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ABSTRACT
Evolutionary Computation (EC) attracts more and more attention
in Reinforcement Learning (RL) with successful applications such
as robot control. Instance-Based Policy (IBP) is a promising alterna-
tive to policy representations based on Artificial Neural Networks
(ANNs). The IBP has been reported superior to continuous policy
representations such as ANNs in the stabilization control of non-
holonomic systems due to its nature of bang-bang type control, and
its understandability. A difficulty in applying an EC based policy op-
timization to an RL task is to choose appropriate hyper-parameters
such as the network structure in ANNs and the parameters of EC.
The same applies to the IBP, where the critical parameter is the
number of instances that determines mode flexibility. In this paper,
we propose a novel RL method combining the IBP representation
and optimization by the Covariance Matrix Adaptation Evolution
Strategy (CMA-ES), which is a state-of-the-art general-purpose
search algorithm for black-box continuous optimization. The pro-
posed method, called IBP-CMA, is a direct policy search that adapts
the number of instances during the learning process and activates
instances that do not contribute to the output. In the simulation, the
IBP-CMA is compared with an ANN-based RL, CMA-TWEANN.
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• Computing methodologies → Reinforcement learning; •
Mathematics of computing → Continuous optimization;
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1 INTRODUCTION
Reinforcement Learning (RL) is a framework to learn policies that
are mappings from a state-space to an action-space through inter-
action with an environment [5, 13]. Representative methods of RL
include value function method [13] (e.g., Q-learning [16]) and Direct
Policy Search (DPS) [8]. Recently, Evolutionary Computation (EC)
methods draw more and more attention in RL communities [10, 17]
with successful applications such as robot control tasks [2, 15].

In EC communities, policy representations based on Artificial
Neural Networks (ANNs) have been widely investigated, due to
their high flexibility. A difficulty when applying ANN based policy
optimization is to tune hyper-parameters regarding the network
topology and the EC method. For example, one needs to choose
the number of layers and number of neurons in each layer be-
forehand. However, the tuning of such parameters requires trial-
and-error and is often prohibitively expensive. NeuroEvolution of
Augmenting Topologies (NEAT) and its improvements [6, 11, 12]
have been proposed to adapt the connection weights as well as
the network topology during the learning process. It relaxes the
hyper-parameter tuning of the ANN-based RL methods. To further
improve the accuracy of the control policy and achieve a parameter-
less RL framework, the CMA-TWEANN [9] employs the Covariance
Matrix Adaptation Evolution Strategy (CMA-ES), which is a state-
of-the-art search algorithm for black-box continuous optimization,
as the optimization kernel of the connection weights.

Instance-Based Policy (IBP), also called exemplar-based policy [3–
5], is a promising alternative to policy representations based on
ANNs. The IBP maintains a set of instances, each of which consists
of a state vector and some information such as a promising action
at the given state. The learning agent determines the next action
based on the nearest instance from the current state of itself. The
instances (i.e., the state vector and action vector) are optimized so
as to maximize/minimize a reward/cost, respectively. The IBP has
been reported superior to continuous policy representations such
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as ANNs in the stabilization control tasks of nonholonomic systems
due to its nature of bang-bang type control [7, 14]. However, the
same difficulty as in the ANN-based policy optimization needs to
be solved, i.e., hyper-parameter tuning of the model and the opti-
mization algorithm. In the IBP, the critical parameter is the number
of instances that determines mode flexibility and the number of
parameters to be optimized. Moreover, the optimization method
for the IBP faces the following difficulties: inter- and intra-instance
dependencies and the redundancies of the policy representation,
the latter of which is difficult for a general-purpose optimization
method to deal with.

In this paper, we propose a novel RL method combining the IBP
representation and the CMA-ES, named the IBP-CMA, for episodic
control tasks of nonholonomic systems. The IBP-CMA optimizes
the instance vectors by the CMA-ES and adapts the number of
instances during the learning process. Since the CMA-ES excels
at treating variable dependencies, it is expected that the CMA-ES
fits well the IBP optimization. To treat the redundancies of the
IBP and automate the hyper-parameter tuning, we incorporate a
mechanism to adapt the number of instances. The IBP-CMA forms
a quasi-parameter-free RL method.

This paper begins with describing the IBP and its difficulties in
Section 2. We propose the IBP-CMA in Section 3. In Section 4, we
apply the IBP-CMA to RL tasks and compare its performance with
the CMA-TWEANN [9]. Section 5 discusses the conclusions of this
paper and future work.

