# Benchmarking a Variant of the CMAES-APOP on the BBOB Noiseless Testbed

Duc Manh Nguyen<sup>1,2</sup>

<sup>1</sup>Department of Mathematics and Informatics

Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi, Vietnam <sup>2</sup>Sorbonne Université, IRD, JEAI WARM, Unité de Modélisation Mathématiques et Informatique des Systèmes Complexes, UMMISCO, F-93143, Bondy, France nguyendm@hnue.edu.vn

# ABSTRACT

The CMAES-APOP algorithm tracks the median of the elite objective values in each *S* successive iterations to decide whether we should increase or decrease or keep the population size in the next slot of *S* iterations. This quantity could be seen as the 25th percentile of objective function values evaluated in each iteration on  $\lambda$  candidate points. In this paper we propose a variant of the CMAES-APOP algorithm, in which we will track some percentiles of the objective values simultaneously. Some numerical results will show the improvement of this approach on some ill-conditioned functions, and on some multi-modal functions with weak global structure in small dimensions.

# **CCS CONCEPTS**

•Computing methodologies → Continuous space search;

# **KEYWORDS**

Benchmarking, Black-box optimization, Evolutionary computation, CMA-ES, CMAES-APOP

### ACM Reference format:

Duc Manh Nguyen<sup>1,2</sup>. 2018. Benchmarking a Variant of the CMAES-APOP on the BBOB Noiseless Testbed. In *Proceedings of Genetic and Evolutionary Computation Conference Companion, Kyoto, Japan, July 15–19, 2018 (GECCO '18 Companion)*, 8 pages.

DOI: 10.1145/3205651.3208299

# **1** INTRODUCTION

Adapting population size seems to be a right way in the CMA-ES to optimize multi-modal functions [1, 2, 4, 11, 12]. In the CMAES-APOP algorithm [11], the non-decrease of the median of elite objective values in a slot of *S* successive iterations is tracked to adapt the population size for the next *S* successive iterations. The variation of the population size therefore takes a staircase form in iterations. In fact, the median quantity could be considered as the 25th percentile (the 25-percentile, for the convenience) of objective function values

GECCO '18 Companion, Kyoto, Japan

© 2018 ACM. 978-1-4503-5764-7/18/07...\$15.00

DOI: 10.1145/3205651.3208299

evaluated on  $\lambda$  candidate points. We think that this quantity should depend on the structure of objective function and/or even should be adapted during the evolution process. However, in the black-box context, we do not know in advance the structure of the considered function. Therefore, in this paper we introduce a variant of this algorithm in which we will track some percentiles of the objective values at the same time. This approach comes from the observation that the performance

This approach comes from the observation that the performance of CMAES-APOP is quite stable when testing on some multi-modal functions below. The functions [9] have a high number of local optima, and have a minimal function value of 0. The known global minimum is located at  $\mathbf{x} = 0$ . The bound constraints for the Ackley function in  $[-32.768, 32.768]^n$  are considered via quadratic penalty terms. That is  $f_{Ackley}(\mathbf{x}) + \sum_{i=1}^{n} \theta(|x_i| - 32.768).(|x_i| - 32.768)^2$  will be minimized, where  $\theta(\mathbf{x}) = 1$  if  $\mathbf{x} > 0$  and  $\theta(\mathbf{x}) = 0$  if  $\mathbf{x} \le 0$ .

$$f_{\text{Rastrigin}}(\mathbf{x}) = 10n + \sum_{i=1}^{n} (x_i^2 - 10\cos(2\pi x_i))$$

$$f_{\text{Schaffer}}(\mathbf{x}) = \sum_{i=1}^{n-1} (x_i^2 + x_{i+1}^2)^{0.25} [\sin^2(50(x_i^2 + x_{i+1}^2)^{0.1}) + 1]$$

$$f_{\text{Ackley}}(\mathbf{x}) = 20 - 20 \cdot \exp\left(-0.2\sqrt{\frac{1}{n}\sum_{i=1}^{n} x_i^2}\right) + e - \exp\left(\frac{1}{n}\sum_{i=1}^{n} \cos(2\pi x_i)\right)$$

$$f_{\text{Bohachevsky}}(\mathbf{x}) = \sum_{i=1}^{n-1} (x_i^2 + 2x_{i+1}^2 - 0.3\cos(3\pi x_i) - 0.4\cos(4\pi x_{i+1}) + 0.7)$$

| - Donacheroky |    | $\overline{i=1}$ |           |           |           |           |           |
|---------------|----|------------------|-----------|-----------|-----------|-----------|-----------|
| Function      | n  | 25-p             | 1-p       | 10-p      | 50-p      | 75-p      | 90-p      |
|               | 10 | 3.317e+04        | 4.332e+04 | 3.527e+04 | 3.160e+04 | 3.069e+04 | 3.250e+04 |
| Rastrigin     | 20 | 9.077e+04        | 1.189e+05 | 9.254e+04 | 9.212e+04 | 9.038e+04 | 9.286e+04 |
|               | 40 | 2.981e+05        | 3.992e+05 | 3.163e+05 | 3.006e+05 | 3.034e+05 | 3.133e+05 |
|               | 10 | 3.098e+04        | 5.111e+04 | 3.334e+04 | 3.051e+04 | 3.012e+04 | 3.147e+04 |
| Schaffer      | 20 | 8.175e+04        | 1.663e+05 | 8.833e+04 | 8.024e+04 | 8.233e+04 | 8.646e+04 |
|               | 40 | 2.255e+05        | 4.942e+05 | 2.266e+05 | 2.224e+05 | 2.348e+05 | 2.325e+05 |
|               | 10 | 1.403e+04        | 2.280e+04 | 1.481e+04 | 1.369e+04 | 1.429e+04 | 1.498e+04 |
| Ackley        | 20 | 3.105e+04        | 6.125e+04 | 3.263e+04 | 3.024e+04 | 3.144e+04 | 3.326e+04 |
|               | 40 | 7.204e+04        | 1.275e+05 | 7.379e+04 | 6.761e+04 | 7.164e+04 | 7.617e+04 |
|               | 10 | 1.002e+04        | 1.494e+04 | 1.052e+04 | 1.015e+04 | 1.064e+04 | 1.085e+04 |
| Bohachevsky   | 20 | 2.397e+04        | 4.261e+04 | 2.533e+04 | 2.366e+04 | 2.378e+04 | 2.494e+04 |
|               | 40 | 5.536e+04        | 9.881e+04 | 5.781e+04 | 5.627e+04 | 5.810e+04 | 6.101e+04 |

Table 1: The aRT of some variants of CMAES-APOP, where the 25percentile is replaced by the other percentiles (aRT (average Running Time) = number of function evaluations divided by the number of successful trials)

For each function, 51 runs are conducted. Each run is stopped and regarded as successful, when the function value is smaller than  $f_{\text{stop}} = 10^{-10}$  ( $f_{\text{stop}} = 10^{-8}$  for the Schaffer function). Some additional conditions that are added to the Schaffer function are: TolX =  $10^{-30}$ , TolFun =  $10^{-20}$ , TolHistFun =  $10^{-20}$ . In this test, the starting point for the functions Rastrigin, Schaffer, Ackley, Bohachevsky is (5, ..., 5), (55, ..., 55), (15, ..., 15), and (8, ..., 8) respectively; and the initial step-size  $\sigma$  for these functions is 2, 20, 5, 3 respectively.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

GECCO '18 Companion, July 15-19, 2018, Kyoto, Japan

Indeed, when we run the CMAES-APOP algorithm with the small initial population size  $\lambda = \lambda_{default}$  (i.e, set  $k_n = 1$ , see [11]) and without the upper bound for the population size in three dimensions n = 10, 20, 40, we obtain high success rates (more than 80%) for all tests (not reported in Table 1). From Table 1 we can see that the performance of CMAES-APOP does not change so much except for the 1-percentile case. This is because 1-percentile is a sensitive quantity.

#### A VARIANT OF CMAES-APOP 2

We recall some notations used in the paper [11] and introduce some new ones:

- $k_n$ : the factor for setting the initial population size. It depends on the problem dimension n and is quite large to prevent a premature convergence.
- iter : number of iterations.
- S : number of iterations in each slot.
- *P* : a set of percentiles.
- $f^p := \text{percentile}(\{f(\mathbf{x}_{i:\lambda}), i = 1, ..., \lambda\}, p) : \text{the } p\text{-percentile}$ of objective function of  $\lambda$  candidates in each iteration, where p can vary from 0 to 100 (in fact p will be chosen from the set of percentiles *P*);  $f_{prev}^{p}$  and  $f_{cur}^{p}$  denote the *p*-percentiles in the previous and current iteration respectively.
- $n_{\rm up}$ : the number of times " $f_{\rm cur}^p f_{\rm prev}^p > 0$ " occurs during a slot of *S* iterations.
- $t_{up}$ : the history of  $n_{up}$  in each slot recorded.
- noup : the number of most recent slots we do not see the non-decrease.
- $\lambda_{\max} := (20n + 30)\lambda_{default}$ : the maximum number of the population, where  $\lambda_{default} = |4 + 3\log(n)|$ .

The algorithm below is quite similar to the CMAES-APOP algorithm. It collects  $n_{up}$  during S iterations. After each S iterations, depending the information of  $n_{up}$ , it adapts the population size for the S next iterations.

