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ABSTRACT
This paper proposes high-dimensional data mining technique by
integrating two data mining methods: Accuracy-based Learning
Classifier Systems (XCS) and Random Forests (RF). Concretely, the
proposed system integrates RF andXCS: RF generates several num-
bers of decision trees, and XCS generalizes the rules converted
from the decision trees. The convert manner is as follows: (1) the
branch node of the decision tree becomes the attribute; (2) if the
branch node does not exist, the attribute of that becomes # for XCS;
and (3) One decision tree becomes one rule at least. Note that # can
become any value in the attribute. From the experiments of Mul-
tiplexer problems, we derive that: (i) the good performance of the
proposed system; and (ii) RF helps XCS to acquire optimal solu-
tions as knowledge by generating appropriately generalized rules.

CCS CONCEPTS
• Computing methodologies→ Rule learning;

KEYWORDS
Accuracy-based Learning Classifier System, Random Forest, Data
mining, High-dimensional data

ACM Reference Format:
Fumito Uwano, Koji Dobashi, Keiki Takadama, and Tim Kovacs. 2018. Gen-
eralizing Rules by Random Forest-based Learning Classifier Systems for
High-Dimensional Data Mining. In GECCO ’18 Companion: Genetic and
Evolutionary Computation Conference Companion, July 15–19, 2018, Kyoto,
Japan, Jennifer B. Sartor, Theo D’Hondt, and Wolfgang De Meuter (Eds.).
ACM,NewYork, NY, USA, 8 pages. https://doi.org/10.1145/3205651.3208298

1 INTRODUCTION
Data mining is very required for human society, corporate man-
agement, stock price prediction, and self-driving cars. Since these
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data are high-dimentional, Machine learning-based data mining
methods have been proposed. Especially, Deep Learning (DL) [7]
is utilized for high-dimentional data mining: data compression by
Auto Encoder (AE) [5], and feature extraction by Convolutional
Neural Networks (CNNs) [4, 9] are effective. However these tech-
niques cannot derive knowledge indicating reasons why they take
the results. The knowledge is important to keep the reliability of
the results. To tackle this issue, Matsumoto et al. proposed a hy-
brid system based on Accuracy-based Learning Classifier System
(XCS) and AE [10]. This system utilizes XCS to extract knowledge
from the compressed data from AE. The system performs well and
acquire the knowledge in Connectionist Bench (Sonar, Mines vs.
Rocks) Data Set. However this system might loss data by the hy-
brid, and might not perform well in data with characteristic fac-
tors, e.g. multiplexer problem for many bits because XCS extracts
important factors from the data, while AE compresses the data to
other forms, and each attribute of compressed data has too many
kinds of information to extract.

Random Forest (RF) [1] is one of the effective regression and
clustering methods. RF is also utilized for high-dimentional data
mining. In particular, RF can extract knowledge without changing
the data format. However, the knowledge might not be optimal be-
cause RF relies on random to generate the decision trees, and spe-
cialized for the data. This suggests that the knowledges might not
be able to indicate the reasons why the data are acquired. On the
other hand, since XCS can acquirewhole knowledge to indicate the
reasons, the hybrid is effective to acquire the whole knowledge for
high-dimentional data with the characteristic factors. Concretely,
XCS generalized knowledge enough to express a part of the data,
and the ranges which the knowledges express tend not to overlap
with each other (i.e., the knowledge is not redundant). In addition,
the system might be able to prevent from data loss by the hybrid
because RF and XCS utilize the same data format with each other.
To acquire all knowledges from high-dimensional data with char-
acteristic factors, this paper proposes the knowledge generation
system called RFXCS (Random Forest-based XCS) by combining
RF and XCS. Concretely, RFXCS integrates RF and XCS: RF gen-
erates several numbers of decision trees, and XCS generalizes the
classifiers converted from the decision trees. The convert manner
is as follows: (1) the branch node of the decision tree becomes the
attribute; (2) if the branch node does not exist, the attribute be-
comes #; and (3) One decision tree becomes at least one rule.
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Figure 1: Decision Tree

This paper is organized as follows. We introduce RF and XCS
in Sections 2 and 3, and proposes RFXCS in Section 4. In Section
5, we introduce multiplexer problem employed for the experiment
in this paper, and discuss the result of the experiment in Section 6.
We conclude this paper in Section 7.