2 INSTANCE-BASED POLICY
The IBP consists of pieces of information paired with a specific
state, e.g., “In the state si , the agent should take the action ai .”. A
piece of information is called an instance. In this study, the instance
is always a pair of a state vector and an action vector. Given the
observed state s of the agent in the environment, the agent refers
to the instance that is closest to s , called reference instance, and
takes the action of the instance. The IBP is applicable as long as
the distance is defined in the state-space, i.e., it does not matter
whether the state-action space is continuous or discrete, so the IBP
has a broad application scope. In this study, however, we focus on
the real state-action space, which is a typical case in control tasks.

2.1 Policy Representation
The IBP consists of L instances I = {I1, . . . , IL }. The lth instance Il
composed of a state vector sl ∈ RNstate and an action vector al ∈
RNaction . Given the state s of the agent, the reference instance Il is
the nearest instance from s , that is l = argminl=1, ...,L ∥sl −s ∥. The
action of the agent is the action of the reference instance correspond-
ing to the current state. The policy parameter θ ∈ RL(Nstate+Naction )

is a column vector, which is obtained by stacking the state and
action vectors of each instance one to the other.

2.2 Episodic Tasks
In this paper, we deal with episodic tasks where one episode is T
step. Let st be the state of the agent at time t . The agent determines
actionat according to policy π (at |st ,θ ). The transition of the agent
from st to the next state st+1 by taking actionat is defined by a (usu-
ally unknown) transition probability P (st+1 |st ,at ). The agent then

receives the immediate reward (cost) rt at each step. LetR =
∑T
i=1 ri

be the cumulative reward (cost) up to timeT . The objective of policy
optimization is to find the policy parameter θ that maximizes or
minimizes the expected value J (θ ) = E[R] =

∑T
i=1 E[ri ] of R. From

the optimization viewpoint, our design variables are the policy
parameter θ , and our (possibly noisy) objective function is J .

2.3 Benefits of IBP
Comparing to the policies based on ANNs, an effect of each policy
parameter is localized in the IBP. Change of value in one policy
parameter affects the policy globally in ANNs, whereas the trajec-
tory of the agent remains unchanged until the agent refers to the
instance that is changed. For that reason, one can change the pol-
icy locally, which is desired when solving a nonholonomic control
task consisting of multiple phases, e.g., swinging-up and stabiliz-
ing inverted pendulums. One can even divide a task into several
sub-tasks, learn an IBP for each sub-tasks, and combine these IBPs
in a straight-forward way. Moreover, it is much easier to derive
an insight into the obtained policy due to its simple representa-
tion. The understandability of the policy representation is a key to
knowledge discovery after the optimization process.

2.4 Difficulties in IBP
In the IBP optimization, there are roughly two difficulties. In this
section, we describe each difficulty and its factors.

2.4.1 Difficulty when applying IBP: Tuning of the number of in-
stances. As well as most of the other policy representation models, a
hyper-parameter tuning is required when applying IBP based RL to
an unknown task. In the IBP, the user must set an appropriate num-
ber of instances L. However, we cannot know the optimal number
of instances in general control problems. Therefore, it is a herculean
task to tune the number of instances. Too many instances increase
extra computational costs, whereas too few instances lead to a crude
policy representation. Moreover, too many instances result in many
instances that called inactive instance, and the IBP optimization
algorithm will suffer from the problem described below.

2.4.2 Difficulty when optimizing IBP: Redundancies in the policy
parameter space. Optimization of policy parameters often suffers
from the redundant parameterization of a policy. The performance
J of the agent depends only on the policy π (·|·,θ ). However, if a
map θ 7→ π (·|·,θ ) is not bijective, i.e., all the parameters in a subset
of the parameter space is mapped to the same policy, the perfor-
mance is flat in the subset. Moreover, if two parameter vectors are
mapped to distinct policies that have overlapping domains whose
images are the same, the resulting trajectories of the agents are iden-
tical, and they are considered identical on the given episodic task.
These features create a plateau in the objective function landscape,
where an optimization algorithm can get stuck. Most recent policy
representation models have redundant parameterization, and its
optimization algorithm needs to cope with this issue.

In the IBP, there are mainly three sources of the redundancies
as follows. The first source is the invariance of the permutation
of instances in the parameter vector. The parameter vector θ =[
I1 . . . IL

]T
represents the same policy for any permutations

of the elements that exist L! ways. This means that the policy does



Model Parameter Adaptive IBP Optimization for Episodic Control Tasks of Nonholonomic Systems GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan

S
tart

G
oal

Voronoi decision boundary

inactive instance

(a)

S
tart

G
oal

Voronoi decision boundary

inactive instance

(b)

Figure 1: Policy representation and the sources of the redun-
dancies in IBP.

not change for any indexing of instances (Il ) in Figure 1a. The
second source is the fact that the policy is unchanged if the Voronoi
decision boundary constructed by the instances is unchanged even
if the parameters are moved (Figure 1b). Conversely, even if the
optimization algorithm changes the state parameters of only one
instance, the policy representation may change significantly. That
is, the IBP is a non-separable problem, which is a factor that makes
optimization difficult and a reason that we employ the CMA-ES
to optimize the IBP. The third and the most severe source is the
existence of inactive instances. In the following, we focus on the
issue of inactive instances.

