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ABSTRACT
This study presents the crude oil scheduling problem with four
objectives divided in two different levels of importance. It comes
from a real refinery where the scheduling starts on the offloading
of ships, encompasses terminal and refinery tanks, a crude pipeline,
and finishes on the output streams of the crude distillation units. We
propose a new approach for the Quantum-Inspired Grammar-based
Linear Genetic Programming (QIGLGP) evolutionary algorithm
to handle the multiple objectives of the problem using the non-
dominance concept. The modifications are concentrated on the
population updating and sorting steps of QIGLGP. We tackle dif-
ference of importance among the objectives using the principle
of violation of constraints. The problem constraints define if an
instruction will or not be executed but do not affect the violation
equation of the objectives. The individuals which have objective
values under a pre-defined upper limit are better ranked. Results
from five scenarios showed that the proposed model was able to sig-
nificantly increase the percentage of runs with acceptable solutions,
achieving success ratio of 100% in 3 cases and over 70% in 2 other
ones. They also show that the Pareto front of these accepted runs
contains a set of non-dominated solutions that could be analyzed
by the decision maker for his a posteriori decision.

CCS CONCEPTS
• Applied computing → Multi-criterion optimization and
decision-making; • Computing methodologies → Planning
and scheduling; Genetic programming;
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1 INTRODUCTION
Crude oil refineries can be considered the most important example
of continuous process systems that generate multiple products –
due to the volume and value of these products–, handling billions
of dollars every year [18].

Refinery scheduling is the activity responsible for linking the
production planning (focus on profit and account weeks ahead) to
the process plant operations (focus on short-term activities). In [1],
scheduling is defined as the specification of what each stage of pro-
duction is supposed to do over some short period from several shifts
to several days. Usually, the refinery scheduling is shared between
the crude oil and product’s schedulers. The first one encompasses
from the crude oil receiving until the output of crude distillation
units (CDUs) while the second one completes the refinery’s process
areas up the final products.

Scheduling problems have been proved to be NP-Hard [15].
Crude oil scheduling is a mixed-integer nonlinear (MINLP) problem
due to the resource allocation (integer), transfer volumes (continu-
ous) and blend properties (nonlinear) characteristics [3, 17]. Some
researchers applied mathematical and metaheuristics approaches
to optimize solutions for the scheduling problem [3, 19, 25, 27],
developing relevant models. However, most of works uses single-
objective function, like maximizing profit [28], or aggregation tech-
niques to convert multiple objectives into one expression [20].

We propose a model to tackle a crude oil scheduling problem
with four objectives that do not have the same level of importance.

https://doi.org/10.1145/3205651.3208291
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Two of them impact the processing capacity (CDUs throughput
variation and delay on crude oil batches receive) while the others
are related to a smooth operation (pipeline operation and tank
switchovers). We use Quantum-Inspired Grammar-based Linear
Genetic Programming (QIGLGP) [21] as the basic evolutionary
algorithm which was modified to handle the multiple objectives of
the problem using the non-dominance concept.

The QIGLGP uses a linear structure where each gene represents
one crude oil schedule instruction. A domain specific language and a
grammar are used to guarantee that those instructions are topologi-
cally valid. We modified the sorting step of the algorithm to replace
the user preference based approach by a methodology where a
nondominated sort, guided by a set of reference points, is used to
update the distribution of probabilities of each schedule instruction
on each gene. We apply the concept of handling constraints - from
multiobjective algorithms - to the objectives evaluation to influence
the nondominated sort, which means, two objectives have mini-
mum values that, while not achieved, the correspondent individuals
evaluation is like a constrained solution.

In Section 2 we present a background of the three foundations
of this work: evolutionary multiobjective optimization algorithms,
crude oil refinery scheduling problem, and quantum-inspired grammar-
based linear genetic programming. In Section 3 we describe the
details of the proposed methodology using many-objective con-
cepts. Section 4 presents the case study and discusses the results
obtained. Section 5 consolidates the most important observations
about the methodology and the results.