2 RANDOM FOREST (RF)
Random Forest (RF) is one of ensemble learningmethodswhich de-
rive one result by integrating hypotheses from weak learners. The
weak learners of RF are called Decision Tree (DT). In this paper,
we explain RF as in [6].

2.1 Decision Tree (DT)
Decision Tree (DT) is the graph to decide something, and deci-
sion tree learning is to generate DT from data. Since RF in this
paper is a binary tree, we explain binary DT. Figure 1 shows one
DT. DT is composed of one root, and several nodes and leafs in
Fig. 1. The node has split function h(v,θ j ) to classify data v to
each node or leaf, while the leaf outputs p(c |v). In addition, the
number near each node is node number j. For example, we input
v = (x1,x2, ...,xd ) ∈ Rd as d-dimensional data to this DT. First, v
is in a root, then classified to right or left node by split function in
the root. This is repeated recursively until the data is classified to
the leaf. When the data reaches the leaf, the result of the leaf is an
output of this DT.

2.1.1 Split function. In a binary tree, the split function is formed
as follow.

h(v,θ j ) ∈ {0, 1}, (1)

Where, j is node number, v is input data in node j, and θ j is param-
eter vector in node j. Concretely, θ is composed of θ = (φ,ψ ,τ ). φ
is the filter extracting several variables (dimensions) from the data
v. ψ is the parameter vector to determine the geometric feature
of the split function (e.g., a two dimentional vector is splited by a
line.) τ is threshold vector to split the data v.

2.1.2 Output from DT. DT classifies the data by utilizing al-
ready classified data as outputs. In clustering tasks, the output is a
posteriori probability p(c |v) of the cluster c

2.2 Random Forests Learning
Since RF generates a number of DTs, and integrates the outputs of
the DTs, Random Forests learning is composed of the learnings by
the DTs. In the following sentence, the number of DTs generated
by RF is T . If the input data set is S = {v}, RF samples learning
data S0(⊆ S) for eachDT, and starts learning theDT by this data. RF
selects the split function to separate data appropriately, and repeats
this process until filling certain conditions. The current proceeded
node becomes leaf node when the conditions have been filled.

2.2.1 Selection for split function. RF selects the optimal split
functions for nodes in order from the root node. We consider the
node i , the learning data Si = {v} in the node i , SLi and SRi are
the data separated to left node and right node from the node i , re-
spectively. From the variables, Sj = SLj ∪ SRj , S

L
j ∩ SRj = �, S

L
j =

S2j+1, SRj = S2j+2 are satisfied. To learn the split function h is to
estimate θ as the parameter of the split function. In the node j, θ
is estimated by the following equation.

θ∗j = arg max
θ j ∈τj

Ij (2)

In this equation, θ∗j is the optimal parameter vector, and Ij is the
objective function, and is defined as follows.

Ij = I (Sj , SLj , S
R
j ,θ j ), (3)

Ij utilizes entropy and information gain. We consider the situation
that the data of S have the class label c ∈ C . In this situation, the
entropy and the information gain are calculated as follow.

H (S) = −
∑
c ∈C

p(c)loд(p(c)), (4)

I = H (S) −
∑
i ∈1,2

|Si |
|S | H (S

i ) (5)

In the equations, H (S) indicates the entropy, I indicates the in-
formation gain, and i indicates each branch, and p(c) indicates a
probability function for a certain class c . If the entropy becomes 0,
there is only one class in data S , and if it becomes maximal, then all
classes have the same probability. On the other hand, if the infor-
mation gain becomes large, the distribution of the class is biased
after separating the data. We calculate θ∗j by applying I to Eq. 2 as
the objective function.

2.2.2 Learning end condition. To prevent from overfitting, we
have to apply the learning end conditions. There are several con-
ditions: (1) whether the max length between root and leaf nodes
becomes over the threshold; (2) whether the size of the separated
data becomes under the threshold; and (3) whether the informa-
tion gain becomes under the threshold. Generally, all conditions
are applied.

