrading the value of another objective function. The Pareto
Optimal Front is the set of objective function values associated to
the Optimal Pareto Set. Their formal definition may be looked up
in [4]. Applied to the segmentation issue, the Pareto Optimal Set
would be the set of different segmentation solutions (each of them
with a different number of dominant points) where changing the
number of dominant points in any of those solutions would result
in a solution with a worse approximation error than one of the
solutions already included in the Pareto Set. This means that the
output for a segmentation process seeking that Pareto Optimal Set
would be the best possible segmentation solutions with different
compression levels (being a compression level the rate between
the original points in the curve and the dominant points in that
particular element of the Pareto Set).

The different techniques presented in section 2 deal with the
problem according to a priori techniques. This means that they
turn, with different mechanisms, the multi-objective problem into
a single objective problem, and optimize that single objective prob-
lem with their particular techniques. Different a priori techniques
include lexicographic ordering [11], aggregation functions [35] or
converting objective functions to input parameters. Lexicographic
ordering imposes an order among the different objective functions,
and the best fitted individual is obtained according to the most
important objective function, using the others as secondary fitness
values to solve tie situations. Aggregation functions build a sin-
gle fitness value combining the different objective function values.
Finally, converting an objecting function into an input parameter
focuses the search of the algorithm into a single element of the
Pareto Set, leaving the DM with the responsibility of determining
the rest of the characteristics of that element.

Teh and Chin algorithm [36] uses both aggregation functions
and lexicographic ordering techniques. Aggregation functions are
used at different steps: computing the region of support, it contin-
ues to grow while the mean distance value does not increase. That
mean distance value (equation ??) is an aggregation function, using
the length of the segments and the approximation error. Also, the
suppression condition in equation ??, uses a combination of differ-
ent objective functions (the measure of significance and the length
of the region of support) for its decision. Finally, the suppression
process performed as a final step when the 1 curvature measure of
significance was chosen, uses lexicographic ordering to determine
which is the dominant point in surviving groups with only two
points, using the measure of significance as the priority objective
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function and the size of the region of support as the secondary
objective function.

Marji and Siy algorithm [22] uses aggregation functions both
explicitly and implicitly. Function (7) to determine the length of a
supporting arm is an aggregation function using again the length
of the support arm and the approximation error as the combined
objective functions. Also, the process to determine whether a can-
didate point must be considered a dominant point or not, chooses a
non-explicit aggregation function, since choosing it as a dominant
point would reduce the length of the segments on the output, and
that choice is taken according to a threshold over the approximation
error.

The proposed evolutionary techniques deal with themulti-objective
nature of the problem converting the number_of_segments objec-
tive function into an input parameter determined by the user. This
choice can be analyzed from two opposite points of view: if the
user knows which is the compression level he requires for his ap-
plication, this allows the calculation of the best solution focused
only on that compression ratio. This idea can be implemented to
perform automated batch processing of data sets according to the
multiplication of the compression ratio by the number of measures
in the time series. However, the results obtained for the error may
not be feasible for the application of the results, leading to the need
of individual choices for the number of segments in each input time
series, and requiring the constant feedback from the DM during
the whole process.

The use of constrains in the evolutionary approaches might be a
solution to deal with this issue, but the choice of those constrains
would be individual for each input. In [39, 40] these difficulties are
met providing different solutions for different number_of_segments
parameter values. Each of these solutions runs the evolutionary
algorithm from an initial random population.

This requirement for different possible solutions is not only
met in evolutionary techniques. Traditionally, Pareto fronts were
built by mathematical techniques for multi-objective optimization
artificially by performing several runs with different parameters
[23]. In non-evolutionary techniques for segmentation purposes,
input parameters are commonly based on the approximation error
rather than the number of segments, being also a representative
amount of non-parametric techniques (which obviously can never
produce a Pareto front, since they can only provide a single solution
for each problem instance).