2 BACKGROUND
The concept of evolutionary algorithms (EA) fits with the idea
of solving multiobjective problems due to their population-based
nature and their less susceptibility to the shape or continuity of the
Pareto front [2]. Evolutionary Multiobjective Algorithms (EMOAs)
can obtain multiple Pareto optimal solutions in a single simulation
run, and their biggest challenge is to achieve a set of solutions under
convergence (solutions as close as possible to the Pareto Front - PF)
and diversity (well-distributed solutions) criteria [4].

A historical view of the literature shows that the EMOAs were
proposed under three categories: Dominance-based, Indicator-based,
and Decomposition-based [26], being the first one the most refer-
enced, mainly through the well-known Nondominated Sort Genetic
Algorithm II (NSGA-II) [7], Strength Pareto Evolutionary Algorithm
2 (SPEA2) [30], and their variations-based [2]. EMOAs that use the
Pareto dominance relation have obtained favorable results when
applied to multiobjective optimization problems (MOPs) with up
to three objectives [23]. However, if the number of objectives is
bigger, the high dimensionality of the objective space diminishes
the probability of a solution to be dominated by another one in
the population. As a consequence, the dominance criterion cannot
impose preferences among solutions. The diminution in the domi-
nance differentiation capability weakens the evolutionary pressure
to the Pareto front for many objectives and so the convergence
performance is mitigated [11, 13]. Classical EMOAs have been mod-
ified and new ones have been proposed to deal with this class of
problem, so called many-objective optimization (MaOP).

Multiobjective Evolutionary Algorithm based on Decomposition
(MOEA/D) [29] was the first algorithm to reduce the loss of selective
pressure by the decomposition of the problem in subproblems. In
[16] the authors propose an integration between decomposition and
user preference methods where the weighting vector initialization
and updating classical approach were modified using a uniform ran-
dom number generator to remove the coupling between dimension
and the population size but providing a set of evenly distributed
weight vectors. In the same line, [24] proposes a method where
the solutions are ranked by calculating Pareto partial dominance
among solutions using r objective functions selected fromm ob-
jective functions to induce appropriate selection pressure in the
evolution process of the EMOA. The authors switch r objective
functions, among

(m
r
)
possible combinations, every д generations

to optimize all of the objective functions throughout the entire
evolutionary process. Every д generations the Pareto dominance
is evaluated considering all them objectives; then the evolution
continues with the next set of r objectives.

The use of predefined target points is the approach used by the
Nondominated Sort Genetic Algorithm-III (NSGA-III) [6] to deal
with the diversity issue in many-objective algorithms. Initially, a
set of well-distributed reference points, which can be user-defined
or automatically calculated, is provided to the algorithm. During
the evolutionary process, these reference points are responsible for
keeping the solutions spread along the Pareto front. The selection
operator was modified in such a way that nondominated popula-
tion members which are close to reference points are emphasized.
This algorithm was extended to deal with constraints through the
modification of the selection operator so that solutions that do not
violate constraints are better ranked than solutions that violate [12].
This constrained NSGA-III also proposes a method to identify non-
useful reference points, excluding them and including new ones
aiming to keep the set of reference points a good representation of
the Pareto optimal solutions. The algorithm EliteNSGA-III [5] was
proposed to preserve, through the generations, the best individuals
associated with each closest reference point as an indication of a
well-distributed Pareto front. The selection operator was modified
in order to split the probability that the next generation parents
come from the current one or from the archive that preserves the
elitist individuals.

Most real-world problems have more than three conflicting ob-
jectives and, usually, it is not necessary to know the true Pareto
Front, but a good approximation is enough [16]. The crude oil sched-
ule problem is considered here as a MaOP – with four operational
objectives – which aims to find a set of good tradeoff solutions.

