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ABSTRACT

The automatic detection of refactoring recommendations has been
tackled in prior optimization studies involving bad code smells,
semantic coherence and importance of classes; however, such stud-
ies informally addressed formalisms to standardize and replicate
refactoring models. We propose to assess the refactoring detection
by means of performance convergence and time complexity. Since
the reported approaches are diicult to reproduce, we employ an
Artiicial Refactoring Generation (ARGen) as a formal and naive
computational solution for the Refactoring Detection Problem. AR-
Gen is able to detect massive refactoring’s sets in feasible areas
of the search space. We used a refactoring formalization to adapt
search techniques (Hill Climbing, Simulated Annealing and Hybrid
Adaptive Evolutionary Algorithm) that assess the performance and
complexity on three open software systems. Combinatorial tech-
niques are limited in solving the Refactoring Detection Problem
due to the relevance of developers’ criteria (human factor) when
designing reconstructions. Without performance convergence and
time complexity analysis, a software empirical analysis that utilizes
search techniques is incomplete.
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1 INTRODUCTION

Providing refactoring recommendations is a widespread practice
that assists developers in ameliorating the maintainability and read-
ability of their code [4]. Nonetheless, the procedure for automati-
cally generating sequences composed of refactoring operations or
the Refactoring Detection Problem (RDP) remains a complex [12]
and arduous task for maintenance groups [13, 14].

Approaches that suggest refactoring operations must be very
clear on how those refactorings are generated. Indeed, each ap-
proach must give a sound, concise and justiied answer to the fol-
lowing questions: Which are the variables, the hyper-parameters,
and the constraints of the model? How are the refactorings built
and performed? Is the refactoring detection a truly multi-objective
problem? Unfortunately, current research [16ś18, 21, 22, 24ś26]
proposes informal optimization models for the RDP without proper
performance convergence and time complexity analysis, making
the experiments diicult to compare. The implementation and ex-
ecution of refactorings from the reported models are ambiguous.
For instance, Ouni et al’s "DefectCorrection" algorithm did not clar-
ify how the refactoring sequences were computed on the code to
assemble inal recommendations [23]. Therefore, performance con-
vergence and time complexity analysis are required to empirically
evaluate search-based techniques [5, 8].

In this paper, we employ the Artiicial Refactoring GENeration
(ARGen), an approach for detecting massive refactoring operation
sets. ARGen allows researchers to estimate the impact of proposed
changes to the source code before such changes are implemented 1

We analyze the convergence and time complexity of ARGen with
two baseline single optimization techniques and a Hybrid Adaptive
Evolutionary Algorithm (HaEa) [8]. Eventually, the research is
expected to contribute to the empirical analysis of the application
of single-objective techniques in software maintenance problems.

2 A REPRODUCIBILITY ANALYSIS OF THE
REFACTORING OPTIMIZATION MODELS

The reproducibility analysis -whose purpose is to manually verify
the limitations of automatically performing software refactoring-
consisted in assigning a value to each reproducibility characteristic
(or dimension traced a conceptual matrix2) for every reportedmodel.
The models were then ranked: zero points indicates the model
was easy to reproduce; one or two points moderately hard to
reproduce; three or more than three points hard to reproduce. If
the behavior preservation dimension was unclear, the approach

1Regarding the impact on the research community and industry, all the artifacts of
the project are available for any researcher or developer who requires performing
refactoring analysis: https://github.com/danielrcardenas/argen.
2Find the complete table in: https://argeneration.github.io/assets/pdfs/longtable.pdf

https://doi.org/10.1145/3205651.3208294
https://doi.org/10.1145/3205651.3208294
https://github.com/danielrcardenas/argen
https://argeneration.github.io/assets/pdfs/longtable.pdf 
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was labeled as hard to reproduce since the key characteristic of
any refactoring is the ability to preserve the functionality. From
Table 1, we conclude the search-based models fail in explaining
the way of reproducing refactoring techniques (no evidence of a
real refactoring outcome). Moreover, none of the papers perform
algorithm analysis convergence, except for Seng, et al. [29].

3 REFACTORING DETECTION DESCRIPTION

Sets of classes, methods, ields and refactoring operations 3 are
properly represented to be utilized in a combinatorial framework
besides the metrics 4 utilized in the objective function. A formalism
for refactoring is appropriated whether the research community
desires to extend any technique, enclose other formalism in the
framework (e.g., applying a hyper-heuristic or memetic algorithm
for the software refactoring problem [3, 28]), or represent the refac-
torings in a data structure diferent from sequences (e.g., Directed
Acyclic Graphs).