# A variant of the CMAES-APOP

```
(1) Input: \mathbf{m} \in \mathbb{R}^n, \sigma \in \mathbb{R}_+
```

- (2) Initialize: C = I,  $p_c = 0$ ,  $p_\sigma = 0$ ,  $\lambda = k_n \times \lambda_{default}$
- (3) Set:  $\mu = \lfloor \lambda/2 \rfloor$ ,  $w_i = \log(\mu + 0.5) \log i$ ,  $i = 1, ..., \mu$ ,

```
\mu_w, c_c, c_\sigma, c_1, c_\mu, c_1 + c_\mu \leq 1, d_\sigma,
iter = 0, S = 5, r_{\text{max}} = 30, n_{\text{up}} = 0, t_{\text{up}} = [].
```

```
(4) While not terminate
```

```
(5)
        iter = iter + 1;
```

```
\mathbf{x}_i = \mathbf{m} + \sigma \mathbf{y}_i, \mathbf{y}_i \sim \mathbf{N}(\mathbf{0}, \mathbf{C}), \text{ for } i = 1, ..., \lambda
(6)
```

```
Take p randomly from the set of percentiles P
(7)
```

```
(8)
        if iter > 1
```

```
//Check if f^p increases
(9)
```

```
(10)
```

```
(11)
           end
```

```
(12)
        end
```

```
\mathbf{m} \leftarrow \sum_{i=1}^{\mu} w_i \mathbf{x}_{i:\lambda} = \mathbf{m} + \sigma \mathbf{y}_w, where \mathbf{y}_w = \sum_{i=1}^{\mu} w_i \mathbf{y}_{i:\lambda}
(13)
```

(14) 
$$\mathbf{p}_{c} \leftarrow (1 - c_{c})\mathbf{p}_{c} + \mathbf{1}_{||\mathbf{p}_{\sigma} < 1.5\sqrt{n}||} \sqrt{(1 - (1 - c_{c})^{2})\sqrt{\mu_{w}}\mathbf{y}_{w}}$$

(15) 
$$\mathbf{p}_{\sigma} \leftarrow (1 - c_{\sigma})\mathbf{p}_{\sigma} + \sqrt{(1 - (1 - c_{\sigma})^2)}\sqrt{\mu_{w}}\mathbf{C}^{-\frac{1}{2}}\mathbf{y}_{w}$$

(16) 
$$\mathbf{C} \leftarrow (1 - c_1 - c_\mu)\mathbf{C} + c_1\mathbf{p}_c\mathbf{p}_c^T + c_\mu\sum_{i=1}^{\mu}w_i\mathbf{y}_{i:\lambda}\mathbf{y}_{i:\lambda}^T$$

(17) 
$$\sigma \leftarrow \sigma \times \exp\left(\frac{c_{\sigma}}{d}\left(\frac{\|\mathbf{p}_{\sigma}\|}{\|\mathbf{p}_{\sigma}\|}-1\right)\right)$$

```
if (mod(iter, S) = 1) & (iter > 1) // Adapting pop-size
(18)
```

```
t_{up} = [t_{up}; n_{up}]; // History of n_{up}
(19)
```

(20) if 
$$n_{up} > 1$$
  
(21)  $\lambda \leftarrow \left| \min\left( \exp\left(\frac{n_{up} \cdot (4+3\log(n))}{S \cdot \sqrt{\lambda - \lambda_{default} + 1}}\right), r_{max}\right) \times \lambda \right|;$   
(22)  $\lambda \leftarrow \min(\lambda, \lambda_{max})$   
(23)  $\sigma \leftarrow \sigma \times \exp\left(\frac{1}{n}\left(\frac{n_{up}}{S} - \frac{1}{5}\right)\right); // \text{ Enlarge } \sigma \text{ a little bit}$   
(24) elseif  $n_{up} = 0$   
(25)  $n_{0up} = \text{length}(t_{up}) - \max(\text{find}(t_{up} > 0));$   
(26) if  $\lambda > 2\lambda_{default}$   
(27)  $\lambda \leftarrow \max\left(\left[\lambda \times \exp(-n_{0up}/10)\right)\right], 2\lambda_{default}\right);$   
(28) end  
(29) end  
(30) if  $\lambda$  is changed // Only when  $n_{up} > 1$  or  $n_{up} = 0$   
(31) Update  $\mu, w_{i=1...\mu}, \mu_{w}$  w.r.t the new pop-size  $\lambda$   
(32) Update the parameters  $c_c, c_\sigma, c_1, c_\mu, d_\sigma$   
(33) end  
(34)  $n_{up} \leftarrow 0$  // Reset  $n_{up}$ 

(35) end

There are only two different points. The first one is that the upper bound of the population size is not constant but depends on the problem dimension. The second one is that instead of using the 25-percentile as in the CMAES-APOP during the evolution process, we will take (randomly) a percentile p from the set P. In this work, we will consider 3 variants corresponding to 3 sets:  $P_1 = \{1, 25, 50\}, P_2 = \{1, 50\}, P_3 = \{1, 50, 75\}$ . The 50-percentile is chosen to ensure the balance. Choosing the 1-percentile means that we want to track the change of the most elite part of the population. We think it makes sense for weak global structure functions since we sometimes try to ignore the contribution of other local optima and focus on the global ones. Another reason is in the case when the optimal solution of the problem is quite close to the corner of box constraints and a penalty-term for constraints is applied. In this case, when the evolution process approaches this global optimum, the number of penalized points could be large (especially in a large dimension), and dominate normal points. Consequently, the signal which we are tracking may not be accurate if we use a large percentile. Finally, we choose the 75-percentile because sometimes we want to hear the voice of non-elite candidates. In fact, the non-elite candidates (a half of the population) do not contribute to the evolution process in the CMA-ES. However, in this way they do indirectly.

#### **EXPERIMENTAL PROCEDURE** 3

We test the 3 variants with a budget of  $2 \times 10^5 \times n$ , where *n* is the problem dimension, on the BBOB noiseless functions in six different dimensions. We denote the variants corresponding to  $P_1 = \{1, 25, 50\}, P_2 = \{1, 50\}, \text{ and } P_3 = \{1, 50, 75\}$  by Var1, Var2 and Var3 respectively. We used the matlab implementation of CMA-ES<sup>1</sup>, version 3.40.beta to make the variants of CMAES-APOP. Similar to CMAES-APOP, all variants use the restart strategies as in BIPOP-CMA-ES [4], but without the stagnation condition. Also, the parameter  $k_n$  will be tuned to 10, 20, 30, 40, 50, 60 for dimension n = 2, 3, 5, 10, 20, 40 respectively for all variants. Whenever the population size  $\lambda$  is updated, the parameters corresponding are also changed.

The experiment is tested on a MacBook Air Intel(R) Core(TM) i5-5250U CPU @ 1.60GHz, RAM 8G using MATLAB R2016b. Since

```
<sup>1</sup>https://www.lri.fr/ hansen/cmaes20091024.m
```

Duc Manh Nguyen

these variants are also developed for solving multi-modal functions, in the first run, we use the pure CMA-ES with the default population size  $\lambda = \lambda_{default}$ . The population size adaptation strategy in all variants of CMAES-APOP is applied with the initial population size  $\lambda = k_n \times \lambda_{default}$  whenever the algorithm is restarted and then repeated until the budget is used up. We choose the starting point  $\mathbf{m}^0$  uniformly in  $[-4, 4]^n$  and set the initial step-size  $\sigma_0 = 2$  for all runs. We will compare these variants with CMAES-APOP [11], IPOP-CMA-ES [14] and BIPOP-CMA-ES [4].

# 4 CPU TIMING

Besides studying the performance of the proposed algorithms, we are interested in evaluating the CPU timing of these algorithms. Thus we run Var1, Var2, Var3 on the BBOB test suite [8] with a small budget. Here, we set maximum budget equal to  $1000 \times n$  function evaluations according to [10]. Table 2 shows the time per function evaluation of the variants in dimensions 2, 3, 5, 10, 20, 40.

|      | 2       | 3       | 5       | 10      | 20      | 40      |
|------|---------|---------|---------|---------|---------|---------|
| Var1 | 2.3e-06 | 1.5e-06 | 9.9e-07 | 6.7e-07 | 5.2e-07 | 4.7e-07 |
| Var2 | 2.1e-06 | 1.4e-06 | 9.5e-07 | 6.8e-07 | 5.5e-07 | 4.7e-07 |
| Var3 | 2.1e-06 | 1.4e-06 | 1.0e-06 | 7.2e-07 | 4.8e-07 | 4.8e-07 |

Table 2: The CPU time (in second) per function evaluation.

# 5 RESULTS

Results from experiments according to [10] and [5] on the benchmark functions given in [3, 8] are presented in Figures 1, 2 and 3 and in Tables 3 and 4. The experiments were performed with COCO [7], version 2.2, the plots were produced with version 2.2.1.

The **average runtime (aRT)**, used in the figures and tables, depends on a given target function value,  $f_t = f_{opt} + \Delta f$ , and is computed over all relevant trials as the number of function evaluations executed during each trial while the best function value did not reach  $f_t$ , summed over all trials and divided by the number of trials that actually reached  $f_t$  [6, 13]. **Statistical significance** is tested with the rank-sum test for a given target  $\Delta f_t$  using, for each trial, either the number of needed function evaluations to reach  $\Delta f_t$  (inverted and multiplied by -1), or, if the target was not reached, the best  $\Delta f$ -value achieved, measured only up to the smallest number of overall function evaluations for any unsuccessful trial under consideration.

Figure 1 and Tables 3 and 4 show that in 5-D, Var1, Var2, and Var3 solve 21, 22, and 22 respectively among 24 functions; and in 20-D the variants solve 19 among 24 functions. The performance of these variants is similar to the performance of CMAES-APOP except for some cases. It means that all variants still run faster about 2.5 times than the IPOP-CMA-ES does, and 3-4 times than the BIPOP-CMA-ES does on the well-structured multi-modal function  $f_{15}$  in 20-D, 40-D; and faster about 1.8 times than the IPOP-CMA-ES does, and 2.6 times than the BIPOP-CMA-ES does on the function  $f_{18}$  in dimension 20. Also, the variants run faster about 1.8 times than the IPOP-CMA-ES does on the function  $f_7$  in dimension 40.