In parametric techniques, in order to build a complete Pareto
front, the user must determine the approximation errors to obtain
the required number of segments in the approximations. The choice
of these values may be an optimization issue itself, and clearly
problem dependent. This implies that, in the cases where such
a solution is possible (parametric techniques) it is difficult and
computationally costly to obtain a Pareto front for a segmentation
problem with the available approaches.

4 MULTI-OBJECTIVE EVOLUTIONARY
ALGORITHM FOR SEGMENTATION
PROCESSES

The first issue regarding representation of the problem is the choice
of the related structure. In traditional approaches, the representa-
tion was based on the detection of relevant points, codifying each
problem instance as a string of 0’s and 1’s, representing each gene
a point in the problem instance and whether this was a dominant
point or not. Figure 1 shows the relationship between the genotype
and its represented phenotype.

An alternative possible representation can be based on integer
values, representing each of these integer values the number of the
point in the input problem instance. This representation could be
based on a fixed or variable size chromosome. The chosen alterna-
tive could be a fixed size chromosome where this size was equal to
the input problem instance size (such as in the previous approach),
such that dominant point might be repeated in that structure. Figure
2 shows an example of this approach.

This representation attempts to provide a representation anchor
to the importance of certain key dominant points, which are present
in almost all the different possible segmentations, regardless of the
number of dominant points used (this can be seen in figures ??-??).
By storing several copies of those important dominant points in
a chromosome, they would become more resilient to the changes
introduced by transformation operators. Also, it introduces a series
of handicaps: first of all, the chromosome has to be ordered in order
to provide efficient transformation operators, and reordering has
to be applied after the application of any transformation operator,
affecting the performance of the algorithm. An evenmore important
handicap is related to the fact that the search space is much more
extensive than the one obtained using a binary representation.
Also, there is no direct genotype to phenotype relationship, since
now several different genotypes can represent the same phenotype.
This fact may make the search slower and affect the efficiency of
transformation operators.

The focus of this work is not to proof the benefits of a particular
technique (even though one has been chosen for the results pre-
sentation and comparison), but rather of the whole approach itself.
To do so, we will choose a very extended MOEA: Strength Pareto
Evolutionary Algorithm 2 (SPEA-2) [41], according to its imple-
mentation in the JMetal integrated development environment (IDE)
[10]. The choice of this algorithm has been made according to its
extended implementations in different languages and IDE’s which
can ease the comparison with the results presented for different
authors, along with its wide usage in research works. Also, it was
chosen over alternative algorithms which share similar wide usage
characteristics (such as NSGA-II, [7]) due to its use of an archive
to preserve the best solutions among different generations, which
suits the requirements of segmentation algorithms.

The configuration required for the chosen technique implies the
mutation and crossover probabilities, population size and number
of generations (the rest of the parameters are chosen according
to their standard values: 1-point crossover, bit-flip mutation and
binary tournament selection). The first two probabilities have been
chosen according to standard values (0.9 for the crossover proba-
bility and 1/chromosome_lenдth for the mutation one). Population
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Figure 1: Genotype to phenotype mapping.
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Figure 2: Integer representation genotype.

size and number of generations did not have a clear choice, a set
of experiments was run with population sizes ranging from 100 to
500 and generation values ranging from 100 to 2000. In order to
determine whether there were significant improvements between
the different configurations, we used the Wilcoxon test [5] over the
hypervolume result [42] of the obtained Pareto Fronts, with 30 runs
for each configuration over the three curves in the used dataset. In
table ?? the results for this comparison over the chromosome curve
are shown, where 0 means that there is no statistical significance
at 1% level, 1 means that there is statistical significance and "-" that
the comparison is not applicable or already covered. The config-
uration values for each configuration number with a population
size of 100 are shown in table 1. Configuration numbers 7-12 share
the same growing generation values with population size 200, and
configuration numbers 13-18 with population size 500.

5 EXPERIMENTAL RESULTS
The dataset used will be based on the three most extended curves
for polygonal approximation testing, usually named chromosome,

Table 1: MOEA configurations detail for population size 100

Config. number 1 2 3 4 5 6

Population Size 100 100 100 100 100 100
Generations 100 300 500 700 1000 2000

leaf and semicircle. We will compare the results obtained with a
set of nine representative techniques, some of which have been
detailed in previous sections: [22], [36], [33], [6], [1], [29], [34], [38]
and finally a special comparison with the evolutionary technique
by [39].

