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ABSTRACT
�e de�nition of a concise and e�ective testbed for Genetic Pro-
gramming (GP) is a recurrent ma�er in the research community.
�is paper takes a new step in this direction, proposing a di�er-
ent approach to measure the quality of the symbolic regression
benchmarks quantitatively. �e proposed approach is based on
meta-learning and uses a set of dataset meta-features—such as the
number of examples or output skewness—to describe the datasets.
Our idea is to correlate these meta-features with the errors obtained
by a GP method. �ese meta-features de�ne a space of benchmarks
that should, ideally, have datasets (points) covering di�erent regions
of the space. An initial analysis of 63 datasets showed that current
benchmarks are concentrated in a small region of this benchmark
space. We also found out that number of instances and output
skewness are the most relevant meta-features to GP output error.
Both conclusions can help de�ne which datasets should compose
an e�ective testbed for symbolic regression methods.
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1 INTRODUCTION
�e quest for be�er Genetic Programming (GP) algorithms—e.g., ca-
pable of overcoming known drawbacks, presenting new interesting
properties or operating with fewer resources—is as important as the
search for be�er ways of evaluating these methods and comparing

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permi�ed. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
GECCO ’18 Companion, Kyoto, Japan
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
978-1-4503-5764-7/18/07. . . $15.00
DOI: 10.1145/3205651.3208293

them under di�erent aspects. It is necessary to consistently and ef-
�ciently identify the scenarios where the new algorithm excels and
how it compares to its predecessors. Otherwise, we may reach the
wrong conclusions, which may mislead future studies and indicate
an inappropriate method to solve the problem at hand.

�e de�nition of a concise and e�ective testbed for GP is a
recurrent ma�er in the research community. In the 14th Genetic
and Evolutionary Computation Conference, McDermo� et al. [18]
brought to light the need for a rede�nition of the datasets employed
by the GP community. �is work resulted in an extended study [36],
which listed possible good and bad choices for benchmarking in GP.
However, the quality of the benchmarks was measured subjectively
using the feedback obtained from a GP community survey and the
14th GECCO a�endees.

�is work takes a di�erent direction by analysing the datasets
employed by the GP community using meta-features captured from
the data. Our main idea is to give directions towards the proposal
of an approach to measure the quality of the benchmarks quantita-
tively. Although previous works have already analysed GP datasets
under a quantitative perspective [8, 27], to the best of our knowl-
edge this is the �rst work to use meta-features. �e objective of
this paper is to characterize a set of GP benchmarks in symbolic
regression according to the relationship of meta-features extracted
from them and the error generated by GP.

In order to do that, we �rst identi�ed the set of papers from
GECCO 2013 to 2017 that dealt with symbolic regression. �ese
papers used a set of 80 datasets. For 63 of them, we extracted a set of
11 meta-features, including, for instance, output skewness and the
number of a�ributes, and ran a genetic programming (GP) method
to obtain the normalized root mean square error (NRMSE). We then
analysed the distribution of the values of these meta-features across
the datasets according to the NRMSE obtained by GP, and plo�ed
the “space of benchmarks” de�ned by these meta-features. �e idea
is to have dataset benchmarks that cover di�erent regions of this
space in order to assess whether new methods are really e�ective
to solve the symbolic regression problem. �e results showed that
most of the datasets used as benchmarks in the literature present
very similar meta-features and are concentrated in a small region
of this benchmark space, and that output skewness and number
of instances are the most relevant meta-features to predict the GP
error.

�e remainder of this paper is organized as follows. Section 2
discusses di�erent approaches proposed to objectively assess the
performance of learning methods, Section 3 presents the methodol-
ogy adopted to characterize the datasets, while Section 4 analyses
the experimental procedures conducted and their results. Finally,
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Section 5 draws conclusions about our �ndings and outlines future
work directions.

2 RELATEDWORK
As previously mentioned, the works in [18, 36] propose the �rst
initiative to perform a critical analysis of the datasets used to bench-
mark genetic programming in general, using a somehow qualitative
approach to de�ne what a good benchmark is. Interestingly to say,
many of the datasets suggested as blacklisted in [36] (e.g., quartic
and lower order polynomials) were used in 14 out of 26 papers
identi�ed as dealing with symbolic regression in GECCO papers
from 2013 to 2017.