All variants of CMAES-APOP improve slightly the performance on  $f_7$ ,  $f_{15}$ ,  $f_{16}$ ,  $f_{18}$ ,  $f_{21}$  in 10-D,  $f_8$  in 40-D,  $f_{13}$  in 20-D. Moreover, Var1, Var2, and Var3 can solve some hard functions in small dimension while CMAES-APOP does not, for instance  $f_4$ ,  $f_{23}$  in 3-D,  $f_{24}$  in 2-D, 3-D (all variants) and in 5-D (just with Var2 and Var3). However, the variants do not work well as CMAES-APOP does on  $f_3$  in 10-D,  $f_{16}$  in 40-D, on function  $f_{19}$  in 10-D,  $f_{20}$  in 20-D, and on  $f_{21}$  in dimensions 20, 40. However, all variants are still better than the IPOP-CMA-ES and BIPOP-CMA-ES on  $f_3$  in 10-D; than the BIPOP-CMA-ES on  $f_{19}$  in dimensions 10, 40; and than BIPOP-CMA-ES on  $f_{20}$  in dimensions 10, 20.

From Figue 3 and Tables 3 and 4, we can see that Var1 and Var3 provide better empirical cumulative distribution functions (ECDFs) than Var2 does for the class of conditioned functions, and the class of multi-modal functions with adequate global structure in high dimensions. This means that tracking more percentiles in the context of CMAES-APOP can help us to make better decisions in adapting population size for these classes, especially when we focus on percentiles indicating the elite part of the population. Nevertheless, Var3 sometimes works slightly better than Var1 and Var2 do on ill-conditioned functions, for example on  $f_8$  in 10-D, 40-D; on  $f_9$  in 10-D, 20-D; on  $f_{12}$  in 10-D, 40-D; on  $f_{13}$  in 20-D; and on  $f_{20}$  in 5-D. It implies that using the information of non-elite individuals to adapt the population size in the context of CMAES-APOP is not bad idea.

# 6 CONCLUSION

In this work, we have proposed a variant of CMAES-APOP in which we track the change of some percentiles of objective values rather than one percentile, and set the upper bound of the population size depending on the problem dimension. Some versions of this approach are tested on the BBOB noiseless testbed. The numerical results show that this approach can improve the performance of CMAES-APOP in some cases when the set of percentiles P is chosen appropriately. Especially, the proposed versions can efficiently solve some multi-modal functions with weak global structure in small dimensions. However, the percentile p in this work is chosen uniformly from a set P. Thus, how to initialize a good set P and how to evaluate the importance of each percentile *p* in *P* during the evolution process are still questions that need to be answered. Moreover, we think that the information of percentiles not only plays a role in adapting population size but also could play a deeper role inside the evolution process of the CMA-ES. All that will be our direction in future work.

Acknowledgements. This work was completed while the author was visiting Vietnam Institute for Advanced Study in Mathematics (VIASM). He would like to thank the Institute for the support.

### REFERENCES

- A. Ahrari and M. Shariat-Panahi. 2015. An improved evolution strategy with adaptive population size. *Optimization* 64, 12 (2015), 2567–2586.
- [2] A. Auger and N. Hansen. 2005. A restart CMA evolution strategy with increasing population size. In 2005 IEEE Congress on Evolutionary Computation, Vol. 2. 1769– 1776 Vol. 2.
- [3] S. Finck, N. Hansen, R. Ros, and A. Auger. 2009. Real-Parameter Black-Box Optimization Benchmarking 2009: Presentation of the Noiseless Functions. Technical Report 2009/20. Research Center PPE. http://coco.lri.fr/downloads/download15. 03/bbobdocfunctions.pdf Updated February 2010.
- [4] N. Hansen. 2009. Benchmarking a BI-population CMA-ES on the BBOB-2009 Function Testbed. In Proceedings of the 11th Annual Conference Companion on Genetic and Evolutionary Computation Conference: Late Breaking Papers (GECCO '09). 2389–2396.



Figure 1: Average running time (aRT in number of f-evaluations as  $\log_{10}$  value), divided by dimension for target function value  $10^{-8}$  versus dimension. Slanted grid lines indicate quadratic scaling with the dimension. Different symbols correspond to different algorithms given in the legend of  $f_1$  and  $f_{24}$ . Light symbols give the maximum number of function evaluations from the longest trial divided by dimension. Black stars indicate a statistically better result compared to all other algorithms with p < 0.01 and Bonferroni correction number of dimensions (six). Legend:  $\circ$ : BIPOP-CMA-ES,  $\diamond$ : CMAES-APOP,  $\star$ : IPOP-CMA-ES,  $\bigtriangledown$ : Var1,  $\bigcirc$ : Var2,  $\triangle$ : Var3