3.1 Formal Deinitions

Object-oriented programming (OOP) is a software development
style organized around objects, which can be used in paradigms
like imperative, functional, or logic programming [19]. An object is
deined as a run-time entity composed of 1) a state represented by
a set of internal objects named attributes and 2) a set of subroutines
named methods [27].

Deinition 3.1. (System Under Analysis deinition). SUA is a soft-
ware system composed of classes, methods, and attributes, where ob-
jects instantiate classes and communicate with each other through
messages.

Deinition 3.2. (Class deinition). A class, prototype or template is
a set of similar objects including collections of similar attributes and
methods. In fact, classes are the programming-time counterparts
of objects [27]. Assume a single class cα is a Cartesian product
represented by cα = identi f ier ×Attribute(s) ×Method(s) = str ×

str∗ ×str∗, where str∗ is a Kleene on str string abstraction or chain.
A set of classes is a power set of cα : C ⊆ ℘(cα ) and |C | = k , where
k is the total number of System Under Analysis (SUA) classes and
c = {cα ∈ C |1 ⩽ α ⩽ k}.

Deinition 3.3. (Method Deinition).Methods are subroutineswhich
deine the set of valid messages the object may accept. Methods
are represented by Kleene star. Set M = str∗ =

⋃
n=0(str )

n and
∀1⩽α⩽k states |M | = βα is inite. SoM ⊆ N andM(cα ) = Mα .

Deinition 3.4. (Attribute Deinition).Attributes (or ields) are sets
of internal objects that represent a state. Attributes are represented
by Kleene star. Set A = str∗ =

⋃
n=0(str )

n and ∀1⩽α⩽k states
|A| = γα is inite. So A ⊆ N and A(cα ) = Aα .

Deinition 3.5. (Refactoring Deinition). The refactoring process
consists in re-constructing the code design of a SUA without af-
fecting the behavior functionality [4]. A refactoring is a function
Rδ : Ω −→ (Code Modiication) where δ represents a speciic refac-
toring operation and Ω = cs ×As ×Ms × ct is a Cartesian product

parameter.

3Find the list of refactoring operations in: https://argeneration.github.io/assets/pdfs/
RefRefactors.pdf
4Find the list of metrics in: https://argeneration.github.io/assets/pdfs/RefMetrics.pdf

Refactoring properties are: 1) a solution set of all the possibilities
of refactorings functions with refactoring parameters, coined as
R(Ω), so RI ∈ R(Ω), is a speciic solution or Refactoring Instance, 2)
a refactoring recommendation Si is a set of Refactoring Instances
RI and a subset of R(Ω).

Deinition 3.6. (Code Quality Metric Deinition). A quality metric
is a function ηj : cα −→ R. Each class cα of the SUA has a set of
metric values: Hα = {η1(cα ),η2(cα ), . . . ,η J (cα )}, where J is the
total number of metrics and Hα ∈ RJ .

We utilized Refactoring Impact PrEdiction (RIPE) to predict the
impact of 12 refactoring operations on 11 code metrics [2] because
our solution set of refactoring recommendation is too expensive
to perform in a SUA, yet an estimation of the refactoring on the
metrics can be computed. RIPE implements 89 impact prediction
functions that show developers the variation of code metrics before
the application of a refactoring operation. For instance: LOCp (cs ) =
LOCb (cs ) − LOC(mk ) and LOCp (ct ) = LOCb (ct ) + LOC(mk ). For
each Refactoring Operation rδ and quality metric ηj there is a pre-
diction function Predictionδ, j (cα ) = η̃δ, j (cα ), which estimates the
impact of the refactoring on the metric of a class (if the refactoring
afects the metric).

Deinition 3.7. (Impacted Code Quality Metric Deinition.) An
impacted quality metric is a function η̃δ, j : cα −→ R. Each class
c̃α , impacted by a refactoring operation rδ of the SUA, has a set of
metric values: H̃α = {η̃(δ,1)(cα ), η̃(δ,2)(cα ), . . . , η̃(δ, J )(cα )}, where

J is the total number of metrics and H̃α ∈ RJ .