2.1 Crude Oil Refinery Scheduling Description
Refinery scheduling deals with the forecasted timing of the move-
ments, thus capturing the dynamic nature of actual operations. It
starts with the current vision of the refinery. Time and operations
move continuously from the beginning to the end of the period. It
is always subject to the variability that occurs in the real world,
and that is why schedulers must be able to project consequences of
disruptions and changes and properly respond to them in a short
period of time [14].
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Refineries have different scopes of decisions depending on their
logistics, geographical location, company owner and so on. The
bigger the scope of decisions, the higher the complexity of the
scheduling. We analyse a crude oil scope that includes refinery and
terminal, which greatly increases the type of activities involved.
These activities are:

• CDU feeding: in most cases, each CDU is fed by one or two
tanks (injection tank configuration). Schedulers must decide,
for every task, if one or two tanks will be used, the flow
rate of each tank and the volume consumed on each one.
Sequencing this type of task builds the CDUs’ schedule.
• Pipeline transferring: this activity transfers crude oil from
the terminal tankage to the refinery tankage through a big
pipeline. For every task, the scheduler must decide the source
tank and the volume that will be pumped into the pipeline
and also how this total volume will be received at the termi-
nal tankage (in one or more refinery tanks with the respec-
tive tanks’ name and volume ratio). This is a coordinated
task because the pipeline is always fulfilled and operates
in a First-In-First-Out mode. Its operation can be guided by
the need for oil in the refinery tankage or to free space on
the terminal tankage. The sequencing of this task builds the
pipeline schedule.
• Ship offloading: for every ship, it must be completed in a pre-
defined time window. Schedulers have to define which crude
oil blend will be first offloaded (if the ship contains more
than one), destination tanks and their respective volumes.
For many reasons, schedulers may not be able to respect the
ship’s time window but will incur paying the penalty as a
consequence.

To build the schedule, schedulers know, at the beginning of
the horizon: the plant (topology, equipments’ capacities and tanks’
heels), the CDUs (target flow rate and operational mode), properties
of all crude oils and their distilled products, tankage inventory
(volume and composition), the ships (arrival, time window, flow
rate offloading, volume and blend composition) and the constraints
(related to properties or operational issues).

Scheduled activities are highly connected because the availability
of each equipment for one of them depends on the tasks it was real-
ized before. The sequencing of all these tasks aims four objectives:
to keep the CDUs operating with the total flow rate decided by the
scheduler; to execute ship offloading inside the time window; to
keep the pipeline operating uniformly and to minimize operational
transitions made by tanks switchovers. A more detailed discussion
of the objectives is presented in section 3.

2.2 Quantum Inspired Grammar-based Linear
Genetic Programming

Quantum-Inspired Grammar-based Linear Genetic Programming
(QIGLGP) [21] is the basic evolutionary algorithm used in this work
but modified to handle multiple objectives using concepts from
NSGA-III. Its fundamental entities are a Domain Specific Language
(DSL) [8], Quantum gene and Quantum individual, Classical gene
and Classical individual, and a Quantum evolutionary operator.

The DSL represents the translation of the most important crude
schedule activities into instructions that can be used by theQuantum-
inspired genetic programming algorithm to create the program that
effectively represents a scheduling solution. The process of generat-
ing each instruction follows a predefined grammar that guarantees
that none of them will be topologically invalid, e.g., a “feedCDU”
instruction will not have a terminal tank as a possible argument. In
order to represent all activities, the grammar makes available:

• four instructions for feeding CDU, in a combination of using
one or two refinery tanks and the maximum possible volume
for the resource(s) or a proportion of this volume;
• two instructions for pipeline transferring, using the maxi-
mum possible volume for this task (considering the volume
in the terminal tank and the ullage in the refinery tank) or a
proportion of this volume;
• two instructions for ship offloading, defining the crude blend
that will be offloaded (if the ship has more than one) and the
volume (or a proportion of it) of each task considering the
ship and terminal tank capacities;
• an instruction that represents doing nothing.

A Quantum Gene (QG) represents the superposition of all pos-
sible instructions under the predefined search space. Its basic in-
formation unit, qudit, can be described by a state vector within a
quantum mechanics system of d levels, where d is the number of
states on which the qudit may be measured, or observed [10]. Its
implementation is equivalent to a tree composed of accumulated
probabilities vectors.

A Quantum Individual (QI) is a list of quantum genes. Every
quantum gene has the same structure, but the distribution of prob-
abilities will be different depending on the evolutionary process.
The Quantum Population (QP) is composed of a set of QIs.