2.2.3 Outputs from RF. Figure 2 shows output integration by
RF. In RF, we apply input data v to all DTs, and integrate all outputs
from all DTs. We consider t(∈ {1, ...,T }) as identification numbers
of DTs. To integrate all outputs, the following equation is utilized.

p(c |v) = 1
T

T∑
t=1

pt (c |v), (6)
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Figure 2: Output integration by RF

3 ACCURACY-BASED LEARNING CLASSIFIER
SYSTEM (XCS)

Accuracy-based Learning Classifier System [12] is one of popular
LCSs. XCS can extract the valuable knowledge from data, espe-
cially, is good at acquiring the knowledge which represents whole
of target problem. In XCS, environment, state, and reward exist.
The environment behaves as the target problem with the state and
the reward. Concretely, XCS observes the state of the environment
(acquires the information of the environment as the state), XCS
sends an answer called an action to the environment, and the en-
vironment sends the reward corresponding to the state and the ac-
tion to XCS in each iteration. XCS has multiple classifiers. A classi-
fier indicates one rule and information acquired through learning.
Essentially, XCS send an action to the environment by following
a rule of the certain classifier, and evaluates the classifier based
on the reward acquired by the sending to learn. Repeating these
processes, XCS acquires the general classifiers which have an ap-
propriate action for the environment as the target problem.

3.1 Classifier
Concretely, a classifier consists of a condition, an action, and main
parameters as follow [12].
• Condition C
C defines the state which this classifier can match. C is a
string consisting of {0, 1, #}. Note that # is called "do not
care", and matches both 0 and 1 in the input.
• Action A
A is the action which this classifier proposes.
• Prediction p
p is the average of the rewards which XCS has received by
selecting this classifier before.
• Prediction error ε
ε is the mean deviation from the prediction p and the re-
ceived reward R.
• Experience exp
exp is how many times this classifier is carried into the ac-
tion set [A], i.e., this classifier is updated.
• Time stamp ts
ts is the number of the step spent until now since this clas-
sifier is last proceeded by GA.
• Fitness f

f is the value from 0 to 1 as the fitness of the classifier in
the genetic algorithm.

Figure 3: XCS

• Action set size as
as is an average of sizes of an action set [A] (explained in
3.2.1) in every learning.
• Numerosity num
num is how many classifiers this classifier has subsumed
until now.

3.2 Mechanisms
Figure 3 shows the behavior of XCS. XCS is composed of three
components: performance component (explained in 3.2.1), rein-
forcement component (explained in 3.2.2), and discovery compo-
nent (explained in 3.2.3). XCS repeats these three components in
rotation to learn.

3.2.1 Performance Component. The classifiers thatmatched the
state of the environment are selected from the population [P], and
their action is sent to the environment in Performance Compo-
nent. The state is a binary string, and XCS carries the classifiers
that match the state of the environment into the match set [M] by
comparing the state with the condition C of the classifier in the
population [P]. In this process, if the number of the classifiers in
the match set is less the threshold θnma , XCS repeats generation
of new classifiers by a process called covering until the number of
the classifiers in the match set in over θnma . A classifier generated
by covering initially has the environment state as its condition C
but XCS exchanges each bit of the condition in the classifier to #
with the probability P#. To select an action, XCS first calculates
the value of the prediction array P(A) for each action by following
Equation 7. XCS then selects an action using the prediction array
to define the selection probabilities. In Eq. 7, [M](A) is the set of the
classifiers whose action isA. If not classifiers in [M] have a certain
action, the prediction of the action becomes nil in order to never
be selected. In learning mode XCS selects an action at random and
in exploit mode it selects the action with the highest prediction.
The classifiers in [M] with the selected action are, carried into the
action set [A], the action is sent to the environment, and the re-
ward r is received from the environment. This sequential process
is called a step in this paper.

P(A) =
∑

clk ∈[M ](A)
clk .p ×

clk . f∑
clk ∈[M ](A) clk . f

(7)
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3.2.2 Reinforcement Component. After the performance com-
ponent process is finished, XCS updates the parameters of the clas-
sifiers in [A]. XCS calculates the prediction p, the prediction error
ϵ , and the action set size as by following Equations (8)-(11).