3.2 Refactoring Detection as a Combinatorial
Problem

The Artiicial Refactoring Generation (ARGen) considers all possi-
ble combinations of refactoring operations for a given SUA, which
implies to operate in a large solution space. The purpose of the
technique is to recommend massive artiicial refactoring operations
that fulill the proposed parametric objective function.

The refactoring generation is a NP-Complete combinatorial prob-

lem 5. The solution constitutes a set of refactoring operations instead
of a sequence of refactoring operations. The refactoring operations
from the same set are independent of each other. ARGen does not
guarantee generated outcomes reduce the error-proneness of an
inspected piece of code (or SUA). Nevertheless, ARGen is able to
explore the search space in actionable areas, if and only if, the de-
velopers/researchers properly tune the objective function based on
their interest in SUA.

3.2.1 Characterization of the Search Space. Figure 1 depicts the
search space of the Artiicial Refactoring Generation. The feasi-

ble region represents refactoring that fulill deined constraints of
the proposed objective function. The actionable region represents
refactoring solutions that reduce error-proneness. The search space
increases by the expression (C2 ∗A ∗M)r , where r is the number
of refactoring operations in a set (e.g., a system with 10 classes,
10 attributes, and 10 methods would have a size of 10,000 if the
set is composed of one refactoring).Our paper demonstrates that

5The ARGen was demonstrated through the Subset Sum problem computational
complexity analysis (Subset-Sum-Problem ∝ ARGen)

https://argeneration.github.io/assets/pdfs/RefRefactors.pdf
https://argeneration.github.io/assets/pdfs/RefRefactors.pdf
https://argeneration.github.io/assets/pdfs/RefMetrics.pdf
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Table 1: Comparison of Combinatorial Techniques Related to The Refactoring Problem

Authors Google Scholar

Citation Count

Optimization Technique Objective(s) Type of solution Evaluation Method Behavior Preserva-

tion

Reproducibility

Seng & Stammel
(2006) [29]

232 Single Objective EA (non-
described technique).

Maximize features such as
complexity, stability, cou-
pling and cohesion by means
of a weighted sum of seven
metrics values. The input is
the source code.

A list of model refactorings. The
list is ordered according to es-
tablished pre/post conditions of
refactorings.

Fitness convergence analysis
and an example of the code
development.

Domain speciic precon-
ditions based on the ob-
ject oriented structure
and design patterns.

Moderately hard

Keefe, Mark O &
Cinneide, Mel O
(2007) [9, 20]

101 Multiple ascent hill climbing,
simulated annealing and ge-
netic algorithms.

An implementation of the
unserstandability function
from QMOOD model. The
input is an Abstract Syntax
Tree (AST).

The refactorings are applied to
the AST, then the outputs are
the refactored input code (un-
clear solution example).

Mean analysis on itness val-
ues and execution time for
each search technique.

Static program anal-
ysis on an unknown
pre/post-conditions.
There is no evidence of
how the refactoring is
executed on the AST.

Hard

Harman & Tratt
(2007) [6]

173 Variant of hill climbing (non-
described technique).

Two objectives: metric cou-
pling between classes (CBO)
and the standard deviation of
methods per class (SDMPC).

Sequences of refactorings; al-
though, it is unclear how the so-
lution is conigured.

Pareto front analysis; how-
ever, without concrete type
solutions or outcome exam-
ples, the analysis is diicult
to interpret.

NA Hard

Jensen & Cheng
(2010) [7]

52 Genetic programming. A proposed itness function
composed of the QMOOD
model, speciic penalties,and
number of modiications.

The individual is composed of a
transformation tree and design
graph (UML class diagram).

Exploratory analysis on it-
ness values; however, the
analysis are very informal
and no concrete solution is
described.

NA Hard

Ouni & Kessen-
tini (2013) [22, 23,
25]

24 NSGA-II (it is unclear how
the refactorings were exe-
cuted).

Maximize design quality, se-
mantic coherence and the re-
use of the history of changes.

Vector-based representation. A
set of refactorings is conigured
and sorted using dominance
principle and a comparison op-
erator based on crowding dis-
tance. The order of the opera-
tions inside the vector is impor-
tant.

DCR (defect correction
ratio) and RP (refactoring
precision). It is unclear how
they reproduced previous
approaches. They used
RefFinder (Eclipse Tool) for
refactoring comparison.