A Classical Gene (CG) is the result of all observations of a quan-
tum gene that are necessary to define the main function and its
arguments. For instance, given the main function of pipeline trans-
ferring with a proportional volume, the arguments are the terminal
tank, refinery tank, and the ratio of the maximum volume that
will be transferred. Each parameter, which means, the equipment’s
names and the volume proportion were defined by the observation
of the only one correspondent quantum-gene. Therefore, the classi-
cal gene is the complete information, i.e., the instruction with the
name of the terminal tank pumping to the pipeline, the name of
the refinery tank receiving the crude oil batch and the proportion
of the maximum possible volume that is pumped.

A Classical Individual (CI) is a linear disposition of all classical
genes. It has the same number of genes as QI, but an instruction that
does nothing (named NOp) reduces its effective size. The Classical
Population (CP) is made by a set of CIs. Each scheduling program
is built by the execution of each CG in a sequenced order defined
by its position in the correspondent CI. Despite every CG is a
grammatically and topologically valid instruction, as the problem
is constrained, it doesn’t always represent a feasible instruction. If
an instruction violates one or more problem constraint (product
quality, minimum duration for a task, etc.), then it is not executed.
This instruction is ignored by the simulator which calculates the
inventory levels and compositions of the equipment after each task.
The set of valid instructions represents the scheduling solution
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itself. The search space is proportional to the number of: quantum
genes, refinery tanks, terminal tanks, CDUs and the volume ratio
parameters of each type of instruction.

The evolutionary process occurs through the Quantum Evolu-
tionary Operator by updating the probability distribution of each
quantum gene from the quantum individuals, whose observations
resulted in the corresponding best classical individuals. This update
is an increment in the probabilities of observing the same elements
(function and arguments) that result in that classical gene.[9].

The original QIGLGP algorithm deals with the multiple objec-
tives of the problem following a user predefined hierarchization of
them. The decision maker establishes which is the most important
objective, followed by the second most important, the third one and
the last one. It means that in a comparison between two individuals,
the one with the minimum value for the first objective will be the
winner. In case of a tie, the second objective will be evaluated to
determine the winner and so on, following the hierarchical row of
objectives [21]. This hierarchy defines the sorting step of the algo-
rithm. In this work, the objectives are not handled as a pre-defined
hierarchical list. The QIGLGP algorithm is modified to tackle the
objectives following the Pareto dominance principals. Therefore,
at the end of the evolutionary process, the scheduler has a set of
useful solution to a posteriori decision, selecting which one is more
appropriate for a particular occasion.

3 PROPOSED METHODOLOGY
This work uses the same four operational objectives of the orig-
inal QIGLGP study case: CDU downtime, ship offload, pipeline
downtime and tank switchover but with a new perspective. The
evolutionary process works to minimize these objectives since they
represent undesired conditions.

CDU stoppage is the most critical occurrence in the refinery: if
the unit is not processing crude oil, the first intermediate streams are
not produced and, as soon as the intermediate stocks go to low-level
limits, all the other process units will end up without feedstream.
Therefore the entire refinery would stop. The CDU feeding flow
rate target is defined by the planning process, but considering the
variability of refinery environment, the scheduler has the flexibility
to set a value every day, since he still keeps in mind the planning
target for the month. CDU downtime objective measures the total
time that the CDUs were not operating. Its minimum value is 0
(there was no stopping in the CDU operation) and the maximum
value is the horizon multiplied by the number of CDUs.

Although 0 is the ideal value, a 2% of the number of hours of
the horizon is acceptable as a good solution because operational
variations will absorb this forecasted difference over the next few
days. It is important to say that all acceptable solution assume that
a 2% deviation does not incur in a real CDU downtime.

An inappropriate ship offloading that ends up in delay to undock
the ship will incur in the payment of demurrage which has two
aspects of penalty. The first one is economical when the refinery has
to pay a tax for occupying the ship beyond the timespan contracted
(the value is a function of the size, nationality, and owner of the
ship). The second aspect is operational, since an offloading delay
may compromise the availability of crude oil in the refinery or
terminal and, as a consequence, the refinery may struggle to keep

its production level. In this objective, like in CDU downtime, 0 is
the ideal value, but again, there is tolerance where small deviations
from this ideal can be ignored in real-world problems. Any delay
up to one hour is considered an acceptable solution.