Following these initial works, Nicolau et al. [27] analysed sym-
bolic regression datasets presented by McDermo� et al. [18], com-
paring di�erent aspects of these benchmarks. �ey focused on
synthetically generated datasets, exploring the sampling strategy
and size and the addition of arti�cial noise to the data. �e authors
compared GP and Grammatical Evolution (GE) to two particularly
simple baselines—a constant, corresponding to the average response
observed in the training set, and a linear regression model. Results
highlight a correlation between the distribution of the response vari-
able and the performance of evolutionary algorithms. For datasets
with a response variable with high variance, models induced by
linear regression or by constant values were as good as or be�er
than the ones induced by GP and GE.

In this same direction, Dick et al. [8] presented a quantitative
analysis of the Human oral bioavailability dataset, used to guide
the development of di�erent GP-based methods. �e authors anal-
yse features with the assistance of information gain and Random
Forests feature selection procedures, sampling variance and the per-
formance of GP-based methods with Lasso, k-Nearest Neighbour
and Random Forests for regression. �e analysis shows that the
dataset presents �aws that indicate it should be avoided in future
works.

Although not applied to regression problems, Muñoz and col-
leagues [24, 25] present a framework to build a two-dimensional
space based on meta-features of classi�cation problems to iden-
tify regions where classi�cation algorithms excel—and fail—and
to generate datasets with the aim of enriching the diversity of
classi�cation problems in the meta-feature space.

Following Muñoz and colleagues [24, 25], the work presented
here also explores the idea that the performance of algorithms can
be visualized and pockets of the instance space corresponding to
algorithm strengths and weaknesses can be identi�ed. We extend
that idea, however, to regression problems tackled by GP-based
methods.

3 METHODOLOGY
As previously explained, the main objective of this paper is to char-
acterize a set of GP benchmarks in symbolic regression according
to the relationship of their features and the error generated by the
GP. Recall that a symbolic regression task consists of inducing a
model that maps inputs to outputs. More precisely, given a �nite
set of input-output pairs representing the training instances T =
{(xi ,yi )}ni=1—with (xi ,yi ) ∈ Rd × R and xi = [xi1,xi2, . . . ,xid ],
for i = {1, 2, . . . ,n}—we de�ne X = [x1, x2, . . . , xn]T and Y =

[y1,y2, . . . ,yn]T as the matrix n × d of inputs and the n-element
output vector, respectively. A symbolic regression consists then in
inducing a model p : X → Y such that ∀(xi ,yi ) ∈ T : p (xi ) = yi .

In order to characterize datasets used to benchmark methods to
solve symbolic regression problems, we performed the following
tasks:

(1) We looked at the datasets that have been used to evaluate
GP methods at GECCO papers from 2013 to 2017.

(2) We extracted from these datasets a set of meta-features in
order to characterize them. It is important to mention that
the area of meta-learning has extensively studied a�ributes
to characterize datasets, and this is still an open problem
[3]. We have chosen 5 meta-features and generated them
for both the training and test sets. In addition, we also
considered the number of features.

(3) We ran a canonical GP method in the selected datasets and
recorded the normalized root mean squared error (NRMSE)
for each dataset.

(4) We created a meta-dataset, where each feature represents a
meta-feature and is associated with the NRMSE generated
for that respective dataset.

(5) We used this dataset to determine which features were
more related to the NRMSE obtained.

�e next sections detail each of these steps.

3.1 Datasets
We started by compiling a list of 80 datasets employed in 26 papers
working with symbolic regression problems published at GECCO
from 2013 to 2017. From these 80 datasets, we could not �nd the
description of two synthetic datasets—Sext [12] and Nguyen-12
[12, 16]—and we could not �nd seven real-world datasets available
on line—Dow chemical [28], Plasma protein binding level (PPB) [5, 9,
29], Tower data [14, 15, 29], NOX [1, 2], Wind (WND) [15], Median
lethal dose (toxicity/LD50) [5, 9] and Human oral bioavailability
[5, 8, 9, 29]1.