Pre and post conditions
described by Opdyke
(it is unclear how au-
thors performed behav-
ior preservation).

Hard

Mkaouer &
Kessentini (2014)
[15, 16]

13 NSGA-II (it is unclear how
authors executed the 23
refactorings).

Improve software quality, re-
duce the number of refactor-
ings and increase semantic
coherence.

A set of Non dominated refactor-
ing solutions. The set of refactor-
ings are ranked.

Execution time analysis and
a manual validation of the
refactorings. There are com-
parisons with other reported
refactorings.

NA Hard

Ouni & Kessen-
tini (2015)
[21, 26]

6 Chemical Reaction Optimiza-
tion; although, there is no ev-
idence or concrete example
of how the refactorings are
executed on the code

One objective that minimize
the number of bad smells.

A sequence of refactorings in a
vector representation (it is un-
clear how the appearance of the
suggested refactoring is).

Execution time analysis and
comparison to the number of
bad code smells with an old
version of the systems.

Opdyke’s functions;
however, these condi-
tions are unclear in the
implementation of the
approach.

Hard

Mkaouer &
Kessentini (2016)
[18]

NA NSGA-II (it is unclear how
the refactorings were exe-
cuted).

Maximize quality improve-
ments and the respective un-
certainties associated with
severity and importance of
refactorings opportunities.

Vector-based representation of
refactoring operations. The or-
der depends on the position of
the refactoring inside the array.

Hypervolume, Inverse Gen-
erational Distance, Number
of Fixed Code-Smells, Sever-
ity of Fixed Code-Smells,
Correctness of the suggested
refactorings and computa-
tional Time.

Opdyke’s function
(deining pre/post con-
ditions): however, these
conditions are unclear
in the implementation
of the approach.

Hard

the number of classes involved in the optimization afects the time
complexity.

Figure 1: Refactoring Problem Search Space. The let part of the graphic is an overview
of the search space. It includes two relevant regions: ① feasible and actionable and shows
that the space is not convex ②. A refactoring solution point ③ that is a set of refactoring
operations from the Fowler’s Catalog. The solution point is amplified in the right part
④ where a source class (src), a target class (tgt), a field from the source class (fld) and a
method from the source class (mtd) are included within each refactoring operation.

3.2.2 Objective Function. The objective function represents a
ratio that measures the normalized diference between the actual
metrics and the impacted metrics of the system under analysis. The
inputs constitute a set of refactoring operations composed of real
objects from the system (i.e target class, source class, ields, and
methods) and a weighted vectorw that captures the relevance of
each metric.

Deinition 3.8. (Code Quality Additive Metric Deinition). The use
of quality metrics seeks not only to identify refactoring opportuni-
ties but also to capture developers’ interest. This formula computes
ϒH (j ∈ J ) =

∑k
α=1

(
ηj (cα )

)
a general value for one exact metric on

the processed SUA.

The parameter Φj of the impacted sum function ϒ
H̃
(Φj ) is com-

posed of a metric j ∈ J and the solution set Si : Φj = (j ∈ J , Si ) =

(j, {RI1,RI2, ...,RIi , ...,RIT }), where T is the total number of Refac-
toring Instances in Si .
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Deinition 3.9. (Code Quality Additive Impacted Metric Deinition).
The following formula

ϒ
H̃
(Φj ) =

|Si |∑

i=1

|c ∈Ωi |∑

α=1

max1≤j≤H̃α

((
η̃δ, j (cα )

))

estimates a general value for one speciic metric on the processed
SUA according to a solution set.

Deinition 3.10. (The Bias Quality System Ratio). The Bias Quality

System Ratio BQR(Φj ) =
ϒ
H̃
(Φj )

ϒH (j)
measures the ratio between the

quality of the SUA and the predicted quality of the impacted classes
following a refactoring recommendation Si .