An instance such as I3 in Figure 1a, that the agent never refers
to during the episode of the task is called an inactive instance. Even
if the optimization algorithm changes the action parameters of the
inactive instances, it does not affect the state transition of the agent.
Also, even if the algorithm changes the state parameters, as long as
the instance is in the inactive region (unreferenced region), it does
not affect the state transition. Technically, a change of an inactive
instance results in a different policy, however, the change never
affects the trajectory as long as we consider the same task.

Compared with the above two sources of redundancies, the ex-
istence of inactive instances produces a stronger redundancy for
stochastic algorithms. From the measure-theoretic perspective, a
set of policy parameters in the first two sources that are mapped to
the same policy usually has zero Lebesgue measure. Therefore, a
stochastic algorithm will never generate multiple candidate solu-
tions in one such set. On the other hand, the existence of inactive
instances produces nonzero Lebesgue measure sets.

Once we have an inactive instance, it is difficult for a general-
purpose search algorithm to activate such an instance. First of
all, a small fluctuation of an inactive instance will not affect the
trajectory of the agent, hence its reward. Therefore, it is difficult
to find a direction to make the instance active. A stochastic search
algorithm may produce a jump of an inactive instance into a region
where it will be referred during an episode, but it is not always likely.
Even if the state vector of the instance is generated in the active
region, since the action vector is not optimized for the current state
vector, it likely results in poorer performance than other solutions
that keep it inactive. Therefore, a search algorithm is unlikely to
receive a selection bias to move the inactive instance toward a
region where the instance will be referred during an episode and
improve its performance.

In previous studies [3, 7], to address the issue of inactive in-
stances, re-initialization and small fluctuation of inactive instances

are performed. However, due to the reason as mentioned above,
none of them works effectively. Moreover, In [7] that have ad-
dressed the IBP optimization in a continuous state-action space, the
instance placement is optimized by a real-coded genetic algorithm.
A crossover operator is defined in an instance-wise way. That is,
the variable dependencies between instances are not taken into
account. In this paper, we propose to use CMA-ES, which is often
more robust and can better deal with variable dependencies than
the real-coded genetic algorithm.

3 THE IBP-CMA
We propose a novel algorithm specialized for the IBP optimiza-
tion for episodic tasks. The resulting algorithm is called IBP-CMA.
It combines (1+1)-CMA-ES with a novel mechanism to activate
inactive instances and to adapt the number of instances.

3.1 Notation
The policy parameter θ which is the design vector of the (1+1)-
CMA-ES is a L(Nstate + Naction) dimensional vector. Further, the
parent solution x and the evolution path p of the (1+1)-CMA-ES
are vectors as follows

x =
[
x1 · · ·xL

]T
(1)

xl =
[
sl al

]
=

[
sl1 . . . s

l
Nstate

al1 . . . a
l
Naction

]
(2)

p =
[
p1 . . .pL

]T
(3)

pl =
[
pl1 . . .p

l
Nstate

pl1 . . .p
l
Naction

]
, (4)

where xl and pl (l ∈ {1, . . . , L (t ) }) are (Nstate + Naction) dimensional
partial vectors of x and p, respectively, corresponding to the lth in-
stance in the parent solution x . The covariance matrixC = AAT can
be divided into blocks of covariance matrix between each instance
as follows

C =



C1,1 · · · C1,L

...
. . .

...

CL,1 · · · CL,L



(5)

Ci, j =



C
i, j
s i1,s

j
1

· · · C
i, j
s i1,a

j
Naction

...
. . .

...

C
i, j
aiNaction

,s j1
· · · C

i, j
aiNaction

,a jNaction



, (6)

where Ci, j is a (Nstate + Naction) × (Nstate + Naction) covariance
matrix between instances Ii and Ij .