P ← r + γ max P(A) (8)
cl .p ← cl .p + β(P − cl .p) (9)

cl .ϵ ← cl .ϵ + β (|P − cl .p | − cl .ϵ) (10)

cl .as ← cl .as + β
©«
∑
c ∈[A]

c .num − cl .asª®¬ (11)

Where P is the target value to update the prediction p, while β(0 ≤
β ≤ 1) and γ (0 ≤ γ ≤ 1) are parameters called learning rate and
discount factor, respectively. β controls the learning speed, and γ
indicates how much XCS utilizes the reward r for the prediction
p[11]. Next, XCS calculate the accuracy of the classifier κ(0 ≤ κ ≤
1) to estimate the classifier’s fitness f by following Equations (12)
and (13).

cl .κ =


1 i f cl .ϵ ≤ ϵ0

α

(
cl .ϵ

ϵ0

)−ν
otherwise

(12)

cl . f ← cl . f + β

(
cl .κ · cl .num∑

c ∈[A](c .κ · c .num)
− cl . f

)
(13)

Where α ,ν , ϵ0 is parameters of XCS. ϵ0 indicates the range how
much XCS allows the prediction error ϵ . If the ϵ is less than ϵ0, κ
becomes 1; otherwise, κ becomes smaller as a function of ϵ .

3.2.3 Discovery Component. In discovery component, XCS gen-
erates and deletes classifiers based on a Genetic Algorithm (GA).
Concretely, if the average among ts of the classifiers in [A] is over
the parameter θGA, XCS executes this component. In the process
of GA, XCS selects the classifiers as parents based on their fitnesses
by Roulette wheel selection [3], and crossover the condition C of
the classifiers to generate new classifiers as children. The classi-
fiers’ parameters p, ϵ, f are the average between the parameters of
both parents. XCS changes each bit of both the conditionC and the
action A of each child with the probability µ: if each bit of C is 0
or 1, it becomes #, and if it is #, it becomes the corresponding bit
of the state. If the action is changed the new action is chosen uni-
form randomly. If the parents cannot subsume a child it is carried
into [P]. As the result, if the number of the classifiers in [P] is over
the parameter N , XCS repeats deleting a classifier until the num-
ber of the classifiers in [P] becomes N . Concretely, XCS selects the
classifier to delete by following the equation below as the selection
probability, and decreases the classifier’s numerosity num by 1.

cl .deletion vote = cl .as × cl .num (14)

4 PROPOSED SYSTEM
For high-dimensional data mining, we propose Random Forest and
Accuracy-Based Learning Converted Classifier System (RFXCS).
Figure 4 shows the detail of RFXCS. From this figure, RFXCS gen-
erates several DTs by RF, converts the DTs to the classifiers, and
generalizes the classifiers byXCS.We explain these three processes
as follows.

Figure 4: RFXCS

4.1 Decision Tree Generation
RFXCS randomly samples a subset of data called Si . This process is
repeatedm times to generatem data sets (i.e., S0−Sm−1). Note that
the data sets can overlap with each other. After that, RFXCS gener-
ates a DT from each data set by RF, and stores i number of DTs in
total. Since this paper employs the multiplexer problem (employed
in 5), inputs and outputs become Si and the classes to generate the
DTs. There is binary strings the input in the multiplexer problem,
and the system has to select 0 or 1 as the output against the string.
It aims to select true output against each input in the problem. In
this paper, RFXCS generates binary strings randomly as the inputs
at first. Next, it labels the true outputs to the strings, and generates
the DTs for the problem as a binary classification task.