The dataset, along with some segmentation results from the
obtained Pareto Fronts, is presented where introduces the chromo-
some curve, which has 60 boundary points, along with five results
from the Pareto Set obtained by the technique. Also the same results
for the leaf curve (with 120 boundary points), and for the semicircle
one (with 102 boundary points).
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Table 2 presents the results of the first eight techniques to be
compared. These technique results are either non-parametric or
the included results are those presented in their reference works
according to their default configuration. This means that each of
these techniques provides only a single solution for each problem
in the dataset. Table 3 presents the statistical comparison of these
techniques with the MOEA technique used. To perform this com-
parison, the solution with the appropriate number of dominant
points (the same as the single solution provided by the compared
technique) is extracted from the resultant Pareto front in the 30
independent executions performed, and a Student’s t-test with 5%
confidence level is performed over the difference of those values,
determining whether the difference is statistically significant or
not. If the difference is statistically significant, the best technique
is indicated, including the ’-’ symbol in any other case.

The statistical comparison shown in table 3 determines that the
MOEA technique is significantly better than the other alternatives
in 21 out of 24 test cases, being significantly worse only in one
case (Cronin’s result for the semicircle curve). Also, the differences
between its results and the alternatives are very significant, which
can be observed in the different graphical comparisons presented
in the figures and the low p-values contained in the tables. The
dataset is rather scarce, but without standard implementations of
the techniques or a framework to properly test them with novel
data, the comparison has resorted to the results in their reference
papers, which only included these figures. The good performance
results of the evolutionary technique against a set of techniques
specialized for this particular domain are, in any case, remarkable

6 CONCLUSIONS
This work has been focused on the segmentation issue by means of
Piecewise Linear Representation, which is present in the polygonal
approximation domain, highlighting its unresolved issues. One of
those issues is the multi-objective nature of segmentation processes,
where several objective functions have to be optimized jointly. This
fact has not received the proper attention in terms of algorithm
development (only for certain comparison purposes). Even so, any
technique available has to deal with this multi-objective nature
of the problem, even if this nature is not explicitly declared. Four
representative algorithms have been detailed, covering their im-
plicit treatment of that multi-objective nature, based on a-priori
approaches. This discussion has lead to the explicit formulation
of segmentation as a proper multi-objective problem and its reso-
lution by means of an a-posteo approach using a multi-objective
evolutionary algorithm. For the results presentation, the chosen
algorithm is SPEA2, along with default variation operator values.

The final objective of the multi-objective evolutionary approach
is obtaining the whole Pareto front of possible segmentation results
for a given problem. Parametric techniques can obtain artificial
Pareto fronts with several different runs configured with different
input parameters, being each of these solutions independent. This is
computationally inefficient and can lead to additional optimization
problems (such as the determination of the proper error approxi-
mation value in order to obtain a certain number of segments in
the solution). These problems are inherently solved with the use
of the MOEA approach presented in this work. Also, the different

solutions in the Pareto front of a segmentation problem share valu-
able information in the form of dominant point position, leading to
faster and better solutions when compared to obtaining individual
elements from that Pareto front.

The results obtained in the Pareto front with the chosen tech-
nique in the polygonal approximation dataset used are extremely
competitive with the available works in the literature, having ob-
tained statistically significant improvements in 36 out of the 40
individual results, and also in the two curves compared under a
multi-objective perspective by means of the hypervolume quality
indicator, showing that treating the multi-objective nature of the
problem explicitly allows the algorithm to obtain better solutions.
It is important to highlight that this technique is able to cope with
the requirements presented in the introduction, allowing the final
user to regain its role as the decision maker of the problem and to
change which solutions fit its requirements at different moments
(provided by obtaining the whole Pareto Front in a single execu-
tion). Future lines include the application and comparison of the
presented technique with time series datasets.
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