3.2 The (1+1)-CMA-ES
Our underlying algorithm is the (1+1)-CMA-ES [1], which is a
variant of covariance matrix adaptation evolution strategy with
elitism. Algorithm 1 provides the pseudo-code of the (1+1)-CMA-
ES with active covariance matrix adaptation. The (1+1)-CMA-ES is
a stochastic algorithm using the multivariate normal distribution
which learns the covariance matrix during the optimization process.
The adaptation of the covariance matrix is the essence in efficiently
solving ill-conditioned and non-separable problems, which the IBP
optimization forms as we described above. The main reason of
the elitism, i.e., (1+1) selection, is to simplify the mechanism for
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Algorithm 1 (1+1)-CMA-ES

Require: n ∈ N+ , x (0) ∈ Rn , σ (0) ∈ R+ , A(0) ∈ Rn×n , A(0)
inv ∈ R

n×n

1: Set: cp = 1/12, c = 2/(n + 2), c+cov = 2/(n2 + 6), c−cov = 0.4/(n1.6 + 1),
dσ = 1 + n/2, Ptarget = 2/11, Pthresh = 0.44, k = 5

2: x ← x (0) , σ ← σ (0) , A← A(0) , Ainv ← A(0)
inv

3: Psucc ← 0, p ← 0
4: while not termination condition satisfied do
5: z ∼ N (0, I)
6: y = x + σAz
7: if f (y ) ⩽ f (x ) then
8: x ← y
9: Psucc ← (1 − cP )Psucc + cP
10: p ← (1 − c )p +

√
c (2 − c )Az

11: w = Ainvp

12: a =
√

1 − c+cov

13: b =

√
1 − c+cov

∥w ∥2
*.
,

√
1 +

c+cov
1 − c+cov

∥w ∥2 − 1+/
-

14: A← aA + b [Aw ]w T

15: Ainv ←
1
a
Ainv −

b
a2 + ab ∥w ∥2

w
[
w TAinv

]

16: else
17: Psucc ← (1 − cP ) Psucc
18: end if

19: σ ← σ exp
(

1
dσ

Psucc − Ptarget

1 − Ptarget

)
20: if f (y ) > f (k th-Order Ancestor) then
21: a =

√
1 + c−cov

22: b =
√

1+c−cov
∥z ∥2

(√
1 − c−cov

1+c−cov
∥z ∥2 − 1

)
23: A← aA + b [Aw ]w T

24: Ainv ←
1
a
Ainv −

b
a2 + ab ∥w ∥2

w
[
w TAinv

]

25: end if
26: end while

adaptation of the number of instances. In the (1+1) strategy we
can simply regard the parental solution, i.e., the mean vector of the
multivariate normal distribution, as an RL agent.

3.3 IBP-CMA
The main idea of the IBP-CMA is described as follows. We try to
keep one inactive instance as a guide to keep, increase, or decrease
the number of instances. If all the instances are kept active during
episodes, we add an instance to refine the policy. As we described
in the previous section, random placement of a new instance will
result in leaving it inactive. To address the issue, we clone an active
instance. The policy after adding an instance in this way is then
unchanged. This drastically improves the probability of making
a new instance active, and the resulting trajectory improved. If
more than one instance is kept inactive for a while, we drop all
but one of the inactive instances. If one but only one instance is
kept inactive, we try to make it active by cloning an active instance.
Increasing or decreasing the number of instances, L(t ) , at each
iteration means that the search space dimension for the CMA-ES,
n = L(t ) (Nstate + Naction), changes at each iteration. The dynamic
parameters and strategy parameters of the CMA-ES will be updated
accordingly.

3.3.1 Inactive Instance Detection. By definition instances that
are not referred to during an episode are said to be inactive. Due
to its stochastic nature, active instances in the parental solution
can be inactive by chance and vice versa. To detect instances that
are really inactive and determine if we would like to add, delete or
activate instances, we introduce counters to υadd, υdel, and υact that
are initialized to zero at the beginning.

After line 6 in Algorithm 1, we evaluate y, i.e., we perform an
episode using the IBP represented by y. Then, this information
whether each instance in y is active (i.e., referred by the agent even
once during the episode) or not is gathered during the episode.

(a) Check if each instance is active or not. Let Āyl be True if
the lth instance of y is active, False otherwise, and let
Āy = {Ā1, . . . , ĀL (t ) } be called the activity information of y.
The activity information of x is kept from the previous iter-
ation, where an instance added or activated in the previous
iteration is treated as inactive. The activity information Ā at
t th iteration is Āy if f (y) ⩽ f (x ), Āx otherwise.

(b) Update the number τl of iterations that the lth instance
remains inactive as

τl ←



τl + 1 if Āl = False
0 otherwise

(7)

and let τ = {τ1, . . . ,τL (t ) }.
(c) Update the counters υadd, υdel, and υact as follows

υadd ←



υadd + 1 if there is no False in Ā

0 otherwise;
(8)

υdel ←



υdel + 1 if there are more than one False in Ā

0 otherwise;
(9)

υact ←



υact + 1 if there is just one False in Ā

0 otherwise.
(10)

Note that only one of them can be nonzero at the same time.