4.2 Converting Classifier
Figure 5 shows how to convert a DT to a classifier. In this figure, the
left side is the DT, while the right side is the classifiers converted
from the DT. aj (j = 0, 1, ...) is the attribute corresponding to the
split function h(v,θ j ) when the DT is converted. The number 0 or
1 near each leaf indicates output number. RFXCS generates clas-
sifiers from the shortest route in the DT because the DT with the
shorter route can be converted to the classifier with a very gen-
eralized appropriate rule. In the upper half of Figure 5, since the
route {0, 2, lea f } is the shortest of all, RFXCS generates a classi-
fier 1#1###1, while, the lower half, since all routes have the same
shortest length, RFXCS generates 8 classifiers corresponding to the
leafs. The generation criteria are that (1) the attribute correspond-
ing to each node in the route becomes value of the split function
in each node, (2) the attribute corresponding to each node outside
of the route becomes #, and (3) the action of the classifier becomes
value of the leaf in the route.

4.3 Generalization by XCS
RFXCS converts the classifiers from the DTs as initial classifiers
in population [P], and generalizes those. RFXCS selects from the
classifiers to make an initial population, and changes the initial pa-
rameters of the classifiers. Concretely, there are 6 versions of the
above process as shown in Table 1. In this table, the left column in-
dicates the name of each version, while the right column indicates
the classifiers used in each version. The right column indicates the
initial parameters for correct and incorrect classifiers, respectively.
In Boolean functions like the multiplexer (section 5) a correct clas-
sifier is one which only receives the higher of the two possible
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Figure 5: Converting Classifier from DT

rewards while an incorrect classifier receives only the lower of the
two possible rewards. Versions Pa and Na put p to 0/1000 in the
positive/negative classifier to make it incorrect. Versions Pb, Pc,
Nb, and Nc put p to 1000/0 in the positive/negative classifier. In
addition, the versions Pb and Nb, and Pc and Nc put f to 0 and 1,
respectively. If f is 1, XCS learns the classifier as the classifier, oth-
erwise, it learns the classifier as the inappropriate classifier. Note
that RFXCS deletes the classifier same as the other classifiers in this
process. For example, in 6-multiplexer problem, RFXCS generates

Table 1: Each version of RFXCS

version converted classifiers
Pa positive (p = 0, f = 0)
Pb positive (p = 1000, f = 0)
Pc positive (p = 1000, f = 1)
Na positive (p = 0, f = 0) + negative (p = 1000, f = 0)
Nb positive (p = 0, f = 0) + negative (p = 0, f = 0)
Nc positive (p = 0, f = 0) + negative (p = 0, f = 1)

the classifiers shown in the left side of Figure 6. There are three
correct classifiers and one incorrect classifier in this figure. RFXCS
generates new classifiers by reversing the action of each classifier
in Fig. 6 (i.e., RFXCS generates the correct classifiers based on the
incorrect classifiers, and vice versa.) After that, RFXCS puts certain
value to p and f in all classifiers (RFXCS with version Nc puts 0 to
p and f in the correct classifiers, and puts 0 and 1 to those in the
incorrect classifiers in Fig. 6.)

Figure 6: Initial classifiers (Version Nc)

5 MULTIPLEXER PROBLEM
Multiplexer problems are often employed to validate XCS gener-
alizing performance. In this problem, XCS receives a bitstring as
input, outputs an action, and receives a high reward for the correct
action and a low reward for the incorrect action. The multiplexer
problem has several conditions below:

• The action is the number 0 or 1.
• The length of the input string is k + 2k (k is a constant that
indicates one of a set of multiplexer functions)
• The correct action is the value of bitd+k+1 (d is the decimal
value of the first k bits)

“011101:1" is an example where k = 2. The length of the input
string is 6 and the 7th bit shows the correct action. In this example,
d is 1, so the correct action is the value of bit d + k + 1 = 4.

6 EXPERIMENT
6.1 Experimental setup
To validate the effectiveness of RFXCS, we apply it to two mul-
tiplexer problems, 6 and 37-multiplexer problems. Concretely, we
compose RFXCS with XCS in the 6 and 37-multiplexer problems.
Since the version N of proposed mechanism performs better than
the version P in the 6-multiplexer problem, we apply only version
N to the 37-multiplexer problem.

6.2 Evaluation criteria
In the experiment, we evaluate the performance of the proposed
system based on three criteria below. Figures show only exploit
iterations [2].

(1) Performance
Performance indicates how often RFXCS selected the cor-
rect action in the recent iterations. The higher accuracy is
better.