Pipeline downtime is related to a non-operation of the pipeline.
Pipeline transfer is the operation that guarantees crude oil in the
refinery. The scheduler pumps all possible crude oil to the refinery
tanks because it diminishes the risk of compromising CDU oper-
ation. This rule of thumb is based on the concept that the crude
oil at the refinery guarantees the volume and the quality needed
to make the blends that achieve property specifications for being
processed. It is not rare that pipeline tasks sum a lesser number
of hours compared to the entire horizon but, usually, it operates
uninterruptedly in its reduced horizon. The pressure along the
equipment keeps the batches compacted, avoiding blending among
them and the information about the composition of this new blend
be unknown. To consider these two aspects (the total operation
time and the number of stoppages and restarts in the horizon), the
pipeline downtime objective was modeled with two terms. The inte-
ger part of the objective value represents the total number of hours
the pipeline did not operate, and the fractional part represents the
number of times that the pipeline stopped and restarted during the
horizon. There is no ideal value for this specific objective, and it is
less important than the CDU downtime or the ship offload.

Unnecessary tank switchovers represent inappropriate sched-
ule decision since any operational movement brings a transient
state to the resources. For instance, every tank in the refinery has
different properties; so, when a process unit has its feeding task
changed, it will face a transient operation. The bigger the differ-
ence between the properties of the tanks, the more important may
be this transient state. Another aspect is related to the schedule
itself because whenever a refinery tank receives crude oil from the
pipeline, it must wait a settling time of some hours while brine (that
comes mixed with the crude oil batch) is decanted. After that, if
the feeding unit task does not empty the tank and receive another
crude oil batch, a new settling time must be waited so that a new
feeding task can be done. In practical terms, the tank will stay more
hours unavailable for the same volume fed. As it happened with the
pipeline downtime, the tank switchover objective does not have a
desired or even estimated value. Good scheduling solutions may
come from some different number of tank switchover and, certainly,
this objective is less important than the CDU downtime and the
ship offloading, but it can be considered at the same level of the
pipeline downtime.

When a solution has the CDU downtime less than 2% of the
total horizon and Ship offloading lesser than 1 hour, it is considered
an acceptable solution, which means a solution that represents a
feasible schedule.

The results presented in [22] showed that, in different runs,
QIGLGP produced different acceptable schedules using a user-
preference based approach. However, it is not always easy to define
a hierarchical sequence among the objectives. This strict need of
definition is the main limitation of the method. For instance, a small
downtime in the CDU operation probably is a better solution if the
ship offloading is appropriate when compared to another solution
without CDU downtime but a significant ship offloading delay. This
work proposes an improvement in the original algorithm to handle
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better with the tradeoffs of the objectives. It is a many-objective
approach in which the evolutionary process searches for the best
nondominated solutions that meet the conditions under which these
solutions are operationally acceptable.

The many-objective concepts adopted in this work are inspired
by [6], where a set of points is used as a reference in the population
sort stage to help the evolutionary algorithm to achieve a set of
well-distributed solutions along the Pareto front. From [12] comes
to the second inspiration, where the approach adopted to handle
constraints is adapted to deal with the different importance of the
objectives. Algorithm 1 presents the new approach for QIGLGP
where the steps 8 up to 21 of algorithm replaced the original hierar-
chical sorting step of the population. In the modified QIGLGP, the
population is sorted based on the non-dominance of individuals,
considering that individuals which meet the two critical objectives
are better ranked than the ones which do not.

In Algorithm 1, NI is the number of individuals in each pop-
ulation, д is the current generation, nGP is the total number of
generations (stop criteria), horizon is the number of hours of the
scenario, FPf is the current Pareto front index, K is the number of
individuals to complete CPg .

Equation (1) presents the violation measure that relates the two
critical objectives with the maximum value they could assume
in the worst case. On equation 1 CDUdwt and ShipOffld are the
values of the critical objectives, nCDU is the total number of CDUs
and VolShip is the sum of volume from every ship that was not
completely offloaded at the end of the scenario.