In addition, we decided not to use the million song dataset, given
time restrictions, and Korns-2, Korns-3, Korns-5, Korns-6, Korns-8,
Korns-9, Korns-10, given inconsistencies on the generated data—
these datasets generate inputs that lead to inconsistent data, caused
by division by zero, logarithm of zero or negative number and
square root of negative number—ending up with 63 datasets. Ta-
bles 1 and 3 describe the real and the synthetic datasets, respectively.
For the synthetic datasets, the training and test sets are sampled
independently, according to two strategies. U [a,b, c] indicates a
uniform random sample of size c drawn from the interval [a,b] and
E[a,b, c] indicates a grid of points evenly spaced with an interval c ,
from a to b, inclusive.

3.2 Meta-dataset predictive features
A set of six dataset-related meta-features were chosen, most of them
with training and test equivalents, with exception of the number of
features, which remains the same in all cases. �ey were:

(1) Number of features;
(2) Number of instances;

1We intended to analyze only datasets freely available for download, in order to make
the access to the data easier for the reader.
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Table 1: Real datasets used in papers from GECCO 2013 to GECCO 2017.

Abbreviation Dataset # of features # of instances Source

ABA Abalone1 8 500 [34]
AFN Airfoil self-noise 6 1503 [29]
BOH Boston housing 14 506 [8, 15, 34, 35]
CCP Combined cycle power plant 4 9568 [20]
CPU Computer hardware 9 209 [29]
CST Concrete strength 9 1030 [20, 29]
ENC Energy e�ciency, cooling load 9 768 [1, 2, 15, 29]
ENH Energy e�ciency, heating load 9 768 [1, 2, 15, 29]
FFR Forest �res 13 517 [29]
MSD Million song dataset2 90 1000000 [2]
OZO Ozone3 73 2536 [34]
WIR Wine quality, red wine 12 1599 [1, 2, 29]
WIW Wine quality, white wine 12 4898 [1, 2, 29]
YAC Yacht hydrodynamics 7 308 [20]

1 500 randomly selected instances. �e feature sex was represented as dummy variable.
2 Dataset was not used due to execution time restrictions.

3 Missing values were replaced by the feature mean.

(3) Target feature (output) skewness, de�ned in Eq. 1, where
n is the number of instances, and x̄ is the average of the
sample;

Skewness =
n
√
n − 1

n − 2 ·

∑n
i=1 (xi − x̄ )

3

[∑ni=1 (xi − x̄ )
2]3/2 (1)

(4) Standard deviation of the target feature;
(5) Mean of the absolute feature-target correlation, calculated

as the average of the Spearman correlation among each
feature and the target output. �e higher the value of this
feature, the simpler the dataset;

(6) Linearity measure: In order to evaluate the “linearity” of a
dataset, we used the coe�cient of determination (R2) of the
model induced by a linear regression on the dataset. Recall
thatR2 determines the percentage of variation in the output
variable that can be explained by the linear relationship
between the predictive features and the output. A low R2

means there is not a strong linear relationship between
predictive and output features.

We selected meta-features easily computed and directly related
to the regression task. �e number of instances re�ect the available
data for ��ing and model evaluation; the number of features a�ect
the input space; the skewness and standard deviation of the output
capture the distribution of the target feature; the correlation feature-
target captures the relation between the input and output features;
and the linearity of the data is related to the shape of the function
that generated the data.

It is important to mention that it makes sense to look at feature
in both the training and test sets, as we are analyzing the quality
of the datasets themselves, and not their generalization ability. In a
future work, we intend to analyze the capability of modeling GP
performance according to the meta-features.

3.3 Meta-dataset output feature
A�er extracting the meta-features from the 63 datasets, we ended up
with a meta-dataset of 63 instances, each described by 11 features.
�e next step was to associate a metric of error to each of these
instances. We adopted the Normalized Root Mean-Squared Error
(NRMSE) [23] obtained by m runs of a GP as the meta-dataset
output.