### Benchmarking a Variant of the CMAES-APOP on the BBOB Noiseless Testbed

GECCO '18 Companion, July 15-19, 2018, Kyoto, Japan

| $\Lambda f_{max}$                                                           | 101                                                                    | 140                                                 | 10-1                                                | 10-2                                                | 10-3                                                | 10-5                                          | 16-7                                            | ffence                                    | A fourt                                       | 101                                                    | 1.00                                           | 10-1                                          | 10-2                                           | 10-3                                      | 10-5                                             | 1e-7                                                                     | HENCO                                        |
|-----------------------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|-----------------------------------------------|-------------------------------------------------|-------------------------------------------|-----------------------------------------------|--------------------------------------------------------|------------------------------------------------|-----------------------------------------------|------------------------------------------------|-------------------------------------------|--------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------|
| opt                                                                         |                                                                        | 100                                                 | 10.1                                                | 10.5                                                | 10.5                                                | 10.5                                          | 107                                             | - ouce                                    | Jopi                                          |                                                        | 100                                            | 10.1                                          | 10.5                                           | ie s                                      | 10.5                                             | 10.7                                                                     | Joure                                        |
| f1                                                                          | 11                                                                     | 12                                                  | 12                                                  | 12                                                  | 12                                                  | 12                                            | 12                                              | 15/15                                     | f13                                           | 132                                                    | 195                                            | 250                                           | 319                                            | 1310                                      | 1752                                             | 2255                                                                     | 15/15                                        |
| BIPOP-C                                                                     | 6.4(5)                                                                 | 18(3)                                               | 31(7)                                               | 43(11)                                              | 55(7)                                               | 82(6)                                         | 108(14)                                         | 15/15                                     | BIPOP-C                                       | 7.9(4)                                                 | 11(6)                                          | 12(6)                                         | 11(3)                                          | 3.2(0.6)                                  | 3.0(0.7)                                         | 3.4(1)                                                                   | 15/15                                        |
| CMAES-A                                                                     | 47(5)                                                                  | 12(4)                                               | 28(4)                                               | 30(7)                                               | 52(6)                                               | 77(6)                                         | 103(8)                                          | 15/15                                     | CMAES-A                                       | 5 4(0.9)                                               | 8 9(6)                                         | 12(4)                                         | 11(2)                                          | 2 9(0.6)                                  | 3 0(0 5)                                         | 3 2(4)                                                                   | 15/15                                        |
| CIVITILS IN                                                                 | 4.7(5)                                                                 | 12(4)                                               | 20(4)                                               | 33(7)                                               | 52(0)                                               | 77(0)                                         | 105(0)                                          | 15/15                                     | CMILS I                                       | 5.4(0.7)                                               | 0.7(0)                                         | 12(4)                                         | 11(2)                                          | 2.7(0.0)                                  | 5.0(0.5)                                         | 5.2(4)                                                                   | 15/15                                        |
| IPOP-CM                                                                     | 5.0(1)                                                                 | 16(5)                                               | 29(8)                                               | 41(7)                                               | 55(4)                                               | 80(6)                                         | 104(6)                                          | 15/15                                     | IPOP-CM                                       | 6.3(5)                                                 | 10(7)                                          | 11(4)                                         | 10(5)                                          | 2.9(1)                                    | 3.3(1)                                           | 3.3(1)                                                                   | 15/15                                        |
| Var1                                                                        | 3.8(2)                                                                 | 15(4)                                               | 26(6)                                               | 39(9)                                               | 53(13)                                              | 77(8)                                         | 101(10)                                         | 15/15                                     | Var1                                          | 6.1(4)                                                 | 10(5)                                          | 11(4)                                         | <b>10</b> (3)                                  | 2.9(0.4)                                  | 3.4(0.7)                                         | 3.3(2)                                                                   | 15/15                                        |
| Var2                                                                        | 4.1(3)                                                                 | 15(4)                                               | 28(11)                                              | 41(8)                                               | 55(8)                                               | 78(8)                                         | 103(11)                                         | 15/15                                     | Var2                                          | 5.5(2)                                                 | 8.8(5)                                         | 13(13)                                        | 13(11)                                         | 3.7(0.9)                                  | 3.4(1)                                           | 3.8(0.7)                                                                 | 15/15                                        |
| Var3                                                                        | 3.4(2)                                                                 | 15(6)                                               | 28(11)                                              | 40(8)                                               | 54(8)                                               | 80(10)                                        | 106(9)                                          | 15/15                                     | Var3                                          | 4.8(1)                                                 | 10(7)                                          | 12(4)                                         | 10(6)                                          | 3.0(1)                                    | 3.7(0.5)                                         | 3.7(3)                                                                   | 15/15                                        |
| fa                                                                          | 92                                                                     | (-)                                                 | ()                                                  | 20(2)                                               | 00                                                  | 02                                            |                                                 | 15/15                                     | £14                                           | 10                                                     | 41                                             | -=(-)                                         | (-)                                            | 120                                       | 251                                              | 476                                                                      | 15/15                                        |
| 12                                                                          | 65                                                                     | 6/                                                  | 00                                                  | 89                                                  | 90                                                  | 92                                            | 94                                              | 15/15                                     | 114                                           | 10                                                     | 41                                             | 56                                            | 90                                             | 139                                       | 251                                              | 4/0                                                                      | 15/15                                        |
| BIPOP-C                                                                     | 26(8)                                                                  | 32(8)                                               | 35(4)                                               | 37(4)                                               | 39(4)                                               | 42(3)                                         | 44(3)                                           | 15/15                                     | BIPOP-C                                       | 2.1(2)                                                 | 5.6(2)                                         | 7.5(3)                                        | 7.9(3)                                         | 9.1(2)                                    | 11(2)                                            | 9.0(0.7)                                                                 | 15/15                                        |
| CMAES-A                                                                     | 28(9)                                                                  | 33(2)                                               | 35(1)                                               | 37(1)                                               | 38(2)                                               | 41(3)                                         | 43(2)                                           | 15/15                                     | CMAES-A                                       | 1.3(3)                                                 | 3.7(3)                                         | 6.3(0.7)                                      | 6.9(1.0)                                       | 8.7(2)                                    | 10(2)                                            | 8.5(1)                                                                   | 15/15                                        |
| IPOP-CM                                                                     | 27(9)                                                                  | 32(7)                                               | 36(4)                                               | 37(4)                                               | 39(3)                                               | 41(2)                                         | 43(5)                                           | 15/15                                     | IPOP-CM                                       | 4.2(4)                                                 | 5.8(5)                                         | 7.7(2)                                        | 8.5(3)                                         | 9.3(3)                                    | 11(1)                                            | 8.9(1)                                                                   | 15/15                                        |
| Vor1                                                                        | 26(7)                                                                  | 21(4)                                               | 24(2)                                               | 26(5)                                               | 29(2)                                               | 41(4)                                         | 42(4)                                           | 15/15                                     | Vor1                                          | 1.6(1)                                                 | 4 5(2)                                         | 6 5(0,6)                                      | 7 2(2)                                         | 8 4(1)                                    | 11(1)                                            | 8 6(1)                                                                   | 15/15                                        |
| Vall                                                                        | 20(7)                                                                  | 31(4)                                               | 34(3)                                               | 30(3)                                               | 38(3)                                               | 41(4)                                         | 43(4)                                           | 15/15                                     | Vali                                          | 1.0(1)                                                 | 4.3(2)                                         | 0.5(0.0)                                      | 7.3(2)                                         | 0.4(1)                                    | 11(1)                                            | 0.0(1)                                                                   | 13/13                                        |
| Var2                                                                        | 23(8)                                                                  | 31(4)                                               | 34(3)                                               | 36(3)                                               | 38(4)                                               | <b>40</b> (2)                                 | 42(3)                                           | 15/15                                     | Var2                                          | 1.6(4)                                                 | 4.5(2)                                         | 7.2(1)                                        | 7.4(1)                                         | 8.1(3)                                    | 10(2)                                            | 8.6(1.0)                                                                 | 15/15                                        |
| Var3                                                                        | 26(6)                                                                  | <b>30</b> (9)                                       | 36(3)                                               | 37(3)                                               | 38(3)                                               | 41(3)                                         | 44(4)                                           | 15/15                                     | Var3                                          | 1.4(2)                                                 | 4.5(2)                                         | 6.9(2)                                        | 7.7(1)                                         | 8.5(2)                                    | 11(2)                                            | 8.6(1)                                                                   | 15/15                                        |
| f3                                                                          | 716                                                                    | 1622                                                | 1637                                                | 1642                                                | 1646                                                | 1650                                          | 1654                                            | 15/15                                     | f15                                           | 511                                                    | 9310                                           | 19369                                         | 19743                                          | 20073                                     | 20769                                            | 21359                                                                    | 14/15                                        |
| RIDOR C                                                                     | 2.9(2)                                                                 | 22(41)                                              | 205(26)                                             | 205(162)                                            | 205(104)                                            | 206(214)                                      | 206(126)                                        | 14/15                                     | RIDOR C                                       | 2 2(5)                                                 | 2.0(1)                                         | 2 4(0.8)                                      | 2 4(1)                                         | 2.4(1)                                    | 2.4(1)                                           | 2.4(1)                                                                   | 15/15                                        |
| BIFOF-C                                                                     | 2.0(3)                                                                 | 32(41)                                              | 203(20)                                             | 203(103)                                            | 203(194)                                            | 200(214)                                      | 200(120)                                        | 14/15                                     | BIFOF-C                                       | 5.5(5)                                                 | 5.0(1)                                         | 2.4(0.8)                                      | 2.4(1)                                         | 2.4(1)                                    | 2.4(1)                                           | 2.4(1)                                                                   | 15/15                                        |
| CMAES-A                                                                     | 2.7(3)                                                                 | 80(53)                                              | 253(224)                                            | 256(357)                                            | 257(358)                                            | 259(195)                                      | 260(363)                                        | 12/15                                     | CMAES-A                                       | 3.0(5)                                                 | 2.3(0.4)                                       | 1.3(0.4)                                      | 1.4(0.4)                                       | 1.5(0.5)                                  | 1.5(0.3)                                         | 1.6(0.4)                                                                 | 15/15                                        |
| IPOP-CM                                                                     | 4.5(8)                                                                 | 106(81)                                             | 3140(4119)                                          | 3131(2524)                                          | 3124(2261)                                          | 3117(5481)                                    | 3110(2827)                                      | 2/15                                      | IPOP-CM                                       | 4.5(5)                                                 | 2.5(3)                                         | 2.3(2)                                        | 2.3(2)                                         | 2.3(2)                                    | 2.3(3)                                           | 2.4(3)                                                                   | 15/15                                        |
| Var1                                                                        | 3.8(5)                                                                 | 45(20)                                              | 228(230)                                            | 240(295)                                            | 241(141)                                            | 242(159)                                      | 243(237)                                        | 15/15                                     | Var1                                          | 4.4(6)                                                 | 2.0(2)                                         | 1.3(0.7)                                      | 1.4(0.9)                                       | 1.4(0.8)                                  | 1.5(0.6)                                         | 1.5(0.8)                                                                 | 15/15                                        |