CDUdwt
nCDUs × horizon

+
ShipOffld∑nShips

n=1 VolShipn

, (1)

4 RESULTS
The case study comes from a real Brazilian refinery, whose crude
oil area contemplates docking the ship in a dedicated terminal,
pumping the crude oil through a large pipeline, feeding the CDUs
and ends with intermediate streams produced by the distillation
units. The model could be applied to any scenario from this refinery
or others topologically similar refineries. We decided to use the
same five scenarios (CEN01, CEN02, CEN03, CEN04, and CEN05)
from [22], to allow a comparative analysis of the proposed many-
objective and the predefined user-preference based approaches.
These scenarios have different levels of complexity to allow a bet-
ter evaluation of the model. The proposed approach deals with a
posteriori evaluation of the decision maker, while [22] is based on a
priori analysis done by this same decision maker.

CEN01 and CEN02 are the least complex ones, with a shorter
scheduling horizon (192 h). The first one is in a more comfortable
condition of stock level and has only one ship to offload. The second
one brings a little more complexity to the problem since its initial
inventory is lower and has two ships to offload (i.e. more tasks to
be scheduled but helpful with the inventory issue). CEN03 brings
more complexity through its higher horizon (216 h) and only one
ship to be offloaded with the equivalent volume of the two ships
in CEN02. This scenario demands more attention from the sched-
uler, to guarantee enough space in the refinery to make possible
pumping from the terminal. It is necessary to free space on terminal
tanks to receive the massive amount of oil in a small time window.

Algorithm 1 QIGLGP based on nondominance of individuals in-
fluenced by acceptance criteria.
1: Initialize NI individuals QP and CP for generation д = 0
2: Calculate the fitness functions for CPд = 0
3: д← д + 1
4: Calculate the set of reference points
5: while д ≤ nGP do
6: Create auxiliary classical population (ACPд ) based on the

observation of QPд − 1
7: Calculate the fitness functions for CPд
8: Nondominated sort of individuals from CPд − 1 ∪ ACPд in-

fluenced by acceptance criteria, which means that if the two
individuals being compared have CDUdowntime lesser then
(0.02 × horizon) and ShipOffloading lesser then 1 hour, then
the basic dominance comparison will be applied to rank
them. Otherwise, if only one of the individuals meets the
acceptance criteria, this one dominates the other one. The
last condition is that if both individuals do not meet the ac-
ceptance criteria, the one with lesser violation will dominate
the other individual.

9: FP f ← 0
10: |PCд | ← 0
11: while |PCд | + |PCF Pf | ≤ NI do
12: PCд ← (PCд) ∪ (PCFPf)
13: FP f ← FP f + 1
14: end while
15: if |PCд | < NI then
16: Number of individuals to fill CPд (K ), coming from PCF Pf :

K = (NI − |PCд |)
17: Normalize each objective.
18: Associate every individual from PCд to the respective

nearest reference point.
19: Select K individuals from PCF Pf through a mapping to

those closest to the reference points with smaller number
of PCд individuals associated.

20: Add these K individuals to PCд .
21: end if
22: Apply Quantum operator (QOp) to the NI quantum individ-

uals according to the CI correspondent
23: if Fitness function of all individuals of CPg and ACPg have

the same value then
24: Reinitialize QP (similar steps 1 and 2)
25: end if
26: д← д + 1
27: end while

CEN04 has the same standards of CEN03 but is harder because the
inventory level in the terminal and refinery is much higher, which
makes the transference coordination more challenging. CEN05 and
CEN04 have the largest horizon (240h), but they are opposite in the
inventory level issue. In CEN05, the refinery tankage and the ter-
minal tankage are below what is considered a safe inventory level,
which means there is a real risk to compromise CDUs operation.
Two big ships must be offloaded, what is helpful volumetrically
speaking but one must keep in mind that a terminal tank cannot
receive from a ship and pump to pipeline simultaneously. So, the
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Table 1: Percentage of runs with Acceptable Solutions.
Approach CEN01 CEN02 CEN03 CEN04 CEN05

Manyobjective 100 100 100 94 76
User-preference 98 100 100 76 36

first tank will start to pump only when it is filled (some hours later).
Then, after the refinery tank receives crude oil, there is still a set-
tling time of 24 h before the tank can feed a CDU. For all these
issues, CEN05 is considered the most complex scenario.