�e NRMSE was chosen because, as we want to understand the
relationship between the GP performance across di�erent datasets,
a normalized performance metric is more appropriate. We adopted
the median over di�erent executions of the GP method given by:

NRMSE =
RMSE ·

√
n

n−1

σY
=

√√√√√√√√√√√ n∑
i=1

(yi − f (xi ))2

n∑
i=1

(yi − Ȳ )2
, (2)

where Ȳ and σY are, respectively, the mean and standard deviation
of the vector Y , composed by the expected outputs given by the
training (or test) set, and f is the model (function) induced by the
GP.

We de�ned di�erent strategies for the GP experiments according
to the nature and source of the datasets. For real datasets, we
randomly partitioned the data into �ve disjoint sets of the same
size and carried out the experiments six times with a 5-fold cross-
validation (6 × 5-CV). For the synthetic datasets, the data was
sampled only once and the experiments were repeated 30 times
with the same data.

We adopted the GP implementation from the gplearn Python
package [32]. �e �tness was de�ned as the NRMSE and the func-
tion set composed by {+,−,×,AQ, sqrt , sin}, where the Analytic
�otient (AQ) [26] replaces the (protected) division and is de�ned
as:
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AQ(a,b) =
a

√
1 + b2

. (3)

3.4 Meta-features Analyses
Having the meta-dataset de�ned, our �nal step was to perform a
series of analyses to be�er understand the relations between the
meta-features and the NRMSE. �ey were:

(1) �e meta-features relevance to determine the NRMSE, ob-
tained according to a Random Forest Regressor (RFR). We
adopted the implementation from Scikit-learn [30] to de-
termine the importance of the features.

(2) �e meta-models generated using the meta-dataset created
to predict the NRMSE of a GP when using a dataset with
similar features. We adopted two approaches:
(a) We ��ed a linear regression model to the meta-dataset,

using the NRMSE as the response variable.
(b) We captured the variance of the meta-features by re-

ducing the meta-dataset to two features, represented
by the two principal components generated by the
Principal Component Analysis (PCA) method [11]—
applied a�er the meta-features were normalized. �en
we ��ed a linear regression to this two-dimensional
data, using the NRMSE as the response variable. �is
strategy allows us to visualize the meta-features (the
components representing them), along with the NRMSE,
in a three-dimensional plot.

4 EXPERIMENTAL ANALYSIS
�is section shows the results of the analyses described in the previ-
ous section2. Note that the output values were obtained by running
a canonical GP framework with a population of 1,000 individuals
evolved for 50 generations. Subtree crossover, subtree mutation,
hoist mutation and point mutation were applied with probabilities
0.85, 0.05, 0.05 and 0.05, respectively, and the tournament selection
had size 10. All other parameters were set to their default value.

4.1 Meta-dataset analysis
Intuitively, a good set of benchmarks would include problems with
a great variety of characteristics. Our methodology characterizes
datasets according to a set of 11 meta-features, which we believe
are relevant to show the relationship between the problem and the
performance of GP, but they are far from being a complete set. Here
we analyze the distribution of the values of these meta-features
across the 63 datasets considered, and the results are illustrated in
Figure 1. A general observation across all graphs is that there is a
concentration of datasets in one point of this “space” that illustrates
the benchmarks. For example, looking at the number of features
(Figure 1a), we observed that the great majority of the datasets
has one or two features, with the maximum number being 13. �e
same happens for the number of instances in the training and test
sets (Figures 1b and 1e), with the majority of datasets having less
than 2,000 instances. Of course, that time restrictions need to be
considered when creating benchmarks, but a few datasets with a

2�e code used in our experimental analysis is freely available for download on GitHub
at h�ps://github.com/laic-ufmg/gp-benchmarks

Table 2: Meta-feature importance according to the Random
Forest Regressor. �e higher the value the more important
is the feature.

Meta-Feature Feat. import.

Target skewness (Training) 0.290170
N. instances (Training) 0.184041
N. features 0.122526
Linearity measure (Training) 0.075096
Target skewness (Test) 0.056585
Target std (Training) 0.054541
Linearity measure (Test) 0.052174
Target std (Test) 0.051961
Mean absolute correlation a�ribute-target (Test) 0.044588
Mean absolute correlation a�ribute-target (Training) 0.037164
N. instances (Test) 0.031154

greater number of examples can be bene�cial to the analysis of the
proposed method.