Deinition 3.11. (The Objective Function Deinition). The objective
function is a parametric optimization function receives developer-
deined goals. We use min-max normalization for BQR to put the
metrics in a positive scale:

Obj(Φ) =

J∑

j=1

(
w j

ϒ
H̃
(Φj ) −min(ϒ

H̃
(Φj ))

max(ϒ
H̃
(Φj )) −min(ϒ

H̃
(Φj ))

)

J∑

j=1

(
w j

ϒH (ηj ) −min(ϒH (ηj ))

max(ϒH (ηj )) −min(ϒH (ηj ))

) + ρ(Φ)

wherew or vector of weights are numbers between {−1, 1} and
ρ(Φ) penalization. The vector of weights is the formalism where
developers convey their interest in metrics to obtain meaningful
suggestions of classes to be reconstructed [1]. When the numer-
ator is less than the denominator, the predicted system improves
its quality metrics. In other words, if the objective function is an
improper fraction, then the predicted system is worse (in terms of
quality) than the actual. The input of the objective function is a
set Φ of refactoring recommendations; alternatively, an output is a
value that represents the estimation of the metrics after applying
the refactorings operations in Φ.

The objective function does not ensure refactoring opportunities
in a SUA [1], yet an estimation of how the refactorings are impacted
by the change of a quality metric [2]. The implementation of the
objective function (Figure 2) required the design of computational
techniques to adapt the Artiicial Refactoring Generation and the
deinition of speciic refactoring data structures (see igure 6 from
the web page).

3.2.3 Refactoring Constraints. We pose a catalog of constraints
that depend on the refactoring operation structure and the general
object-oriented guidelines. Figure 3 depicts a typical coniguration
of a solution after applying a mutation, a variation’s operator, or
a new generation. Consider a class C1 a subclass of C2. If we try
to apply a "Pull Up Field" on a solution where C1 constitutes the
source and C2 the target, then that operation violates the constraint
SRCSubClassTGT.

6Figure in: https://argeneration.github.io/assets/pdfs/RefDataStructure.pdf

Figure 2: Refactoring Detection in the Objective Function. ① Parser. the source code must
be in Java or C++ to be translated into an XML by means of src2xml. ② Refactoring Im-
pact PrEdiction. RIPE is composed of a Java module that measures 6 metrics and another
module that estimate the samemetrics on the output provided by the search technique. ③
Source Code Metaphor. The metaphor keeps the information of the analyzed systems. ④

The search technique. This module is in Scala and process the vector of weights and the
Fowler’s Catalog using previous formalisms. ⑤ Individual. The search technique module
proposes diferent refactoring configurations that RIPE must measure. ⑥ Cache. The out-
puts of RIPE are stored in a Cache to improve performance. ⑦ alife.unalcol This library
is employed for the optimization algorithms. ⑧ JSON recommendations. The search tech-
nique module produces a final refactoring detection output with the best fitness mapped
into a JSON format.

Figure 3: Refactoring Constraint Pull Up Field. In "Pull Up Field", the source class must be
a subclass of the target.

3.3 Refactoring Detection as Evolutionary
Approach

We employed the Hybrid Adaptive Evolutionary Algorithm (HaEa)
that evolves the operator rates and the solutions at the same time
[8]. Two versions of HaEa were considered: invariable and variable
chromosome. A variable chromosome indicates that the individ-
ual allows modiication in its size (varies between a minimum and
maximum range) this paper refers to that algorithm as HaEa Var.
In an invariable HaEa version, the number of refactoring recom-
mendations are ixed.

In HaEa, each individual is evolved independently from other
individuals in the population. In each generation, one genetic opera-
tor is selected according to dynamically learned operator rates that
are encoded into the individual. If the selected operator requires
another individual for mating, then the individual is selected from
the population with replacement. HaEa replaces the parent and the
operator rate is rewarded for improving the individual if the itness
of the ofspring is better than the parent. Whereas, the operator
rate is penalized if the individual diminishes the itness. The source

https://argeneration.github.io/assets/pdfs/RefDataStructure.pdf


Assessing Single-Objective Performance Convergence and Time

Complexity for Refactoring Detection GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan

code of this approach is available online 7. The Hybrid Adaptive
approach utilizes the repairing functions and six diferent genetic
operators (Figure 4) that were specially made for exploring in spaces
where the algorithm preserves the objected-oriented structure.

Figure 4: HaEa with invariable (fixed) chromosome uses: ① Refactoring Operation Muta-
tion that changes a complete refactoring operation label preserving its internal parame-
ters (src, tgt, fld andmtd); ② Refactoring Operation Class Transposition that interchanges
the src with tgt parameters inside a specific gen (the gen is selected by following a Gauss-
ian distribution); and ③ Refactoring Operation Crossover that crosses two refactoring op-
erations in a random position (Gaussian distribution) of the chromosomes. HaEa with
variable chromosome uses: ④ Adding Refactoring Operation that adds a specific number
of refactorings to the individual; ⑤ Deleting Refactoring Operation that deletes a specific
number of refactorings to the individual; and ⑥ Joining Refactoring that mixes two indi-
viduals into one.