Each scenario was run 50 times with different seed for the ran-
dom number generator as evaluation criteria of the model. The
population size was defined as 56, following the methodology used
by NSGA-III [6] to calculate the number of reference points in
a problem with four objectives. In this particular case, 56 is the
minimum possible value considering the parameterization of the
methodology. Other QIGLGP parameters were 0.008 for the quan-
tum operator step and 0.8 for the initial ratio of the instruction NOp
(do nothing).

Two aspects are considered in the model analysis. The first one
is the capacity of the model to generate the Pareto front with, at
least, one acceptable individual considering the critical objectives.
The second one is the diversity of different scheduling solutions
present on the Pareto front.

At the end of the evolutionary process, the Pareto front should
be constituted by nondominated individuals with lesser than 2%
of CDU downtime and lesser than one hour of ship offloading or
by the individual with the least violation. The total of runs (among
50) that results in the first case represents the percentage of runs
with acceptable solutions. Table 1 presents the results of the many-
objective and the user-preference based approaches.

Results on Table 1 show an increase in the ability of the proposed
algorithm to find solutions that attend most critical objectives,
especially in the hardest scenarios. CEN04 improved in 23% and
CEN05 in 111% their performance. This Table 1 is concerned with
one accepted individual and does not provide any information about
diversity. In order to provide the scheduler conditions to evaluate
and take a posteriori decision, it is necessary to expose the different
solutions that compose the Pareto front of these accepted runs.

Table 2 presents, for those runs which obtained acceptable solu-
tions, the mean, minimum and maximum number of individuals on
the Pareto front. For these individuals, the same table also shows
the statistics for the values of the objectives.

An analysis of Table 2 shows average values from 3 up to 5 indi-
viduals on the Pareto front, depending on the scenario complexity.
A human being can differentiate and analyze this number of alterna-
tives to select the most appropriate one considering the conditions
at the moment of the decision. If many solutions are in the Pareto
front, it would be recommended to identify the most different ones
to be presented to the scheduler. A methodology to identify them is
a suggestion for future work. Table 2 also presents high values for
standard deviation compared to the mean value for three objectives.
This behavior suggests the samples are distributed throughout the
boundaries of the objectives values. For instance, CEN03 has found
a solution with only 24 hours of pipeline downtime, and also it has
found a solution with 121 hours of pipeline downtime. CEN04 was
scheduled with 15 and also with 35 tanks switchovers. All of them
are feasible solutions but represent different schedules.

Table 2: Mean, minimum and maximum number of individ-
uals, and their objectives’ values, on the Pareto Front for the
runs with acceptable solutions.

CEN01 CEN02 CEN03 CEN04 CEN05
Number of Min 1 2 1 1 1
solutions on Mean 4.78 4.72 3.56 3.47 2.84
Pareto front Max 12 12 13 11 10

CDU Min 0 0 0 0 0
downtime Mean 1.32 1.67 1.21 1.50 1.64

stDev 1.21 1.57 1.42 1.60 1.37
Max 3.73 3.80 4.16 4.69 4.78

Ship Min 0 0 0 0 0
offloading Mean 0.004 0.027 0.020 0.053 0.013

stDev 0.063 0.149 0.114 0.192 0.126
Max 0.969 0.852 0.759 0.959 0.934

Pipeline Min 0.001 24.001 14.002 3.001 18.001
downtime Mean 19.166 34.777 40.076 28.539 49.207

stDev 14.608 15.382 23.880 28.371 25.858
Max 106.004 140.002 121.004 120.003 128.004

Tank Min 12 7 11 15 16
switchovers Mean 15.6 11.1 17.8 20.8 23.2

stDev 2.1 1.9 3.2 4.7 3.0
Max 26 18 27 35 32

Figure 1: Pareto front solutions of CEN01 in accepted runs.

Figure 2: Pareto front solutions of CEN02 in accepted runs.