3.3.2 Adding an Instance. Based on the counters, we will add,
delete, or activate instances. After line 25 of Algorithm 1, we will
execute Section 3.3.2, Section 3.3.3, or Section 3.3.4. If none of the
conditions are satisfied, we set L(t+1) = L(t ) and continue to the
next iteration.

Ifυadd ⩾ Gadd is satisfied for a given constantGadd, the algorithm
executes the following:
(a-1) Select an instance with probability

P (Ik ) =
c ′k∑L (t )

l=1 c
′
l

(k = 1, . . . ,L(t ) ) , (11)

where cl is the number of steps that the lth instance of x is
referred, and c ′l = 0 if cl = 1 and cl otherwise1.

(a-2) Add an instance by cloning the selected instance Iρ , and
update dynamic parameters of the CMA-ES as

L(t+1) ← L(t ) + 1 (12)

x ←
[
x xρ

]
, C←

[
C 0
0 Cρ,ρ

]
, p ←

[
p 0

]
. (13)

1If the number of steps per episode of the task is equal to 1, then c ′l = cl .
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Note that the resulting x , p and C are of L(t+1) (Nstate +
Naction) dimension.

(a-3) Update the strategy parameters depending on the dimension,
n, as follows

n ← L(t+1) (Nstate + Naction) (14)

c ← 2
n+2 , c

+
cov ←

2
n2+6 , c

−
cov ←

0.4
n1.6+1 , dσ ← 1 + n

2 . (15)

(a-4) Reset υadd ← 0.

3.3.3 Deleting Instances. Instead, if υdel ⩾ Gdel for a given con-
stant Gdel, the algorithm executes the following:
(b-1) Select the indices of instances to remove. Let Ξ be the set

of indices of inactive instances with τl > 0, and let ℓ̄ =
argminl ∈Ξ τl be the index of inactive instances that has the
least τl value. If there are more than one such indices, we
choose one of them at random.

(b-2) Remove the inactive instances except ℓ̄, i.e.,Ξ\{ℓ̄}, by striking
off the blocks of x and p and the columns and rows of C
corresponding to the removed instances. Update L(t+1) =
L(t ) − |Ξ| + 1, where |Ξ| is the cardinality of Ξ.

(b-3) Update the strategy parameters depending on the dimension,
n, analogously to (a-3).

(b-4) Reset υdel ← 0 and τl ← 0 for all l .

3.3.4 Activate an Instance. If υact ⩾ Gact for a given constant
Gact, the algorithm executes the following:
(c-1) Get the index of the inactive instance ξ with τξ > 0. Such

an index must exist only one.
(c-2) Select the index of an active instance with probability (11),

and let ρ denotes it.
(c-3) Activate the inactive instance Iξ by cloning Iρ , which is done

by updating the dynamic parameters of the CMA-ES as

xξ ← xρ (16)

Cξ ,ξ ← Cρ,ρ , Cξ ,l ← 0, Cl,ξ ← 0 ∀l ∈ J1,L(t )K \ {ξ } (17)
pξ ← 0 . (18)

(c-4) Reset υact ← 0 and τl ← 0 for all l .

3.4 Static-IBP-CMA
To evaluate the effect of the instance activation in Section 3.3.4,
we test a variant of the IBP-CMA without the adaptation of the
number of instances, called Static-IBP-CMA.

The difference from the IBP-CMA is listed below. The step (c) in
the inactive instance detection (Section 3.3.1) and the mechanisms
to add and delete instances (Section 3.3.2 and Section 3.3.3) are
omitted. The activation mechanism (Section 3.3.4) is performed if
there is an instance satisfying τl ⩾ Ginactive for a given Ginactive,
where step (c-1) is replaced with the following:
(c-1) Get an index ξ of an inactive instance with τξ ⩾ Ginactive. If

there are more than one inactive instances, we choose one
at random.

4 PERFORMANCE EVALUATION
In this section, we apply the IBP-CMA to three benchmark tasks
and see how effective the proposed mechanism is. We also compare
the IBP-CMA with CMA-TWEANN [9], which is an RL method

2l

F

x

θ

(a) Cart Pole

2l
1

F

x

2l
2

Short Pendulum

θ1θ2

Long Pendulum

(b) PDIP

Figure 2: Control Tasks

combining the (µ/µw,λ)-CMA-ES and an ANN with evolving topol-
ogy. A comparison with the existing IBP optimization algorithms
[3, 7] has been omitted due to space limitation. In our preliminary
study, we observed that the CMA-ES based IBP optimization tends
to reach the same objective value about ten times faster than the
existing real-coded genetic algorithm proposed in [7].