4 EVALUATION

We evaluate the performance of the approach when generating
massive artiicial refactoring recommendations and to present the
results of baseline search techniques through proper statistical anal-
ysis. We performed a preliminary experiment and a formal experi-

ment from previous reports of automated refactoring [18, 29]. The
preliminary experiment evaluated the do-ability and the formal
experiment validated the performance of the models and the time
complexity given a number of classes.

We employed three open software systems, which have been
regularly reported in evolutionary computation approaches for
refactoring [11, 12, 18, 26]: Commons Codec v.1.10 with 123 num-
ber of classes (CCODEC), Acra v.4.6.0 with 59 classes (ACRA) and
JFreeChart v.1.0.9. with 558 classes. Two datasets were initially
conigured for algorithms performance analysis. The irst dataset
contains all source classes from CCODEC and the second dataset
all source classes of ACRA. In addition, we employed 6 datasets
from JFreeChart (classes inside each dataset are hierarchy related).
These datasets were applied for time complexity analysis.

In the preliminary results, the Shapiro-Wilk test suggested the
data featured no normal distribution for both datasets ACRA and
CCODEC. The p − values constitute less than 0.05 so that the al-
ternative hypothesis is rejected 8. Hill Climbing and Simulated
Annealing were compared against HaEa with a Wilcoxon test. The
null hypothesis H0 states that the median of Hill Climbing itness
is the same as HaEa’s and the alternative hypothesis (H1) consti-
tutes that the median of HaEa itness is greater than the baseline
algorithms’. The α value follows 0.05 level of signiicance.

Each dataset generated a sample of itness values that were or-
ganized sequentially. The actual position was compared respect
to the previous one by keeping the least value in each evaluation

7https://github.com/danielrcardenas/argen
8Table in: https://github.com/argeneration/argeneration.github.io/blob/master/assets/
pdfs/RefShapiro.pdf

(steady state). Since all the experiments were executed 30 times,
we organized the results in a matrix where rows constitute the
evaluation (itness or time) and the columns the experiments. The
median, the median deviation, maximum and minimum values for
each row were calculated. As far as the formal experiments are
concerned, Experiment I. Algorithm’s Performance seeks to validate
which approach conveys the best itness behavior results and Ex-

periment II. Time Complexity of the recommendations assesses the
relationship between the number of classes and the time spent in
generating artiicial refactorings for such datasets.

4.1 Performance Convergence Experiment I

The following research question narrowed the study:RQ1.What is

the technique’s performance when generating feasible rec-

ommendations? To answer RQ1, irst, the source code datasets
were organized according to heritage and design relationships and,
second, baseline algorithms for convergence assessment were ap-
plied to the datasets.

4.1.1 Algorithm’s Performance Results. We compared three cur-
ves that represent computed itness values for HC and SA (best,
median and worst). Figure 5 depicts for three algorithms the largest
evaluations attempted during our experiment. The best itness rates
in (a) and (b) are relatively homogeneous during evaluations. In
(a) the median and worst values became stable after 3,000 eval-
uations, however, in (b) the median values are variable though
all evaluations (0.97775 ± 0.00633[5000], 0.97386 ± 0.00631[7000],
0.97167 ± 0.00354[10000]). We observed that HaEa (c) obtained the
best values starting from 6,000 evaluations for HC (p − value =

0.034 96) and 3,000 evaluations for SA (p-value = 0.041 17). By
10,000 evaluations, HaEa values are signiicantly lower than HC
(p − value = 0.000 16) and SA (p − value = 0.000 14). Although,
HaEa behavior (c) in large evaluations is better in all sample points
(Table 2) with a remarkable p-value = 0.00023. Our results exhibit
that HaEa presents good performance in large evaluations. HC and
SA experience relative better results in few steps than HaEA, even
though the evolutionary approach reaches the best values after
certain evaluations. Previous studies pose combinatorial represen-
tations of refactorings [6, 10, 20, 29], but this paper establishes a
benchmark problem contrasting baseline algorithms (HC and SA)
versus HaEa with an extensive performance study.