(2) Population size
Population size indicates the number of the classifiers be-
longing to RFXCS. The smaller population size is better.

(3) Optimal solutions
Each length of multiplexer problem has an optimal solution
consisting of maximally general, accurate, non-overlapping
classifiers. This set is called [O]. The 6-multiplexer has 16
optimal classifiers and the 37-multiplexer has 128. This cri-
terion measures how many optimal classifiers are in the
population [P].

6.3 Parameters used
The general parameters are determined by following [2]: concretely,
ν = 5,α = 0.1, β = 0.2, ϵ0 = 1,θmna = 2,θGA = 25, χ = 0.8, µ =
0.04. Table 2 shows parameters which are changed in each prob-
lem. In this table, N indicates the maximum number of the clas-
sifiers RFXCS and XCS can store. P# is the probability to add #
in new classifier when it generates that. S is the number of data
for learning by RF. There are 30 trials with 30 seeds in each prob-
lem. Explore + exploit iterations are 10000 and 2000000 in 6 and
37-multiplexer problems, respectively.
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Table 2: Parameters

6-Multiplexer 37-Multiplexer
N 400 5000
P# 0.33 0.65
S 40 10000

iteration 10000 2000000

6.4 Results
Figures 7, and 8 show the performance, the population size, and the
number of the optimal classifiers in the 6 and 37-multiplexer prob-
lems, respectively. The upper side is the results in the 6-multiplexer
problem, while the lower side is the results in the 37-multiplexer
problem. Note that the results are averaged from results of 30 trials
in these figures.

6.4.1 Results in 6-multiplexer problem. From Fig. 7a, the result
of each version of RFXCS converges to 100% performance. From
Fig. 7b, each version of RFXCS can solve the 6-multiplexer prob-
lem with smaller population size than that required by XCS. In
Fig. 7c, RFXCS discovered all 16 optimal classifiers, unlike XCS, al-
though XCS will consistently discover all 16 optimal classifiers for
this problem givenmore iterations [8].) From these results, we con-
clude the version N performs better than the version P in RFXCS
as noted above.

6.4.2 Results in 37-multiplexer problem. From Fig. 8a, the result
of each version of RFXCS converges to 100% performance. From
Fig. 8b, each version of RFXCS can solve the 37-multiplexer prob-
lem with a smaller population size than that required by XCS. In
fig. 8c, RFXCS discovered all 128 optimal classifiers, unlike XCS, al-
though XCS will discover all 128 optimal classifiers given enough
iterations.

6.5 Discussion
Since RFXCS can performwell in both multiplexer problems, these
results suggest that the proposed system can solve higher dimen-
sional multiplexer problems. In addition, RF has an important role
for RFXCS performing faster than XCS (i.e., RFXCS needs fewer
iterations). We discuss the roles of XCS for RFXCS in the below.

6.5.1 Rule generated by RF. Table 3 shows the performance of
each version of RFXCS in first learning byXCS and the 37-multiplexer
problem. In this table, the performance of the version Na is 16.1%,
while those of the versions Nb and Nc are 83.1%. That is because
the version Na has the only classifiers have p which does not in-
dicate its true value of them, unlike the other versions. From this
table, XCS can discriminate between correct and incorrect classi-
fiers converted from DTs. On the other hands, the performances
of the versions Nb and Nc are 83.1% not being 100%. This indicates
that the classifiers converted DTs cannot derive the best perfor-
mance without XCS.

6.5.2 Optimal solutions. RF can acquire the correct solutions,
but it cannot always acquire the optimal classifiers [O]. Table 4
shows the consistently correct half of [O] for the 6-multiplexer.
(Each classifier in Table 4 has a complementary classifierwhich has

Table 3: Performance in first learning by XCS

Performance [%]
Na 16.1
Nb 83.1
Nc 83.1

Table 4: Consistently correct classifiers in the optimal set
[O] for the 6-multiplexer

condition action
0 0 1 # # # 1
0 0 0 # # # 0
0 1 # 1 # # 1
0 1 # 0 # # 0
1 0 # # 1 # 1
1 0 # # 0 # 0
1 1 # # # 1 1
1 1 # # # 0 0