4.1 CMA-TWEANN
The CMA-TWEANN evolves a recurrent neural network and opti-
mizes the connection weights with (µ/µw,λ)-CMA-ES. The CMA-
TWEANN adds a node and an edge to the network with constant
probabilities P (αn ) and P (αe ), respectively, at each CMA-ES itera-
tion. When a node or an edge is added, the connection weights are
set to zero so that the policy is unchanged. This idea is similar to
how we add an instance in the IBP-CMA. Importantly, the CMA-
TWEANN lower bounds the step size σ by a given constant σmin to
prevent the CMA-ES from converging. For its details, refer to [9].

4.2 Benchmark tasks
4.2.1 Simple Task. Simple Task is an artificial task where the

optimal number of instances and the optimal instance parameters
are trivial. Our motivation here is to check how effective the in-
stance activation mechanism of the IBP-CMA and the adaptation
of the number of instances are.

Simple Task is not a control task. The state transition is deter-
ministic independently of the action of the agent. At each time
step t = 1, . . . ,T , the learning agent is located at st ∈ R2. The
agent takes an action at ∈ R

2 and receives an immediate cost
rt = ∥st + at ∥. The objective is then to minimize the cumulative
cost in T steps, i.e., R =

∑T
t=1 rt .

The optimal policy for this task is that the action corresponding
to st is −st for t = 1, . . . ,T , and the minimum cumulative cost is
R = 0. The state vector at each time step is given by st = [t−1, t−1]
for t = 1, . . . ,T . In the IBP, the optimal policy is achieved only if
L ⩾ T . If L > T , it is guaranteed that there are L − T inactive
instances. In the experiments described later, T is set to {2, 10}.

4.2.2 Cart Pole. Cart Pole is a typical control task of nonholo-
nomic systems, which is often used as RL task. In this task, the
optimal number of instances is unknown.

Cart Pole consists of a horizontal rail, a cart that moves on the
rail, and a pendulum that rotates around the fulcrum on the side
of the cart, as shown in Figure 2a. We assume that the friction
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between the pendulum and the fulcrum and between the cart and
the rail are negligible. LetM andm[kg] be the mass of the cart and
the pendulum, respectively. We assume that the mass distributes
uniformly in each material. In this task, the observable states are
the position x and the velocity ẋ of the cart and the angle θ and the
angular velocity θ̇ of the pendulum, and the action is the driving
force F [N] of the cart. The state transition is defined by

ẍ =
mд sinθ cosθ − 4

3 (F +mlθ̇2 sinθ )

m cos2 θ − 4
3 (M +m)

, (19)

θ̈ = 3(д sinθ − ẍ cosθ )/(4l ) . (20)

Here the gravitational acceleration is д = 9.8 [m/s2], and we let
M = 1[kg],m = 0.1[kg], and l = 0.5[m].

In this paper, let one episode of this task isT = 500 steps, and one
step is 0.01 seconds, i.e., the agent observes the state and changes
the action every 0.01 seconds according to itself policy. The initial
state of this task is (x , ẋ ,θ , θ̇ ) = (0, 0,π , 0). The driving force F
takes a value in [−10, 10], and it is limited to 10 and −10 by the
environment if the agent try to take a greater value in plus and
minus, respectively.

The immediate reward rt in each time step t = 1, . . . ,T is given
with

rt = cosθ + rPNt . (21)

where rPNt defines the penalty to prevent the cart from moving far
away from the origin,

rPNt =



0 if |x | < 5.0
−1000 otherwise

. (22)

The objective value to be minimized is the average of the immediate
reward rt ,

R =
1
T

T∑
i=1

rt . (23)

4.2.3 Parallel-type Double Inverted Pendulum (PDIP). PDIP is
another typical control task of nonholonomic systems. The optimal
number of instances is unknown for this task as well as the Cart
Pole task. The only difference from the Cart Pole task is that the cart
has two pendulums with different lengths and different mass, as
shown in Figure 2b. LetM[kg],m1[kg], andm2[kg] be the mass of
the cart, the long-pendulum, and the short-pendulum, respectively,
and assume that the mass distribute uniformly in each material.

In this task, the observable states are the position x and the
velocity ẋ of the cart and the angle θ1, θ2 and the angular velocity
θ̇1, θ̇2 of each pendulum, and the action is the driving force F of the
cart. The state transition is defined as

ẍ =

∑2
i=1miд sinθi cosθi − 4

3 (F +
∑2
i=1 limi θ̇

2
i sinθi )∑2

i=1mi cos2 θi −
4
3 (M +

∑2
i=1mi )

, (24)

θ̈i = 3(д sinθi − ẍ cosθi )/(4li ) , (25)

where we setM = 1[kg],m1 = 0.2[kg],m2 = 0.1[kg], l1 = 1.0[m],
l2 = 0.5[m] in this paper. Analogously to the Cart Pole task, we set
T = 500, and one step is 0.01 seconds. The initial state of this task
is (x , ẋ ,θ1, θ̇1,θ2, θ̇2) = (0, 0,π , 0,π , 0). The driving force F takes a
value is limited in [−10, 10] in the same way as in Cart Pole.