| Var2                                                                        | 28(5)                                                                  | 72(56)                                              | 252(380)                                            | 255(284)                                            | 257(254)                                            | 258(303)                                      | 260(165)                                        | 15/15                                     | Var2                                          | 4 9(7)                                                 | 2.0(1)                                         | 13(07)                                        | 1 4(0 5)                                       | 15(05)                                    | 15(05)                                           | 1.6(0.5)                                                                 | 15/15                                        |
| Vai2                                                                        | 2.0(5)                                                                 | 72(50)                                              | 232(300)                                            | 233(204)                                            | 237(234)                                            | 230(373)                                      | 200(105)                                        | 15/15                                     | Vai2                                          | 4.7(7)                                                 | 2.0(1)                                         | 1.5(0.7)                                      | 1.4(0.5)                                       | 1.5(0.5)                                  | 1.5(0.5)                                         | 1.0(0.5)                                                                 | 15/15                                        |
| var3                                                                        | 3.6(3)                                                                 | 52(55)                                              | 221(164)                                            | 231(171)                                            | 232(216)                                            | 234(364)                                      | 235(162)                                        | 15/15                                     | var3                                          | 3.8(8)                                                 | 2.0(0.5)                                       | 1.4(1)                                        | 1.5(0.7)                                       | 1.6(1)                                    | 1.6(1)                                           | 1.7(0.9)                                                                 | 15/15                                        |
| f4                                                                          | 809                                                                    | 1633                                                | 1688                                                | 1758                                                | 1817                                                | 1886                                          | 1903                                            | 15/15                                     | f16                                           | 120                                                    | 612                                            | 2662                                          | 10163                                          | 10449                                     | 11644                                            | 12095                                                                    | 15/15                                        |
| BIPOP-C                                                                     | 5.4(4)                                                                 | ~                                                   | ~                                                   | ~                                                   | ~                                                   | ~                                             | ∞ 2e6                                           | 0/15                                      | BIPOP-C                                       | 6.0(6)                                                 | 7.1(5)                                         | 5.2(17)                                       | 2.1(1)                                         | 2.7(4)                                    | 2.7(4)                                           | 2.8(4)                                                                   | 15/15                                        |
| CMAES-A                                                                     | 83(7)                                                                  | 00                                                  | 00                                                  | <u> </u>                                            | 000                                                 | 00                                            | 00 505                                          | 0/15                                      | CMAES-A                                       | 39(4)                                                  | 68(84)                                         | 55(85)                                        | 15(29)                                         | 21(22)                                    | 20(27)                                           | 19(34)                                                                   | 13/15                                        |
| IPOP CM                                                                     | 4.0(6)                                                                 | ~                                                   | ~                                                   | ~                                                   | ~                                                   | ~                                             | ∞ @e5                                           | 0/15                                      | IPOP CH                                       | 5 1(4)                                                 | 17(4)                                          | 3 4(2)                                        | 1 1(2)                                         | 1 0/2)                                    | 1 0(1)                                           | 1 9(2)                                                                   | 15/15                                        |
| TOT-CM                                                                      | 4.0(0)                                                                 | ~                                                   | ~                                                   | ~                                                   | ~                                                   | ~                                             | ~ 703                                           | 0/15                                      | II OF-CM                                      | 3.1(4)                                                 | +./(0)                                         | 3.4(3)                                        | 1.1(2)                                         | 1.9(3)                                    | 1.3(1)                                           | 1.9(2)                                                                   | 1.5/15                                       |
| Var1                                                                        | 7.8(5)                                                                 | $\infty$                                            | $\infty$                                            | $\infty$                                            | $\infty$                                            | $\infty$                                      | ∞ 1e6                                           | 0/15                                      | Var1                                          | 3.7(4)                                                 | 36(51)                                         | 48(43)                                        | 14(7)                                          | 14(15)                                    | 13(17)                                           | 13(6)                                                                    | 15/15                                        |
| Var2                                                                        | 5.2(6)                                                                 | $\infty$                                            | $\infty$                                            | $\infty$                                            | $\infty$                                            | $\infty$                                      | ∞ 1e6                                           | 0/15                                      | Var2                                          | 3.9(3)                                                 | 47(77)                                         | 24(17)                                        | 7.6(7)                                         | 7.9(5)                                    | 8.7(5)                                           | 8.7(6)                                                                   | 15/15                                        |
| Var3                                                                        | 5.7(4)                                                                 | 8575(1e4)                                           | ~                                                   | $\infty$                                            | ~                                                   | ~                                             | ∞ 1e6                                           | 0/15                                      | Var3                                          | 4.9(5)                                                 | 27(51)                                         | 29(38)                                        | 8.3(8)                                         | 9.0(6)                                    | 8.5(11)                                          | 8.5(10)                                                                  | 15/15                                        |
| f5                                                                          | 10                                                                     | 10                                                  | 10                                                  | 10                                                  | 10                                                  | 10                                            | 10                                              | 15/15                                     | f17                                           | 5.0                                                    | 215                                            | 899                                           | 2861                                           | 3669                                      | 6351                                             | 7934                                                                     | 15/15                                        |
| DIDOD C                                                                     | 10                                                                     | 10                                                  | 10                                                  | 10                                                  | 10                                                  | 10                                            | 10(0)                                           | 45/13                                     | DIDOD 2                                       | 5.0                                                    | 213                                            | 0,77                                          | 2001                                           |                                           | 0.0(1)                                           | 0.4(4)                                                                   | 45/13                                        |
| BIPOP-C                                                                     | 9.0(3)                                                                 | 13(5)                                               | 13(4)                                               | 13(3)                                               | 13(5)                                               | 13(5)                                         | 13(3)                                           | 15/15                                     | BIPOP-C                                       | 7.0(5)                                                 | 2.0(1)                                         | 2.0(2)                                        | 2.0(2)                                         | 2.0(0.7)                                  | 2.0(1)                                           | 2.4(1)                                                                   | µ5/15                                        |
| CMAES-A                                                                     | 12(6)                                                                  | 15(4)                                               | 15(7)                                               | 15(5)                                               | 15(7)                                               | 15(7)                                         | 15(5)                                           | 15/15                                     | CMAES-A                                       | 3.4(4)                                                 | 1.9(2)                                         | 2.5(7)                                        | 2.1(2)                                         | 3.1(2)                                    | 2.7(2)                                           | 3.1(0.5)                                                                 | 15/15                                        |
| IPOP-CM                                                                     | 9.2(5)                                                                 | 12(5)                                               | 13(5)                                               | 13(4)                                               | 13(6)                                               | 13(3)                                         | 13(4)                                           | 15/15                                     | IPOP-CM                                       | 10(6)                                                  | 2.1(1)                                         | 1.9(2)                                        | 1.2(2)                                         | 1.5(2)                                    | 1.6(0.6)                                         | 2.0(0.8)                                                                 | 15/15                                        |
| Var1                                                                        | 9 1(5)                                                                 | 13(5)                                               | 13(5)                                               | 13(4)                                               | 13(4)                                               | 13(5)                                         | 13(6)                                           | 15/15                                     | Var1                                          | 47(3)                                                  | 2 1(1)                                         | 28(3)                                         | 2 0(2)                                         | 28(2)                                     | 2 9(1)                                           | 2 7(0.9)                                                                 | 15/15                                        |
| Vari                                                                        | 0.1(5)                                                                 | 13(5)                                               | 13(3)                                               | 13(4)                                               | 13(4)                                               | 13(3)                                         | 15(0)                                           | 15/15                                     | Val I                                         | 4.7(3)                                                 | 2.1(1)                                         | 2.0(5)                                        | 2.0(2)                                         | 2.0(2)                                    | 2.7(1)                                           | 2.7(0.7)                                                                 | 15/15                                        |
| varz                                                                        | 8.1(4)                                                                 | 11(5)                                               | 11(3)                                               | 11(4)                                               | 11(5)                                               | 11(2)                                         | 11(4)                                           | 15/15                                     | varz                                          | 3.9(4)                                                 | 4.3(0.6)                                       | 2.9(7)                                        | 3.0(3)                                         | 2.8(2)                                    | 3.0(0.6)                                         | 3.1(2)                                                                   | 15/15                                        |
| Var3                                                                        | 8.5(3)                                                                 | 12(5)                                               | 12(1)                                               | 12(5)                                               | 12(5)                                               | 12(2)                                         | 12(1)                                           | 15/15                                     | Var3                                          | 5.3(9)                                                 | 1.9(0.9)                                       | 4.0(6)                                        | 2.3(2)                                         | 2.4(2)                                    | 3.2(0.3)                                         | 3.0(0.2)                                                                 | 15/15                                        |
| f6                                                                          | 114                                                                    | 214                                                 | 281                                                 | 404                                                 | 580                                                 | 1038                                          | 1332                                            | 15/15                                     | f18                                           | 103                                                    | 378                                            | 3968                                          | 8451                                           | 9280                                      | 10905                                            | 12469                                                                    | 15/15                                        |
| BIPOP-C                                                                     | 47(2)                                                                  | 4 2(1)                                              | 4 4(0 9)                                            | 3 9(0 5)                                            | 3 3(0 4)                                            | 2.6(0.6)                                      | 2 5(0 4)                                        | 15/15                                     | BIPOP-C                                       | 2.0(1)                                                 | 6.9(6)                                         | 2.0(2)                                        | 2 0(0 5)                                       | 2.0(0.3)                                  | 2 3(1)                                           | 2 5(1)                                                                   | 15/15                                        |
| CMARSA                                                                      | 2.2(0.7)                                                               | 2.5(0.0)                                            | 4.1(0.0)                                            | 3.7(0.3)                                            | 2.2(0.4)                                            | 2.5(0.4)                                      | 2.5(0.1)                                        | 15/15                                     | CMARSA                                        | 1 5(1)                                                 | 1.(0,5)                                        | 1.2(2)                                        | 1.((1)                                         | 2.0(0.3)                                  | 2.3(1)                                           | 2.5(1)                                                                   | 15/15                                        |
| CIVIALS-A                                                                   | 3.3(0.7)                                                               | 5.5(0.9)                                            | 4.1(0.9)                                            | 3.7(0.7)                                            | 5.2(0.0)                                            | 2.3(0.4)                                      | 2.4(0.3)                                        | 15/15                                     | CMALS-A                                       | 1.3(1)                                                 | 1.0(0.3)                                       | 1.3(2)                                        | 1.0(1)                                         | 2.0(0.3)                                  | 2.3(0.3)                                         | 2.4(0.0)                                                                 | 15/15                                        |
| IPOP-CM                                                                     | 4.9(2)                                                                 | 4.2(1)                                              | 4.4(0.7)                                            | 4.0(0.8)                                            | 3.4(0.4)                                            | 2.5(0.2)                                      | 2.5(0.1)                                        | 15/15                                     | IPOP-CM                                       | 2.4(2)                                                 | 5.5(0.5)                                       | 1.7(2)                                        | 2.1(1.0)                                       | 2.1(0.6)                                  | 2.0(0.3)                                         | 2.0(0.6)                                                                 | 15/15                                        |
| Var1                                                                        | 3.3(2)                                                                 | 3.5(0.5)                                            | 4.0(1)                                              | 3.6(0.8)                                            | 3.1(0.4)                                            | 2.4(0.4)                                      | 2.4(0.3)                                        | 15/15                                     | Var1                                          | 1.7(0.6)                                               | 10(20)                                         | 2.6(2)                                        | 1.9(0.9)                                       | 2.0(0.3)                                  | 2.0(0.8)                                         | 2.0(0.7)                                                                 | 15/15                                        |
| Var2                                                                        | 3.7(1)                                                                 | 3.5(1)                                              | 4.1(0.7)                                            | 3.7(0.3)                                            | 3.3(0.5)                                            | 2.5(0.3)                                      | 2.5(0.1)                                        | 15/15                                     | Var2                                          | 1.6(1)                                                 | 2.2(1)                                         | 2.3(2)                                        | 1.8(1)                                         | 2.0(0.2)                                  | 2.2(0.2)                                         | 2.2(0.3)                                                                 | 15/15                                        |