Table 2: Performance Rates over Number of Evaluations for

HC, SA and HaEa in Acra System

Performance (median itness)

Evaluation Hill Climbing Simulated Annealing HaEa

10000 0.97589 0.97145 0.96543

20000 0.97529 0.9695 0.96133

40000 0.97077 0.9684 0.95623

50000 0.96862 0.9684 0.9557

60000 0.96815 0.96819 0.95493

p - value <= 0.000 23 vs HeEa group.

The following plots Figure 6a and Figure 6b aim to compare four
algorithms. In system CCODEC, the best behavior corresponds to

https://github.com/argeneration/argeneration.github.io/blob/master/assets/pdfs/RefShapiro.pdf
https://github.com/argeneration/argeneration.github.io/blob/master/assets/pdfs/RefShapiro.pdf
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Figure 5: Acra System Fitness Performance up to 60000 Evaluations for four Combinatorial Algorithms: (a)Hill Climbing, (b)Simulated Annealing, (c)HaEa.

Simulated Annealing algorithm for 1000 evaluations, yet it presents
the highest variability. While, in ACRA, HaEa experienced the best
performance for 10000 and 60000 evaluations. HaEa presents good
performance in large evaluations is supported by box-plot analysis.
Ten thousand evaluations were executed on ACRA system, only
HaEa obtains the best median value. Likewise, after 6,000 evalua-
tions, HaEa was still searching for fewer values. Hill Climbing and
Simulated Annealing induced better results in few evaluations like
in CCODEC experiments with 1000 and 2000 evaluations respec-
tively.

4.2 Time Complexity Experiment II

The JFreeChart datasets were employed to perform the time com-
plexity evaluation. The following research question narrowed the
study:RQ2.How is the relation between the variablesn classes

and t time? To answer RQ2, irst, the source code datasets were
organized according to design relationships and heritage and, sec-
ond, the time analysis included both baseline and evolutionary
techniques to establish the trend line between classes and time.

4.2.1 Time Complexity Results. Figure 7 depicts a comparison
of the mean time complexity between baseline algorithms and
HaEa search techniques for 30 independent experiments. The time
complexity points forms an exponential patterns (HaEa with an
equation model y = 470.537e(0.024x)).

The percentage increase in HC and SA techniques from 11 classes
to 71 was 504.41% and 515.92% compared to 419.63% in HaEa’s. The
results show that each time the experiment increased the number of
the classes, baseline algorithms took more time processing classes
for refactoring than HaEa. HaEa seems to be a better model to
estimate refactoring recommendations in less time.

5 DISCUSSION

The following listing is a real JSON output from ACRA generated by
ARGen, which recommends two types of refactorings. Such output

allowed us to manually implement the refactoring 9. Understanding
software design artifacts are not enough for detecting refactoring
regardless the size of the SUA. ARGen widely explores the search
space to detect refactorings without any previous knowledge about
the system. An automatic refactoring detection approach by em-
ploying search techniques is an open research problem. However,
this research considers the single-objective case and the main goal
embodies to correctly insert the assessment techniques (conver-
gence and time complexity) into the empirical studies and not to
solve the RDP.

Our main inding that the combinatorial techniques are validated

in terms of performance and time complexity is supported by the
experiments performed in section 4. Answering RQ1, for dataset
CCODEC, three deined curves (best, median and worst) diverge
for HC and SA after 2,000 evaluations; nonetheless, for ACRA, both
algorithms converged in a mean value of 0.96819 with a standard
deviation of 0.00174 after 60,000 itness evaluations. Conversely,
answering RQ2, the relation between a number of classes and time
is exponential for both HC and SA.

Seng, et al. [29] research contains the most relevant convergence
study to compare with. They proposed an evolutionary algorithm
for optimizing class structure in an open source system to keep
class level refactoring. The outcome is a refactoring developed by
the value of several quality metrics and the number of violations
of object-oriented design guidelines. Seng’s study design consid-
ered only one refactoring (move method) and restricted number of
classes; thus, the search space was signiicantly reduced. Whereas,
ARGen explores all the possible search space for the given SUA
with 12 refactoring operations. Ignoring convergence and time
complexity in software empirical analysis implies that search-based
approaches do not guarantee a reasonable number of evaluations
to obtain proper solutions on time. We summarize the limitations
of this research as below: our research did not develop a refactoring