Table 1: Parameter settings of each algorithm

(1+1)-CMA-ES: L =



T (Simple Task)
20 (Cart Pole, PDIP)

IBP-CMA: L(0) = 2
Gact = {1, 10}
Gadd = {5, 20}
Gdel = {5, 20}

Static-IBP-CMA: Ginactive = {1, 10}

L =



T (Simple Task)
20 (Cart Pole, PDIP)

CMA-TWEANN: P (αn ) = {0.005, 0.01}
P (αe ) = {0.1, 0.2}

The immediate reward rt in each time step t = 1, . . . ,T is given
with

rt = cosθ1 + cosθ2 + rPNt (26)

rPNt =



0 if |x | < 2.4
−1000 otherwise

(27)

and the objective value to be minimized is the average R of the
immediate reward rt , computed as Eq. (23).

4.3 Results and Discussion
In this section, we show results of applying the (1+1)-CMA-ES,
the IBP-CMA, the Static-IBP-CMA and the CMA-TWEANN to the
benchmark tasks described in Section 4.2, respectively. Parameter
settings for each algorithm are displayed in Table 1. For applying
the (1+1)-CMA-ES and the Static-IBP-CMA to the Cart Pole and
the PDIP, respectively, the number of instances is L = 20 that is the
number exhibits the best performance in preliminary experiments
for L ∈ {2, 5, 10, 20}. In the Simple Task, the number of instances
is L = T that is the optimum number for this task. For the CMA-
TWEANN, we use the parameter settings in [9]. A single trial is
terminated after the maximum number of function evaluations
105 have passed, and the algorithm restarts multiple times until it
spends 105 function evaluations, where a restart is performed if the
search distribution is regarded as converging. In the Simple Task,
a single trial is terminated if the total cost R (R-value) reaches the
target R = 10−3 even if the number of function evaluations does
not pass the maximum. The number of trials is 100 for the Simple
Task, and it is 10 for the Cart Pole and the PDIP.

Figure 3 shows the median, the lower-quartile and the upper-
quartile of theR-value over 100/10 trials in each task. Figure 4 shows
the number of instances that the IBP-CMA obtains the best R-value
at each number of function evaluations among all trials. Figure 5
shows the behaviors of the adaptation of the number of instances
for three trials in the IBP-CMA (for Gact = 10,Gadd = 5,Gdel = 5).

4.3.1 Simple Task. Figures 3a (T = 2) and 3b (T = 10) show
that the R-values of the CMA-TWEANN never reached 10−3. Note
that the action of the agent associates to each state si needs to
be sufficiently close to its optimal value −si to reach the target
in this task. It requires a fine tuning of the policy parameters. In
the CMA-TWEANN, an edge or a node is added with probability
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Figure 3: The median and interquartile range of best objec-
tive values for each setting.

P (αe ) or P (αn ), respectively, and the search space dimension is
incremented by 2 or 1. Therefore, the search space dimension is
increased each iteration by 2P (αn )+P (αe ) in expectation. Moreover,
the standard deviation of the sampling distribution is lower bounded
in the CMA-TWEANN. Both makes difficult for the CMA-ES to
perform exploitation. Therefore, the CMA-TWEANN could not
take advantage of the effectiveness of the CMA-ES.

For T = 2, the median of the R-values of the (1+1)-CMA-ES
reached the target 10−3, however, the interquartile range of this
algorithm spread widely. Moreover, for T = 10, the R-values of the
(1+1)-CMA-ES never reaches 10−3. In contrast, the R-values of the
IBP-CMA and the Static-IBP-CMA reached 10−3 in all trials both
for T = 2, 10. The (1+1)-CMA-ES failed to activate all the instances
as expected, whereas the proposed activation mechanism in the
IBP-CMA and the Static-IBP-CMA worked effectively.

Figures 4a and 4b show that the IBP-CMA obtains L = T + 1
instances in the end in all settings. Since the optimal number of
instances for this task is L = T and L is adapted in the IBP-CMA so
as to keep just one instance inactive, it is the desired result. Figure 3b
shows that the smallerGact andGadd of the IBP-CMA andGinactive
of the Static-IBP-CMA are, the better performance was exhibited. It
may be true for Ginactive in general, i.e., fast activation of instances
results in better performance. However, too fast increase or decrease
of the number of instances may disturb the optimization of the
policy parameters by the CMA-ES in general control tasks. We
further investigate the effect in the sequel.