| Var3                                                                        | 3.8(1)                                                                 | 3 5(0 7)                                            | 3 9(0.8)                                            | 3 6(0.8)                                            | 3 1(0.4)                                            | 2 4(0 2)                                      | 23(03)                                          | 15/15                                     | Var3                                          | 1.8(1)                                                 | 5 3(14)                                        | 1 4(2)                                        | 16(0.9)                                        | 19(0.6)                                   | 2 0(0 2)                                         | 2 1(0 1)                                                                 | 15/15                                        |
| var5                                                                        | 3.0(1)                                                                 | 5.5(0.7)                                            | 3.9(0.8)                                            | 5.0(0.8)                                            | 5.1(0.4)                                            | 2.4(0.2)                                      | 2.3(0.3)                                        | 15/15                                     | vai 5                                         | 1.0(1)                                                 | 5.5(14)                                        | 1.4(2)                                        | 1.0(0.9)                                       | 1.9(0.0)                                  | 2.0(0.2)                                         | 2.1(0.1)                                                                 | 15/15                                        |
| 17                                                                          | 24                                                                     | 324                                                 | 1171                                                | 1451                                                | 1572                                                | 1572                                          | 1597                                            | 15/15                                     | f19                                           | 1                                                      | 1                                              | 242                                           | 1.0e5                                          | 1.2e5                                     | 1.2e5                                            | 1.2e5                                                                    | 15/15                                        |
| BIPOP-C                                                                     | 10(16)                                                                 | 3.0(3)                                              | 2.0(2)                                              | 2.0(0.6)                                            | 2.0(2)                                              | 2.0(1)                                        | 2.0(1)                                          | 15/15                                     | BIPOP-C                                       | 41(16)                                                 | 5602(2008)                                     | 322(226)                                      | 2.0(2)                                         | 2.0(2)                                    | 2.0(2)                                           | 2.0(1)                                                                   | 15/15                                        |
| CMAES-A                                                                     | 6.4(3)                                                                 | 4.4(5)                                              | 3.5(2)                                              | 3.7(2)                                              | 3.9(1)                                              | 3.9(1)                                        | 4.1(0.4)                                        | 15/15                                     | CMAES-A                                       | 2.0(0)                                                 | 2.0(0)                                         | 180(115)                                      | 0.81(0.4)                                      | 0.80(0.3)                                 | 0.86(0.3)                                        | 0.90(0.3)                                                                | 15/15                                        |
| IPOP-CM                                                                     | 87(6)                                                                  | 3 5(3)                                              | 23(2)                                               | 2 2(1 0)                                            | 24(10)                                              | 2 4(1)                                        | 24(1)                                           | 15/15                                     | IPOP-CM                                       | 42(51)                                                 | 3439(2588)                                     | 250(217)                                      | 2 4(1)                                         | 2 2(1)                                    | 2 3(1)                                           | 2 3(1)                                                                   | 15/15                                        |
| West Vest                                                                   | ( 2(2)                                                                 | 2.5(2)                                              | 2.5(2)                                              | 2.2(1.0)                                            | 2.4(1.0)                                            | 2.4(1)                                        | 2.4(1)                                          | 15/15                                     | Went Vent                                     | 12(51)                                                 | 3437(2300)                                     | 104(27)                                       | 2.4(1)                                         | 0.66(0.2)                                 | 0.70(0.2)                                        | 0.75(0.2)                                                                | 15/15                                        |
| vari                                                                        | 6.2(3)                                                                 | 3.5(3)                                              | 2.7(2)                                              | 3.2(1)                                              | 3.2(1)                                              | 3.2(2)                                        | 3.4(1)                                          | 15/15                                     | vari                                          | 2.0(0)                                                 | 2.0(0)                                         | 194(77)                                       | 0.69(0.2)                                      | 0.66(0.2)                                 | 0.72(0.3)                                        | 0.75(0.2)                                                                | 15/15                                        |
| Var2                                                                        | 5.3(3)                                                                 | 3.3(4)                                              | 2.9(2)                                              | 3.3(2)                                              | 3.7(0.8)                                            | 3.7(0.1)                                      | 3.9(0.3)                                        | 15/15                                     | Var2                                          | 2.0(0)                                                 | 2.0(0)                                         | 178(102)                                      | 0.65(0.2)                                      | 0.69(0.2)                                 | 0.74(0.2)                                        | 0.78(0.2)                                                                | 15/15                                        |
| Var3                                                                        | 6.3(5)                                                                 | 4.6(5)                                              | 2.9(2)                                              | 3.8(1)                                              | 3.6(1)                                              | 3.6(1)                                        | 3.8(0.5)                                        | 15/15                                     | Var3                                          | 2.0(0)                                                 | 2.0(0)                                         | 234(140)                                      | 0.76(0.5)                                      | 0.75(0.2)                                 | 0.82(0.5)                                        | 0.85(0.2)                                                                | 15/15                                        |
| f8                                                                          | 73                                                                     | 273                                                 | 336                                                 | 372                                                 | 391                                                 | 410                                           | 422                                             | 15/15                                     | f20                                           | 16                                                     | 851                                            | 38111                                         | 51362                                          | 54470                                     | 54861                                            | 55313                                                                    | 14/15                                        |
| PIDOD C                                                                     | (5(2))                                                                 | 7.4(()                                              | 0.0(5)                                              | 0.4(5)                                              | 10(2)                                               | 10(8)                                         | 11(1)                                           | 15/15                                     | PIDOD C                                       | ( ((2))                                                | 16(15)                                         | 5 5(()                                        | 4.4(2)                                         | 4.2(4)                                    | 4 2(2)                                           | 4.4(2)                                                                   | 15/15                                        |
| BIFOF-C                                                                     | 0.5(2)                                                                 | 7.4(6)                                              | 9.0(5)                                              | 9.4(5)                                              | 10(2)                                               | 10(8)                                         | 11(1)                                           | 15/15                                     | BIFOF-C                                       | 0.0(5)                                                 | 10(15)                                         | 5.5(6)                                        | 4.4(2)                                         | 4.5(4)                                    | 4.5(2)                                           | 4.4(2)                                                                   | 15/15                                        |
| CMAES-A                                                                     | 5.2(0.8)                                                               | 8.9(2)                                              | 11(14)                                              | 11(15)                                              | 12(15)                                              | 12(15)                                        | 13(1.0)                                         | 15/15                                     | CMAES-A                                       | 3.0(3)                                                 | 33(7)                                          | 2.1(2)                                        | 1.8(0.5)                                       | 1.8(1)                                    | 1.9(2)                                           | 1.9(2)                                                                   | 15/15                                        |
| IPOP-CM                                                                     | 7.0(6)                                                                 | 10(2)                                               | 11(2)                                               | 11(7)                                               | 11(4)                                               | 12(8)                                         | 12(8)                                           | 15/15                                     | IPOP-CM                                       | 7.8(4)                                                 | 22(15)                                         | 2.9(2)                                        | 2.2(1)                                         | 2.2(1)                                    | 2.2(2)                                           | 2.3(3)                                                                   | 15/15                                        |
| Var1                                                                        | 6.2(2)                                                                 | 6.7(2)                                              | 8.3(2)                                              | 8.8(1)                                              | 9.1(1)                                              | 10(2)                                         | 10(2)                                           | 15/15                                     | Var1                                          | 3.3(2)                                                 | 26(12)                                         | 2.2(0.8)                                      | 1.9(0.9)                                       | 1.8(2)                                    | 1.9(1)                                           | 2.0(2)                                                                   | 15/15                                        |
| Var2                                                                        | 5 2(4)                                                                 | 10(4)                                               | 11(2)                                               | 11(12)                                              | 12(2)                                               | 12(2)                                         | 13(13)                                          | 15/15                                     | Var2                                          | 4 5(4)                                                 | 31(15)                                         | 2 0(2)                                        | 17(05)                                         | 1 7(1)                                    | 1.8(1)                                           | 1.9(1)                                                                   | 15/15                                        |
| Var2                                                                        | 5.2(1)                                                                 | 10(1)                                               | 12(20)                                              | 14(11)                                              | 14(20)                                              | 15(20)                                        | 15(10)                                          | 15/15                                     | Var2                                          | 2.5(2)                                                 | 10(10)                                         | 1.(1.0)                                       | 1.7(0.5)                                       | 1.4(0.7)                                  | 1.0(1)                                           | 1.5(1)                                                                   | 15/15                                        |
| vars                                                                        | 5.5(1)                                                                 | 12(12)                                              | 13(20)                                              | 14(11)                                              | 14(20)                                              | 13(20)                                        | 13(20)                                          | 15/15                                     | vai 3                                         | 5.5(2)                                                 | 19(10)                                         | 1.0(1.0)                                      | 1.3(0.8)                                       | 1.4(0.7)                                  | 1.4(0.8)                                         | 1.3(0.7)                                                                 | 13/13                                        |
| 19                                                                          | 35                                                                     | 127                                                 | 214                                                 | 263                                                 | 300                                                 | 335                                           | 369                                             | 15/15                                     | 121                                           | 41                                                     | 1157                                           | 1674                                          | 1692                                           | 1705                                      | 1729                                             | 1757                                                                     | µ4/15                                        |
| BIPOP-C                                                                     | 12(3)                                                                  | 17(15)                                              | 14(4)                                               | 13(3)                                               | 13(1)                                               | 13(3)                                         | 12(2)                                           | 15/15                                     | BIPOP-C                                       | 4.5(2)                                                 | 27(96)                                         | 48(118)                                       | 50(10)                                         | 51(157)                                   | 51(126)                                          | 51(130)                                                                  | 15/15                                        |
| CMAES-A                                                                     | 10(3)                                                                  | 13(4)                                               | 12(4)                                               | 12(4)                                               | 11(3)                                               | 11(3)                                         | 11(2)                                           | 15/15                                     | CMAES-A                                       | 3.6(3)                                                 | 22(2)                                          | 32(224)                                       | 32(29)                                         | 36(37)                                    | 36(39)                                           | 36(90)                                                                   | 14/15                                        |
| IPOP-CM                                                                     | 12(3)                                                                  | 21(20)                                              | 17(12)                                              | 16(11)                                              | 15(10)                                              | 15(9)                                         | 14(4)                                           | 15/15                                     | IPOP-CM                                       | 13(4)                                                  | 11(3)                                          | 44(35)                                        | 45(72)                                         | 46(49)                                    | 47(81)                                           | 47(67)                                                                   | 14/15                                        |
| Var1                                                                        | 9 2(2)                                                                 | 13(4)                                               | 19(2)                                               | 11(2)                                               | 11(2)                                               | 11(1)                                         | 11(1)                                           | 15/15                                     | Var1                                          | 3 6(2)                                                 | 16(20)                                         | 151(14)                                       | 210(300)                                       | 208(315)                                  | 206(172)                                         | 203(140)                                                                 | 12/15                                        |
| vali<br>V o                                                                 | 3.4(2)                                                                 | 13(4)                                               | 12(3)                                               | 11(2)                                               | 11(2)                                               | 11(1)                                         | 11(1)                                           | 15/15                                     | vali<br>V o                                   | 3.0(2)                                                 | 10(39)                                         | 151(14)                                       | 210(300)                                       | 200(313)                                  | 200(1/2)                                         | 203(149)                                                                 | 14/15                                        |
| var2                                                                        | 10(5)                                                                  | 20(9)                                               | 17(5)                                               | 16(5)                                               | 15(24)                                              | 15(4)                                         | 14(12)                                          | 15/15                                     | var2                                          | 5.1(2)                                                 | 46(39)                                         | 154(154)                                      | 210(365)                                       | 209(427)                                  | 207(422)                                         | 204(145)                                                                 | µ3/15                                        |