9https://github.com/argeneration/argeneration.github.io/blob/master/assets/pdfs/
RefSRC.pdf and https://github.com/argeneration/argeneration.github.io/blob/master/
assets/pdfs/RefTGT.pdf

 https://github.com/argeneration/argeneration.github.io/blob/master/assets/pdfs/RefSRC.pdf
 https://github.com/argeneration/argeneration.github.io/blob/master/assets/pdfs/RefSRC.pdf
https://github.com/argeneration/argeneration.github.io/blob/master/assets/pdfs/RefTGT.pdf
https://github.com/argeneration/argeneration.github.io/blob/master/assets/pdfs/RefTGT.pdf
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(a) Commons Codec System

(b) Acra System

Figure 6: Comparative Box Plot: (I)ccodec 1000, (II)ccodec 2000, (III)acra 10000, (IV)acra
60000.

tool to implement recommendations. ARGen does not assist devel-
opers in what software properties need to change (e.g., reduce cyclo-
matic complexity by 10% and increase cohesion by 0.2 in class C),
but how to change the software (e.g., a Replace Method with Method
Object is a suggested refactoring operation for this source "src" and
target "tgt" classes according to some ixed weights in the objective
function). The generated sets of refactorings do not exclusively
represent actionable recommendations, this depends upon develop-
ers’ criteria; nonetheless, the sets do represent feasible individuals
that fulill itness parameters and object-oriented guidelines. Our
approach does not analyze the convergence-complexity limitations
of multi-objective optimization approaches, however, interpreting
the results of the reproducibility section, we intuit that RDP based

Figure 7: Average Time Complexity Hill Climbing vs Haea. In blue and green, the hill
climbing and simulated annealing trendline. In red, HaEa trendline with the exponential
model. Y-axis is the time in seconds and X-axis is the number of classes for JFreeChart
System.

on quality metrics can be handled without multi-objective optimiza-
tion. Finally, the empirical evaluations concentrated on algorithm
performance and refactoring structure coherence.

Regardless of reported empirical studies [15, 16, 18, 21, 23, 24, 26],
which exhibits precision and recall measures, the refactoring pro-
cess highly depends on human factor that comprises speciic do-
main knowledge and expertise when designing reconstructions on
the code. Furthermore, the proposed set theory refactoring formal-
ization is a irst step to envision the refactoring recommendation
as a graph instead of a sequence [30]. A graph representation of
refactorings would be powerful and lexible.

We, indeed, accomplished to generate massive artiicial refac-
torings, yet we cannot guarantee that none of those refactorings
were actionable. Actionability implies not only developers’ inter-
est in quality metric but also developers’ criteria (how to design
a SUA) that should be extracted from their minds. Consequently,
search techniques or combinatorial analysis are insuicient ap-
proximations to tackle the RDP because those techniques cannot
acknowledge how the developer’s mind is simulated, employed,
or mapped to make the exact context (human design process) for
recommending refactorings. Moreover, notice that assessing con-
vergence requires a large number of evaluations and the time com-
plexity of applying search techniques in just detecting a refactoring
-with as possible fewer constraints- is exponential.

1 { "MM": [

2 {

3 "tgt": "[TypeDeclaration [name=

NewCrashReporterPersister]]",

4 "src": "[TypeDeclaration [name=CrashReporterPersister]

]",

5 "mtd": "[Store|EXISTS]"

6 }

7 ],

8 "MF": [

9 {

10 "tgt": "[TypeDeclaration [name=

NewCrashReporterPersister]]",

11 "src": "[TypeDeclaration [name=CrashReporterPersister]

]",

12 "fld": "[Context|EXISTS]"

13 }

14 ]

15 }
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6 CONCLUSION AND FUTUREWORK

We introduce a systematic formal approach to generate artiicial
refactoring recommendations based on quality metrics, which is
used for assessing convergence and time complexity.We contributed
to reducing the gap between the software empirical analysis (in
the context of refactoring detection process) and search based tech-
niques by establishing the fundamentals of performance conver-
gence and time complexity in a uniied mathematical theory to-
ward a combinatorial optimization model. Our paper propounded
a deinition, an implementation, and an evaluation of a system-
atic approach that empirically analyses the convergence of a set
of artiicial refactoring operations. We plan to research on how
our approach automatically adjusts the objective function weights
to reduce the error-proneness in order to avoid multi-objective
optimization since the problem does not exhibit strongly opposite
objectives.
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