�e mean absolute correlation of the predictive features and the
target output (showed in Figures 1c and 1f) shows that, individually,
the features present, on average, very low correlation with the
output. However, there is still 12 datasets with average correlation
greater than 0.8 in the training set—Keijzer-6, Keijzer-7, Keijzer-
8, Keijzer-9, Nguyen-1, Nguyen-2, Nguyen-3, Nguyen-6, Nguyen-
7, Nguyen-8, R1 and R2—and 13 datasets in the test set— Keijzer-
6, Keijzer-7, Keijzer-8, Keijzer-9, Nguyen-1, Nguyen-2, Nguyen-3,
Nguyen-4, Nguyen-6, Nguyen-7, Nguyen-8, Nonic, R1 and R2. As
expected, also observe in these �gures that the real datasets present
lower average correlation than the synthetic ones.

Regarding our linearity measure represented by R2 (Figures 1g
and 1j), observe that most datasets (46% for the training and 49% for
the test set) have a R2 lower than 0.5, which may be an indication
that most of them are not described by linear relationships among
the predictive features and the output. Finally, looking at the target
skewness (Figures 1h and 1k), notice that most of the datasets are
concentrated from -1 to 1, with a peak around 0. A skewness value
of 0 (meaning the data are perfectly symmetrical) is quite unlikely
for real-world data, although we have seven real-world datasets—for
both training and test set—with skewness in the interval [-0.5,0.5].
As a rule of thumb, datasets with skewness greater(smaller) than
1(-1) are considered highly skewed. We have 23(21) highly and 11(9)
moderate skewed (with values between -1 and -0.5 and 0.5 and 1)
training(test) datasets.

4.2 Meta-features relevance
In order to analyse the importance of each meta-feature on the
prediction of GP performance—measured by the median NRMSE
on the test set—we ��ed the Random Forest Regressor from Scikit-
learn [30] to the meta-dataset—composed of the meta-features of
all datasets as input and the respective median NRMSE as output.
Table 2 presents the feature importance inferred by the Random
Forest Regressor from Scikit-learn [30]. �e number of trees in
the forest was set to 120, according to a parameter tuning using
the randomized search from Scikit-learn—all the other parameters
were set to the default value. Notice that the target skewness and

https://github.com/laic-ufmg/gp-benchmarks
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Figure 1: Distribution of the values of the datasets meta-features across the 63 datasets considered.

the number of instances in the training set were considered the
most relevant meta-features, followed by the number of features.

Figure 2 presents the values of NRMSE in the test set according
to the two most important features according to Table 2. Circles
correspond to real-world datasets and triangles to synthetic ones.
�e colour of each element and its position on the vertical axis

represent the median test NRMSE obtained as output by the regres-
sion models. Note that the concentration of datasets with skewness
close to 0 leads to very small errors in these datasets, which are
mostly synthetic ones. For the number of instances, we observe that
smaller datasets tend to have smaller error, especially for synthetic
datasets—with the exception of two datasets, Korns-1 and Korns-4,
which present small NRMSE and have 10,000 training instances.
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Figure 2: Relation between the (a) the target skewness in the
training set and (b) the number of instances in the training
set compared to the median test NRMSE. Circles represent
real datasets, while triangles represent synthetic ones.

In order to be able to visualize where the datasets fall in the
dataset space generated by the meta-features, we plo�ed in Fig-
ure 3 the two principal components of PCA—induce from the meta-
features normalized to [0, 1]—together with the test NRMSE re-
turned by GP. Again, circles correspond to real-world datasets and
triangles to synthetic ones, and the colour of each element and its
position on the vertical axis represent the median test NRMSE ob-
tained as output by the GP. �e �gure also shows the least-squares
plane generated using a linear regression method. Observe that
all datasets, with a few exceptions, are really concentrated in a
portion of the space generated by these two components. In an
ideal scenario of benchmarks, there should be a be�er distribution
of these datasets in this space. �e plane generated using these two
components as a representation for the meta-features obtained a
coe�cient of determination of 0.332 and a RMSE of 0.356.