| Var3                                                                        | 10(4)                                                                  | 13(5)                                               | 12(4)                                               | 11(3)                                               | 11(3)                                               | 11(3)                                         | <b>11</b> (2)                                   | 15/15                                     | Var3                                          | 2.9(2)                                                 | 20(9)                                          | 161(476)                                      | 160(174)                                       | 159(2)                                    | 158(316)                                         | 156(286)                                                                 | 12/15                                        |
| f10                                                                         | 349                                                                    | 500                                                 | 574                                                 | 607                                                 | 626                                                 | 829                                           | 880                                             | 15/15                                     | f22                                           | 71                                                     | 386                                            | 938                                           | 980                                            | 1008                                      | 1040                                             | 1068                                                                     | 14/15                                        |
| BIPOP-C                                                                     | 7.0(2)                                                                 | 5 7(0.8)                                            | 5.4(0.5)                                            | 5 5(0.6)                                            | 5.6(0.6)                                            | 4 6(0 2)                                      | 47(03)                                          | 15/15                                     | BIPOP-C                                       | 14(16)                                                 | 40(9)                                          | 90(145)                                       | 87(200)                                        | 84(185)                                   | 82(131)                                          | <b>81</b> (118)                                                          | 15/15                                        |
| CMARCA                                                                      | 6.2(2)                                                                 | 5.7(0.0)                                            | 5 2(0.5)                                            | 5 2(0.0)                                            | 5 4(0.4)                                            | 4.5(0.2)                                      | 4.6(0.4)                                        | 15/15                                     | CMARC A                                       | 13(23)                                                 | 86(191)                                        | 372(495)                                      | 543(1071)                                      | 530(471)                                  | 515(514)                                         | 503(504)                                                                 | 0/15                                         |
| UNIALS-A                                                                    | 0.2(2)                                                                 | 5.4(1)                                              | 5.5(0.5)                                            | 5.5(0.9)                                            | 5.4(0.0)                                            | 4.3(0.4)                                      | 4.0(0.4)                                        | 13/13                                     | UNALS-A                                       | 13(23)                                                 | 00(101)                                        | 3/2(403)                                      | J4J(10/1)                                      | JJU(4/1)                                  | 100(1.1)                                         | 100(07-1)                                                                | 7/15                                         |
| IPOP-CM                                                                     | 7.3(2)                                                                 | 5.8(0.8)                                            | 5.4(1)                                              | 5.4(0.6)                                            | 5.5(0.4)                                            | 4.6(0.4)                                      | 4.6(0.3)                                        | 15/15                                     | IPOP-CM                                       | 24(59)                                                 | 95(250)                                        | 192(501)                                      | 198(434)                                       | 194(216)                                  | 190(144)                                         | 188(276)                                                                 | µ1/15                                        |
| Var1                                                                        | 6.6(2)                                                                 | 5.5(1)                                              | 5.2(1)                                              | 5.3(0.8)                                            | 5.4(0.2)                                            | <b>4.5</b> (0.3)                              | 4.6(0.3)                                        | 15/15                                     | Var1                                          | <b>10</b> (22)                                         | 52(79)                                         | 558(682)                                      | 884(962)                                       | 860(1422)                                 | 834(502)                                         | 814(1171)                                                                | 9/15                                         |
| Var2                                                                        | 6.6(3)                                                                 | 5.6(1)                                              | 5.3(0.9)                                            | 5.3(0.7)                                            | 5.4(0.7)                                            | 4.5(0.4)                                      | 4.6(0.3)                                        | 15/15                                     | Var2                                          | 10(10)                                                 | 45(78)                                         | 457(353)                                      | 744(623)                                       | 724(1098)                                 | 734(966)                                         | 716(1605)                                                                | 9/15                                         |
| Var3                                                                        | 6.0(2)                                                                 | 5.2(1)                                              | 5.3(0.4)                                            | 5.4(0.3)                                            | 5.4(0.4)                                            | 4.5(0.2)                                      | 4.6(0.2)                                        | 15/15                                     | Var3                                          | 10(21)                                                 | 13(24)                                         | 408(909)                                      | 585(535)                                       | 569(794)                                  | 553(1101)                                        | 540(1068)                                                                | 11/15                                        |
| f11                                                                         | 142                                                                    | 202                                                 | 762                                                 | 077                                                 | 1177                                                | 1467                                          | 1672                                            | 15/15                                     | f92                                           | 2.0                                                    | £19                                            | 14240                                         | 27800                                          | 21654                                     | 22020                                            | 24256                                                                    | 15/15                                        |
| 111                                                                         | 145                                                                    | 202                                                 | /03                                                 | 9//                                                 | 11//                                                | 1407                                          | 10/3                                            | 15/15                                     | 123                                           | 5.0                                                    | 516                                            | 14249                                         | 2/690                                          | 51054                                     | 33030                                            | 34230                                                                    | 13/15                                        |
| BIPOP-C                                                                     | 17(5)                                                                  | 14(3)                                               | 4.4(0.4)                                            | 3.7(0.4)                                            | 3.2(0.4)                                            | 2.8(0.2)                                      | 2.7(0.2)                                        | 15/15                                     | BIPOP-C                                       | 3.4(3)                                                 | 26(19)                                         | 7.4(6)                                        | 4.1(4)                                         | 3.7(3)                                    | <b>3.6</b> (4)                                   | 3.5(3)                                                                   | 15/15                                        |
| CMAES-A                                                                     | 16(3)                                                                  | 14(2)                                               | 4.2(0.6)                                            | 3.5(0.2)                                            | 3.0(0.4)                                            | 2.6(0.2)                                      | 2.5(0.3)                                        | 15/15                                     | CMAES-A                                       | 4.8(5)                                                 | 48(77)                                         | 494(625)                                      | $\infty$                                       | $\infty$                                  | $\infty$                                         | ∞ 5e5                                                                    | 0/15                                         |
| IPOP-CM                                                                     | 17(3)                                                                  | 15(2)                                               | 4.3(0.5)                                            | 3,6(0.3)                                            | 3,1(0.3)                                            | 2.7(0.2)                                      | 2.6(0.2)                                        | 15/15                                     | IPOP-CM                                       | 4.4(5)                                                 | 53(33)                                         | 35(23)                                        | 18(47)                                         | 16(30)                                    | 15(11)                                           | 15(2)                                                                    | 11/15                                        |
| Var1                                                                        | 17(6)                                                                  | 15(2)                                               | 1 2(0 2)                                            | 3 6 (0.4)                                           | 3 2(0 2)                                            | 2 8(0.2)                                      | 26(0.2)                                         | 15/15                                     | Var1                                          | 4.4(4)                                                 | 17(15)                                         | 457(570)                                      | ~                                              | ~                                         | ~                                                | ~ 1ef                                                                    | 0/15                                         |
| vari<br>V g                                                                 | 1/(0)                                                                  | 15(5)                                               | 4.5(0.3)                                            | 5.0(0.4)                                            | 5.2(0.3)                                            | 2.6(0.3)                                      | 2.0(0.5)                                        | 15/15                                     | vari<br>V o                                   | 4.4(4)                                                 | 17(15)                                         | 437(379)                                      | 500(077)                                       | 30                                        | 30                                               | JE0                                                                      | 0/15                                         |
|                                                                             | M// 7/ N                                                               | 16(2)                                               | 4.6(0.5)                                            | 3.8(0.4)                                            | 3.3(0.3)                                            | 2.9(0.3)                                      | 2.7(0.3)                                        | 15/15                                     | var2                                          | 5.6(6)                                                 | 37(35)                                         | 457(369)                                      | 502(987)                                       | ~                                         | ~                                                | ∞ 1e6                                                                    | 0/15                                         |
| varz                                                                        | 10(7)                                                                  | 14(2)                                               | 4.1(0.5)                                            | 3.5(0.4)                                            | 3.0(0.2)                                            | 2.6(0.2)                                      | 2.5(0.3)                                        | 15/15                                     | Var3                                          | 5.1(7)                                                 | 47(65)                                         | 457(351)                                      | $\infty$                                       | $\infty$                                  | ~                                                | ∞ 1e6                                                                    | 0/15                                         |
| Var2<br>Var3                                                                | 15(5)                                                                  | 14(3)                                               |                                                     |                                                     |                                                     |                                               | 1494                                            | 15/15                                     | f24                                           | 1622                                                   | 2 265                                          | 6 4 6 6                                       | 0 ( - (                                        | 0.6.6                                     | 4.0.7                                            |                                                                          | 1                                            |
| Var2<br>Var3<br>f12                                                         | 15(5)<br>108                                                           | 268                                                 | 371                                                 | 413                                                 | 461                                                 | 1303                                          | 14/4                                            | 1-0, -0                                   |                                               | 1000                                                   | 2.203                                          | 0.400                                         | 9.000                                          | 9.000                                     | 1.3e/                                            | 1.3e7                                                                    | 3/15                                         |
| Var2<br>Var3<br><u>f12</u><br>BIPOP-C                                       | 15(5)<br>108<br>21(18)                                                 | 268                                                 | 371                                                 | 413                                                 | 461                                                 | 6 7(4)                                        | 6.6(4)                                          | 15/15                                     | BIPOP-C                                       | 4 2(3)                                                 | 3 1(3)                                         | 1 3(1)                                        | 1 2(1)                                         | 1 2(1 0)                                  | 1.3e/                                            | 1.3e7                                                                    | 3/15                                         |
| Var2<br>Var3<br><u>f12</u><br>BIPOP-C                                       | 15(5)<br>108<br>21(18)<br>16(12)                                       | 268<br>15(12)                                       | 371<br>15(9)<br>12(9)                               | 413<br>15(11)<br>12(2)                              | 461<br>15(6)<br>12(/)                               | 6.7(4)                                        | 6.6(4)                                          | 15/15                                     | BIPOP-C                                       | 4.2(3)                                                 | 3.1(3)<br>26(22)                               | 1.3(1)                                        | 1.2(1)                                         | 1.2(1.0)                                  | 1.1(1)                                           | 1.3e7<br>1.1(0.6)                                                        | 3/15                                         |
| Var2<br>Var3<br><u>f12</u><br>BIPOP-C<br>CMAES-A                            | 15(7)<br>15(5)<br>108<br>21(18)<br>16(12)<br>16(22)                    | 268<br>15(12)<br>10(12)                             | 371<br>15(9)<br>12(8)                               | 413<br>15(11)<br>13(3)                              | 461<br>15(6)<br>13(6)                               | 6.7(4)<br>6.2(4)                              | 6.6(4)<br>6.3(3)                                | 15/15<br>15/15                            | BIPOP-C<br>CMAES-A                            | 4.2(3)<br>4.8(6)                                       | 3.1(3)<br>36(32)                               | 1.3(1)<br>~                                   | 1.2(1)<br>~                                    | 1.2(1.0)<br>~                             | 1.3e7<br>1.1(1)<br>∞                             | 1.3e7<br>1.1(0.6)<br>∞ 5e5                                               | 3/15<br>3/15<br>0/15                         |
| Var2<br>Var3<br><u>f12</u><br>BIPOP-C<br>CMAES-A<br>IPOP-CM                 | 15(7)<br>15(5)<br>108<br>21(18)<br>16(12)<br>19(25)                    | 268<br>15(12)<br>10(12)<br>12(10)                   | 371<br>15(9)<br>12(8)<br>12(0.7)                    | 413<br>15(11)<br><b>13</b> (3)<br>13(10)            | 461<br>15(6)<br>13(6)<br><b>13</b> (11)             | 6.7(4)<br>6.2(4)<br>5.5(4)                    | 6.6(4)<br>6.3(3)<br>5.5(5)                      | 15/15<br>15/15<br>15/15                   | BIPOP-C<br>CMAES-A<br>IPOP-CM                 | 4.2(3)<br>4.8(6)<br>5.7(9)                             | 3.1(3)<br>36(32)<br>19(24)                     | 0.400<br>1.3(1)<br>∞<br>1.5(1)                | 0.97(2)                                        | 0.97(2)                                   | 1.3e7<br>1.1(1)<br>∞<br>0.73(1)                  | 1.3e7<br>1.1(0.6)<br>∞ 5e5<br>0.73(0.6)                                  | 3/15<br>3/15<br>0/15<br>2/15                 |
| Var2<br>Var3<br><u>f12</u><br>BIPOP-C<br>CMAES-A<br>IPOP-CM<br>Var1         | 15(7)<br>15(5)<br>108<br>21(18)<br>16(12)<br>19(25)<br>12(8)           | 268<br>15(12)<br>10(12)<br>12(10)<br>11(7)          | 371<br>15(9)<br>12(8)<br>12(0.7)<br>12(7)           | 413<br>15(11)<br>13(3)<br>13(10)<br>13(6)           | 461<br>15(6)<br>13(6)<br>13(11)<br>14(12)           | 6.7(4)<br>6.2(4)<br>5.5(4)<br>6.3(4)          | 6.6(4)<br>6.3(3)<br>5.5(5)<br>8.3(20)           | 15/15<br>15/15<br>15/15<br>15/15<br>15/15 | BIPOP-C<br>CMAES-A<br>IPOP-CM<br>Var1         | 4.2(3)<br>4.8(6)<br>5.7(9)<br>4.5(6)                   | 3.1(3)<br>36(32)<br>19(24)<br>21(11)           | 1.3(1)<br>~<br>1.5(1)<br>~                    | 0.97(2)<br>∞                                   | 1.2(1.0)<br>∞<br>0.97(2)<br>∞             | 1.3e7<br>1.1(1)<br>∞<br>0.73(1)<br>∞             | 1.3e7<br>1.1(0.6)<br>$\infty 5e5$<br>0.73(0.6)<br>$\infty 1e6$           | 3/15<br>3/15<br>0/15<br>2/15<br>0/15         |
| Var2<br>Var3<br><u>f12</u><br>BIPOP-C<br>CMAES-A<br>IPOP-CM<br>Var1<br>Var2 | 16(7)<br>15(5)<br>108<br>21(18)<br>16(12)<br>19(25)<br>12(8)<br>13(14) | 268<br>15(12)<br>10(12)<br>12(10)<br>11(7)<br>11(6) | 371<br>15(9)<br>12(8)<br>12(0.7)<br>12(7)<br>13(13) | 413<br>15(11)<br>13(3)<br>13(10)<br>13(6)<br>14(10) | 461<br>15(6)<br>13(6)<br>13(11)<br>14(12)<br>15(13) | 6.7(4)<br>6.2(4)<br>5.5(4)<br>6.3(4)<br>10(4) | 6.6(4)<br>6.3(3)<br>5.5(5)<br>8.3(20)<br>10(25) | 15/15<br>15/15<br>15/15<br>15/15<br>15/15 | BIPOP-C<br>CMAES-A<br>IPOP-CM<br>Var1<br>Var2 | 4.2(3)<br>4.8(6)<br>5.7(9)<br>4.5(6)<br><b>3.9</b> (8) | 3.1(3)<br>36(32)<br>19(24)<br>21(11)<br>69(46) | 0.4c0<br>1.3(1)<br>0<br>1.5(1)<br>0<br>2.3(2) | 9.666<br>1.2(1)<br>∞<br>0.97(2)<br>∞<br>1.6(1) | 1.2(1.0)<br>∞<br>0.97(2)<br>∞<br>1.6(0.8) | 1.3e7<br>1.1(1)<br>∞<br>0.73(1)<br>∞<br>1.2(0.7) | 1.3e7<br>1.1(0.6)<br>$\infty 5e5$<br>0.73(0.6)<br>$\infty 1e6$<br>1.2(1) | 3/15<br>3/15<br>0/15<br>2/15<br>0/15<br>1/15 |