Figures 1 to 5 show the solutions of the Pareto front for each
accepted run for the five scenarios. The CDUdowntime and ShipOf-
fload objectives are not plotted in the chart to make the visualization
easier but, certainly, they are under the acceptance conditions for
these individuals. The abscissa axis shows the run ID, and the ordi-
nate axis shows the number of tank switchovers. The size of the
bubble indicates the range of pipeline downtime and the number
inside the bubble indicates the index of the individual. These are
the points used in the results presented in Table 2

Figures 1 to 3 show that CEN01, CEN02, and CEN03 have solu-
tions concentrated in a smaller range when compared to CEN04
and CEN05. For instance, CEN01, CEN02, and CEN03 have tank
switchover objective lower than 25, while CEN04, which is 24%
hours longer, goes up to 35, which means 40% more.

Figure 6 shows the hypervolume metric along the evolution-
ary process. The reference point adopted is an upper limit over the
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Figure 3: Pareto front solutions of CEN03 in accepted runs.

Figure 4: Pareto front solutions of CEN04 in accepted runs.

Figure 5: Pareto front solutions of CEN05 in accepted runs.

Figure 6: Hypervolume throughout the evolutionary pro-
cess for the five scenarios.

search space, so, whenever hypervolume increases it means the evo-
lution is progressing. The hypervolume was calculated considering
the mean of individuals on the Pareto front of the runs with ac-
ceptable solutions.We can note that CEN02 is the fastest to achieve
the convergence of the evolutionary process, with a significant in-
crease in the metric near the generation 2,000. CEN01, CEN03, and
CEN04 have similar behavior, with a significant increase near the
generation 4,500. However, CEN01 and CEN03 apparently achieve
the convergence, while CEN04 probably would get better results
if the stop criteria were a bigger number of generations. CEN05
is under its evolutionary process because its hypervolume is still
increasing and there is no signal reaching a plateau.

We analyzed the number of individuals in Pareto front through-
out the generations. We could prove that constraint violation con-
cept adopted made the evolutionary process be similar a user-
preference based approach while all individuals are over the upper
limit of the objectives. Based on the violation equation, while the
ships are not entirely offloaded, this will be the most significant
component of the equation. After that, CDU downtime will be the
responsible for defining the individuals ranking and, the last one
component will be the ships offloading delay. Only after the evolu-
tionary process produces feasible individuals, the non-dominance
concept is used.

Figure 7 presents two examples of schedules generated by CEN03.
A bar with a label ‘Receive’ means that the equipment is receiving
from one source, and a bar with a label ‘Send’ means that the
equipment is sending to one destiny. A bar with a label ‘Recieve-2’
means that the equipment is receiving from two sources. A light
gray bar means the settling time that is needed whenever a refinery
tank will feed a CDU after being the destiny of a pipeline transfer.
The dark gray bars are related to the pipeline transfers whatever be
the one that connects terminal and refinery or the subsea pipeline.

We can note that both solutions have the same value for the Ship
offloading objective, but one of them has a smaller CDU downtime
and pipeline downtime. On the other hand, the other schedule does
more transferences, and it has a bigger value for the tank switchover
objective. Both of them are feasible solutions and can be adopted
by the scheduler after a posteriori evaluation. Then, he can consider
aspects like the shift, or the day of the week when some movements
will be done, as well as the final blend in tanks.

5 CONCLUSION
The evolutionary algorithm proposed - QIGLGP modified - has
proved to be able to create crude oil scheduling solutions for the five
studied scenarios. We used two metrics for this analysis: the success
ratio of the algorithm to produce at least one feasible solution, and
the number of different solutions on the Pareto front.

The results showed the algorithm good performance under the
first metric perspective since three scenarios were always able to
create feasible solutions; one scenario did that in 94% of runs, while
the hardest one did that in 76% of runs. Considering the second
metric, Figures 1 to 5 showed that the algorithm was able to create
the Pareto front solutions distributed along the objective space.
A comparative analysis among the cases shows that the easiest
scenarios are closer to the convergence since their hypervolume
metric is reaching a plateau as presented on Figure 6.

The many-objective approach of QIGLGP can find an average set
of 3 to 5 different scheduling solutions, which can be presented to
the scheduler so that he can take a posteriori decision after analyzing
the nondominated alternatives. Figure 7 shows two examples of
schedules generated.

As future work, we consider the use of elitism concept inspired
on [5] to develop a methodology to preserve the most diverse solu-
tions to be presented to the scheduler.
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Figure 7: Two examples of schedule solutions for CEN03.
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