If the same linear regression is applied to the full set of meta-
features, the coe�cient of determination increases to 0.491 and the
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Figure 3: Relation between the median test NRMSE and
meta-featuresmapped to a two-dimensional space using the
PCAmethod. Circles represent real datasets, while triangles
represent synthetic ones.

RMSE decreases to 0.311. However, the Random Forest Regressor
model, that generated the feature importance previously reported,
had a coe�cient of determination of 0.894 and a RMSE of 0.142,
giving evidence that the relations among the predictive features
and the target output are mostly non-linear.

5 CONCLUSIONS AND FUTUREWORK
�e main contribution of this paper was to move the GP commu-
nity towards the proposal of a framework to measure the quality
of the benchmarks quantitatively. We started by performing an
analysis of the datasets commonly used as benchmarks for symbolic
regression in the GP scenario by using a meta-learning approach.
�is approach extracted a set of meta-features from the benchmark
datasets, and analysed how they correlate to the output error of
a canonical GP. We extracted 11 meta-features from 63 datasets,
analysed how the later were distributed according to the former and
also reduced these 11 meta-features to two using a dimensionality
reduction method. In this way, we were able to visualize the meta-
feature space and observe that most examples were concentrated
in the same region of this induced space. �is suggests that the
datasets are still very similar, and more variety is desired in a set of
benchmarks.

As future work, we want to �rst explore a wider set of meta-
features, and add new datasets to our meta-dataset. We also intend
to analyse di�erent regression methods to build an improved model
for the NRMSE prediction from meta-features.
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Table 3: Synthetic datasets used in GECCO papers from 2013-2017.

Dataset Variables Objective Function Training Set Testing Set Source

Burks (*) 1 4 ∗ x4
1 + 3 ∗ x3

1 + 2 ∗ x2
1 + x1 U [−1, 1, 20] None [4, 33]

Keijzer-1 1 0.3 ∗ x1 ∗ sin (2 ∗ π ∗ x1 ) E[−1, 1, 0.1] E[−1, 1, 0.001] [7, 12, 13, 16, 23]
Keijzer-2 1 0.3 ∗ x1 ∗ sin (2 ∗ π ∗ x1 ) E[−2, 2, 0.1] E[−2, 2, 0.001] [7, 23]
Keijzer-3 1 0.3 ∗ x1 ∗ sin (2 ∗ π ∗ x1 ) E[−3, 3, 0.1] E[−3, 3, 0.001] [7, 23]
Keijzer-4 1 x3

1 ∗ e
−x1 ∗ cos (x1 ) ∗ sin (x1 ) ∗ (sin2 (x1 ) ∗ cos (x1 ) − 1) E[0, 10, 0.1] E[0.05, 10.05, 0.1] [6, 7, 12, 13, 16, 23, 31, 33]

x1, x2 : U [−1, 1, 1000] x1, x2 : U [−1, 1, 10000]Keijzer-5 3
30∗x1∗x3
(x1−10)∗x2

2 x3 : U [1, 2, 1000] x3 : U [1, 2, 10000] [7, 12, 29, 31]

Keijzer-6 1
∑x1
i=1 i E[1, 50, 1] E[1, 120, 1] [7, 14, 21, 23, 28, 29]

Keijzer-7 1 lnx1 E[1, 100, 1] E[1, 100, 0.1] [7, 23, 29]
Keijzer-8 1

√
x1 E[0, 100, 1] E[0, 100, 0.1] [7, 16, 23]

Keijzer-9 1 arcsinh (x1 ) = ln (x1 +
√
x2

1 + 1) E[0, 100, 1] E[0, 100, 0.1] [7, 23]
Keijzer-10 2 xx2

1 U [0, 1, 100] E[0, 1, 0.01] [7, 34, 37]
Keijzer-11 2 x1 ∗ x2 + sin ((x1 − 1) ∗ (x2 − 1)) U [−3, 3, 20] E[−3, 3, 0.01] [6, 7, 12, 34]