Table 5: Consistently correct and optimally general classi-
fiers for the 6-multiplexer that are not in the optimal set
[O]

condition action
1 # # # 1 1 1
1 # # # 0 0 0
0 # 1 1 # # 1
0 # 0 0 # # 0
# 1 # 1 # 1 1
# 1 # 0 # 0 0
# 0 1 # 1 # 1
# 0 0 # 0 # 0

the same condition bu the other action and which is consistently
incorrect. These classifiers are the other half of [O] [8, 12].) Table
5 shows another set of classifiers that are consisitently correct and
optimally general for the 6-multiplexer. Comparing the classifiers
between Tables 4 and 5, the numbers of # in the classifiers are the
same. The classifiers in Table 5 are different from the classifiers
in [O] because of overlaps (redundancy). No two classifiers in [O]
match the same input: they are non-overlapping (irredundant). In
contrast, the classifiers in Table 5 overlap with the classifiers in
[O] and some of them overlap with each other e.g., both 1###111
and #1#1#11 can match the input 1111111. The classifiers in [O]
cover the complete input/action space, so the classifiers in Table
4 are not necessary. In contrast, the classifiers in Table 4 do not
cover the complete input space, that is, they do not form a com-
plete map [8, 12]. For these reasons, XCS research has focused on
learning [O] and not the classifiers in Table 4. See ([8], chapter 4)
for a discussion of the value of overlapping rules and a discussion
of how to evaluate the success of genetic search in learning the
multiplexer and other problems.
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(a) Performance (b) Population size (c) Number of optimal classifiers

Figure 7: Result in 6-multiplexer problem

(a) Performance (b) Population size (c) Number of optimal classifiers

Figure 8: Result in 37-multiplexer problem

6.6 Result of 135-multiplexer problem
Figure 9 shows the performance of RFXCS in 135-multiplexer prob-
lem. Vertical and horizontal axes indicate the performance and it-
eration, respectively. From this figure, though the performance be-
comes low along to the iterations, the performance is 92% in 53000
iteration, and 80% averagely. The reason for the performance be-
coming low is that XCS deletes the better classifiers which might
become optimal solutions. Since the classifier whose address bit
has # must not optimal solutions in multiplexer problem, XCS can-
not utilize this classifier and has to delete this. The multiplexer
problem with many bits becomes very difficult because XCS has
to change almost all bits while must not change address bits to #.
Generally, XCS has many classifiers to decrease the probability the
better classifiers are deleted in 135-multiplexer problem. However,
if there are many classifiers, each classifier is not utilized more
times, and cannot be evaluated accurately. At the result, the better
classifier might be deleted. This suggests that the performance of
Figure 9 might become high. Table 6 shows the detail of the clas-

Figure 9: Performance in 135-multiplexer problem

sifiers in 0, 53000, and 519000 iterations. Each column shows the
iteration number, max number of # in each classifier (right number
is the number of # in the optimal rule), and the number of subop-
timal classifiers from left in order. In this problem, RFXCS can-
not acquire any optimal classifiers, but the suboptimal classifiers.
The suboptimal classifiers are that if several numbers of reference
bits become #, the classifier becomes optimal classifiers. There are
512 kinds of optimal rules in this problem, RFXCS has the sub-
optimal rules corresponding to all optimal rules. From this table,
RFXCS can acquire the many suboptimal rules and the more opti-
mally suboptimal rules than before as the iteration goes on. Table

Table 6: Detail of classifiers in 0, 53000, and 519000 iterations

iteration max number of # number of suboptimal solutions
519000 126/127 13340
53000 125/127 12271
0 125/127 6254

7 shows the classifiers including the suboptimal rules in 0, 53000,
and 519000 iterations. Each column indicates the address bits, the
reference bit indicated by the address bits, the action, the number
of #, the prediction p, the fitness f , the numerosity num, the expe-
rience exp from left in order. The upper, middle, and lower sides
indicate the classifiers in 519000, 53000, and 0 iterations, respec-
tively. In this table, if the output is equally to action, the prediction
of the classifier is 1000 as the reward, otherwise, that is 0. From
this result, RFXCS has the appropriate classifiers in each iteration.
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If the numerosity and the experience is high, the fitness of the clas-
sifier is high. In addition, the numerosity and the experience be-
come large, and the fitness becomes large as the iteration goes on.
This suggests that the classifiers including many other classifiers
and evaluatedmany times have accurate fitness and do not become
deleted. From this result, RFXCS can evaluate the classifiers appro-
priately in 135-multiplexer problem. Therefore, RFXCSmight have
all optimal classifiers in more iterations.