4.3.2 Cart Pole and PDIP. As we mentioned in the previous
section, the CMA-TWEANN typically can not perform exploitation
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Figure 4: The number of instances in the trial that the IBP-
CMA obtained the best performance.

of the connection weights and it behaves as if it is a random search.
Nonetheless, the CMA-TWEANN reached the best function values
in Figures 3c (the Cart Pole) and 3d (the PDIP). Thanks to its redun-
dancy, it is not difficult (even for a random search) to find better
connection weights than the current best if the number of edges
are not too large. Note however that displayed are the best-so-far
function values. We observed in all cases that the CMA-TWEANN
sometimes improved the best-so-far value but generally kept sam-
pling worse function values, and started worsen the function values
in the end. On the other hand, the IBP-CMA typically tended to
converge towards the best solution.

Comparing the IBP-CMA and the Static-IBP-CMA, the R-value
of the Static-IBP-CMA tended to decrease faster. The difference
was remarkable in the PDIP. The reason may be described as fol-
lows. The Static-IBP-CMA runs with L = 20, which is considered
a reasonable choice based on our preliminary study, whereas the
IBP-CMA started with L = 2 in each restart. Hence, the number of
instances needed to increase. However, in Figure 5, we observed
that the IBP-CMA spent more than 103 function evaluations till
it obtained more than 15 instances. Therefore, we compromise on
the speed of the optimization for removing the need for tuning
of the number of instances. One should set the initial L to a rea-
sonable value of the number of instance if known. Moreover, the
performance is expected to improve if we take over the number
of instances obtained in the previous search when the IBP-CMA
performs a restart.

Finally, we discuss the hyper-parameter setting in the IBP-CMA.
First of all, the differences in the best R-values between different
parameter values forGadd,Gdel andGact were negligible for the Cart
Pole task, whereas slight differences were observed for the PDIP
task. A small Gadd is desired to increase the number of instances
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Figure 5: Behavior of adaptation of the number of instances
in the IBP-CMA, Gact = 10,Gadd = 5,Gdel = 5 (3 trials).

quickly since we started with L = 2. On the other hand, the effect
of Gdel did not appear. For the PDIP tasks, Gact = 10 demonstrated
a better R-value than Gact = 1. A frequent activation of instances
results in resetting the component of the covariance matrix, and
may lead to a slow convergence. Looking at the inter-quartile ranges
of R-values in Figures 3c and 3d, however, the difference was not
statistically significant.

5 CONCLUSION
In this paper, we investigated the use of the instance-based policy
(IBP) for episodic control tasks of nonholonomic systems. Motivated
by the fact that the IBP potentially well suits for stabilization tasks
of nonholonomic systems due to its bang-bang type control, we de-
veloped an optimization algorithm for the IBP that can address the
difficulties of the IBP optimization, i.e., variable dependencies, exis-
tence of inactive instances, and tuning of the number of instances.
The resulting algorithm, IBP-CMA, is based on the CMA-ES with
elitist selection along with the mechanism to adapt the number of
instances and activate instances.

The proposed algorithm have been applied to an artificial non-
control task and two control tasks, and compared with an existing
learning algorithm using an ANN, namely the CMA-TWEANN.
Both the advantages and the disadvantages of the IBP-CMA over
the CMA-TWEANN have been revealed. Moreover, the hyper-
parameters introduced in this work, Gact, Gadd, and Gdel, were
investigated. We conclude that the IBP-CMA is robust against the
choice of these values. Our current choice would be Gact = 1,
Gadd = Gdel = 5, independently of tasks. However, the current
defaults are not yet widely investigated. A future work must in-
vestigate the sensitivity of the default hyper-parameter values for
different control tasks.

A possible room for improvement of the IBP-CMA have been
spotted in the experiments. An important future work would be
to develop the restart strategy for the IBP-CMA. As we mentioned
in the discussion of the experimental results, we restarted the IBP-
CMA if the search distribution is considered converged or diverged,
by resetting all the internal parameters including the number of
instances, L. However, the number of instances achieved in the
preceding restart is expected useful information. Restarting without
resetting the number of instances will be rather useful. A further
investigation is required in this direction.

As we mentioned in the paper, one of the benefits of the IBP
representation is that the effect of change of the policy parameter

is localized, whereas a single parameter change affects the overall
policy in usual policy representations such as an ANN. It allows us
to decompose a task into subtasks, adapt the IBP for each subtask,
combine them easily later. The effect of decomposition is not yet
studied. It is another direction of our future work.
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