Keijzer-12 (*) 2 x4
1 − x

3
1 + (

x2
2
2 ) − x2 U [−3, 3, 20] E[−3, 3, 0.01] [6, 7, 12, 34, 37]

Keijzer-13 2 6 ∗ sin (x1 ) ∗ cos (x2 ) U [−3, 3, 20] E[−3, 3, 0.01] [7, 12, 34]
Keijzer-14 2 8

2+x2
1+x

2
2

U [−3, 3, 20] E[−3, 3, 0.01] [6, 7, 12, 16, 34]

Keijzer-15 2
x3

1
5 +

x3
2
2 − x2 − x1 U [−3, 3, 20] E[−3, 3, 0.01] [6, 7, 12, 16, 34]

Korns-1 1 1.57 + 24.3 ∗ x4 U [−50, 50, 10000] U [−50, 50, 10000] [38]
Korns-21 3 0.23 + 14.2 ∗ x4+x2

3∗x5 U [−50, 50, 10000] U [−50, 50, 10000] [38]

Korns-31 4 −5.41 + 4.9 ∗
x4−x1+

x2
x5

3∗x5 U [−50, 50, 10000] U [−50, 50, 10000] [31, 38]
Korns-4 1 −2.3 + 0.13 ∗ sin (x3 ) U [−50, 50, 10000] U [−50, 50, 10000] [38]
Korns-51 1 3 + 2.13 ∗ ln (x5 ) U [−50, 50, 10000] U [−50, 50, 10000] [31, 38]
Korns-61 1 1.3 + 0.13 ∗ √x1 U [−50, 50, 10000] U [−50, 50, 10000] [38]
Korns-7 1 213.80940889 ∗ (1 − e−0.54723748542∗x1 ) U [−50, 50, 10000] U [−50, 50, 10000] [38]
Korns-81 3 6.87 + 11 ∗

√
7.23 ∗ x1 ∗ x4 ∗ x5 U [−50, 50, 10000] U [−50, 50, 10000] [38]

Korns-91 4
√x1
ln (x2 )

∗ e
x3
x2

4
U [−50, 50, 10000] U [−50, 50, 10000] [38]

Korns-101 4 0.81 + 24.3 ∗
2∗x2+3∗x2

3
4∗x3

4+5∗x4
5

U [−50, 50, 10000] U [−50, 50, 10000] [38]

Korns-11 1 6.87 + 11 ∗ cos (7.23 ∗ x3
1 ) U [−50, 50, 10000] U [−50, 50, 10000] [38]

Korns-12 2 2 − 2.1 ∗ cos (9.8 ∗ x1 ) ∗ sin (1.3 ∗ x5 ) U [−50, 50, 10000] U [−50, 50, 10000] [38]
Koza-2 (*) 1 x5

1 − 2 ∗ x3
1 + x1 U (−1, 1, 20) None [22]

Koza-3 (*) 1 x6
1 − 2 ∗ x4

1 + x
2
1 U (−1, 1, 20) None [10, 22]

Meier-3 2
x2

1 ∗x
2
2

x1+x2 U [−1, 1, 50] None [22]

Meier-4 2
x5

1
x3

2
U [−1, 1, 50] None [22]

Nguyen-1 (*) 1 x3
1 + x

2
1 + x1 U (−1, 1, 20) None [7, 31, 38]

Nguyen-2 (*) 1 x4
1 + x

3
1 + x

2
1 + x1 U (−1, 1, 20) None [7, 10, 17, 21, 31, 35, 38]

Nguyen-3 1 x5
1 + x

4
1 + x

3
1 + x

2
1 + x1 U (−1, 1, 20) None [7, 12, 16, 31, 37, 38]

Nguyen-4 1 x6
1 + x

5
1 + x

4
1 + x

3
1 + x

2
1 + x1 U (−1, 1, 20) None [7, 12, 16, 31, 37, 38]

Nguyen-5 1 sin (x2
1 ) ∗ cos (x1 ) − 1 U (−1, 1, 20) None [7, 10, 12, 16, 37, 38]