Table 7: Suboptimal classifiers in 0, 53000, and 519000 itera-
tions

519000 iteration
address output action # p f num exp

1010101 0 0 125 1000 0.62 67 243
1110011 0 0 125 1000 0.98 117 276
0101010 0 0 125 1000 0.85 81 249
1010101 0 1 125 0 0.99 109 238
1110011 0 1 125 0 0.94 100 265
0101010 0 1 125 0 0.94 78 276
0001100 1 0 125 0 0.88 93 212
1010101 0 0 125 1000 0.64 71 181
0110110 0 1 125 0 0.99 117 193
0110011 0 0 126 1000 0.93 135 262
1011010 1 1 125 1000 0.78 73 145
0011001 1 1 125 1000 0.98 109 148
0000000 0 1 125 0 0.86 93 113
0110011 0 1 125 0 0.74 90 89
0001100 1 0 125 0 0.71 50 65
1011010 1 1 125 1000 0.29 20 60
1011010 1 1 125 1000 0.52 32 61
0110011 0 0 126 1000 0.87 75 94
0010011 1 1 125 1000 0.78 143 30
0000000 0 1 125 0 0.38 19 40
0000000 0 1 125 0 0.22 6 27
0110011 0 1 125 0 0.17 3 25

53000 iteration
address output action # p f num exp

1010101 0 0 125 1000 0.47 24 24
1110011 0 0 125 1000 0.55 33 26
0101010 0 0 125 1000 0.72 37 29
1010101 0 1 125 0 0.35 4 21
1110011 0 1 125 0 0.96 103 46
0101010 0 1 125 0 0.46 25 24

0 iteration
address output action # p f num exp

1010101 0 0 125 0 0.01 1 0
1110011 0 0 125 0 0.01 1 0
0101010 0 0 125 0 0.01 1 0
1010101 0 1 125 0 0.01 1 0
1110011 0 1 125 0 0.01 1 0
0101010 0 1 125 0 0.01 1 0

7 CONCLUSIONS
This paper proposes a data mining technique called RFXCS for
high-dimensional data mining. Concretely, RFXCS integrates RF
and XCS: RF generates several numbers of decision trees, and XCS
generalizes the classifiers converted from the decision trees. The
convert manner is as follows: (1) the branch node of the decision
tree becomes the attribute; (2) if the branch node does not exist,
the attribute of that becomes #; and (3) One decision tree becomes
at least one rule. There are 6 versions of RFXCS. The versions of
RFXCS have the different type of classifiers with each other: the
versions Pa, Pb, and Pc have positive examples with (p = 0, F = 0),
(p = 1000, F = 0), and (p = 1000, F = 1), respectively. The ver-
sions Na, Nb, and Nc have positive examples with (p = 0, F = 0)
and negative examples with (p = 1000, F = 0), (p = 0, F = 0),
and (p = 0, F = 1), respectively. From the experiments of the 6
and 37-multiplexer problems, we derives (i) the faster performance
of RFXCS than XCS; and (ii) RFXCS is good at high-dimensional
data mining because XCS helps RFXCS to optimize the generalized
knowledge obtained by RF from high-dimensional data.

RFXCS can perform in binary problem. To apply this system to
real world problems, RFXCS has to learn from real values’ data. In
the future, we are going to improve RFXCS for that. Concretely, we
employ XCSR [13] instead of XCS, or improve the converter from
the DTs to the classifiers. For example, XCS utilizes the split func-
tion of DTs as an attribute of the classifier (the attribute indicates
over a threshold or not.) In addition, we are going to establish the
following things: one is the utilized route of the DTs, the other is
the utilized parameters of the classifiers.
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