Nguyen-6 1 sin (x1 ) + sin (x1 + x2
1 ) U (−1, 1, 20) None [7, 12, 16, 31, 37, 38]

Nguyen-7 1 ln (x1 + 1) + ln (x2
1 + 1) U [0, 2, 20] None [13],[7, 10, 12, 14, 16, 37, 38]

Nguyen-8 1
√
x1 U [0, 4, 20] None [7, 16, 37, 38]

Nguyen-9 2 sin (x1 ) + sin (x2
2 ) U (−1, 1, 100) None [7, 12, 16, 37, 38]

Nguyen-10 2 2 ∗ sin (x1 ) ∗ cos (x2 ) U (−1, 1, 100) None [7, 12, 37, 38]
Nonic 1

∑9
i=1 x

i
1 E[−1, 1, 20] U [−1, 1, 20] [13, 33]

Pagie-1 2 1
1+x−4

1
+ 1

1+x−4
2

E[−5, 5, 0.4] None [14, 16, 19]

Poly-10 9 x1 ∗ x2 + x3 ∗ x4 + x5 ∗ x6 + x1 ∗ x7 ∗ x9 + x3 ∗ x6 ∗ x10 U [0, 1, 330] U [0, 1, 170] [20]

R1 1 (x1+1)3

x2
1−x1+1

E[−1, 1, 20] U [−1, 1, 20] [13, 16, 33]

R2 1
x5

1−3∗x3
1+1

x2
1+1

E[−1, 1, 20] U [−1, 1, 20] [13, 16, 33]

R3 1
x6

1+x
5
1

x4
1+x

3
1+x

2
1+x1+1

E[−1, 1, 20] U [−1, 1, 20] [16]

Sine 1 sin (x1 ) + sin (x1 + x2
1 ) E[0, 6.2, 0.1] None [19]

Vladislavleva-1 2 e−(x1−1)2

1.2+(x2−2.5)2
U [0.3, 4, 100] E[−0.2, 4.2, 0.1] [16, 23, 29, 34]

Vladislavleva-2 1 e−x1 ∗ x3
1 ∗ (cosx1 ∗ sinx1 ) ∗ (cosx1 ∗ sin2x1 − 1) E[0.05, 10, 0.1] E[−0.5, 10.5, 0.05] [23]

x1 : E[0.05, 10, 0.1] x1 : E[−0.5, 10.5, 0.05]Vladislavleva-3 2 e−x1 ∗ x3
1 ∗ (cosx1 ∗ sinx1 ) ∗ (cosx1 ∗ sin2x1 − 1) ∗ (x2 − 5) x2 : E[0.05, 10.05, 2] x2 : E[−0.5, 10.5, 0.5] [23]

Vladislavleva-4 5 10
5+∑5

i=1 (xi −3)2
U [0.05, 6.05, 1024] U [−0.25, 6.35, 5000] [14, 15, 20, 28, 29]

x1 : U [0.05, 2, 300] x1 : E[−0.05, 2.1, 0.15]
x2 : U [1, 2, 300] x2 : E[0.95, 2.05, 0.1]Vladislavleva-5 3 30 ∗ (x1 − 1) ∗ x3−1

(x1−10)∗x2
2 x3 : U [0.05, 2, 300] x3 : E[−0.05, 2.1, 0.15]

[6, 34]

Vladislavleva-6 2 6 ∗ sin (x1 ) ∗ cos (x2 ) U [0.1, 5.9, 30] E[−0.05, 6.05, 0.02] [6, 34]
Vladislavleva-7 2 (x1 − 3) ∗ (x2 − 3) + 2 ∗ sin ((x1 − 4) ∗ (x2 − 4)) U [0.05, 6.05, 300] U [−0.25, 6.35, 1000] [23]

Vladislavleva-8 2 (x1−3)4+(x2−3)3−(x2−3)
(x2−2)4+10

U [0.05, 6.05, 50] E[−0.25, 6.35, 0.2] [6, 34]

1 Note that the domain may include values for which the function is unde�ned.
(*) Datasets not recommended as benchmarks in [36].
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