Table 3: Average runtime (aRT in number of function evaluations) divided by the respective best aRT measured during BBOB-2009 in dimension 5. The aRT and in braces, as dispersion measure, the half difference between 10 and 90%-tile of bootstrapped run lengths appear for each algorithm and target, the corresponding reference aRT in the first row. The different target  $\Delta f$ values are shown in the top row. #succ is the number of trials that reached the (final) target  $f_{opt} + 10^{-8}$ . The median number of conducted function evaluations is additionally given in *italics*, if the target in the last column was never reached. Entries, succeeded by a star, are statistically significantly better (according to the rank-sum test) when compared to all other algorithms of the table, with p = 0.05 or  $p = 10^{-k}$  when the number k following the star is larger than 1, with Bonferroni correction by the number of functions (24). A  $\downarrow$  indicates the same tested against the best algorithm from BBOB 2009. Best results are printed in bold. Data produced with COCO v2.21

### GECCO '18 Companion, July 15-19, 2018, Kyoto, Japan

### Duc Manh Nguyen

| A.C.            |                |                  |                                         |               |                  |                    |                    | L.    | AF.            | 1.01     | 1.00       | 10.1                                    | 10.2                                    | 10.2      | 10.5                                    | 10.7           | l#ana  |
|-----------------|----------------|------------------|-----------------------------------------|---------------|------------------|--------------------|--------------------|-------|----------------|----------|------------|-----------------------------------------|-----------------------------------------|-----------|-----------------------------------------|----------------|--------|
| _∆ <i>f</i> opt | 1e1            | 1e0              | 1e-1                                    | 1e-2          | 1e-3             | 1e-5               | 1e-7               | #succ | Jopt           | lei      | 160        | 16-1                                    | 1e-2                                    | 16-2      | 16-5                                    | 10-7           | #suce  |
| f1              | 43             | 43               | 43                                      | 43            | 43               | 43                 | 43                 | 15/15 | f13            | 652      | 2021       | 2751                                    | 3507                                    | 18749     | 24455                                   | 30201          | 15/15  |
| BIPOP-C         | 16(4)          | 29(6)            | 40(5)                                   | 53(5)         | 65(4)            | 91(6)              | 115(7)             | 15/15 | BIPOP-C        | 8.5(7)   | 5.5(4)     | 10(11)                                  | 12(9)                                   | 3.0(1)    | 4.5(3)                                  | 6.0(3)         | 15/15  |
| CMAES-A         | 13(2)          | 25(2)            | 35(4)                                   | 49(4)         | 61(5)            | 86(7)              | 111(8)             | 15/15 | CMAES-A        | 17(27)   | 16(15)     | 18(12)                                  | 18(10)                                  | 5.5(3)    | 6.8(3)                                  | 6.6(4)         | 15/15  |
| IPOP-CM         | 16(3)          | 28(3)            | 41(4)                                   | 53(4)         | 65(3)            | 91(4)              | 116(3)             | 15/15 | IPOP-CM        | 13(10)   | 10(10)     | 12(9)                                   | 10(7)                                   | 2.7(2)    | 3.4(2)                                  | 4.5(2)         | 15/15  |
| Var1            | 12(1)          | 24(2)            | 37(2)                                   | 49(3)         | 62(4)            | 86(5)              | 112(7)             | 15/15 | Var1           | 7.0(1)   | 13(9)      | 18(10)                                  | 20(12)                                  | 5.8(2)    | 6.7(3)                                  | 6.0(0.7)       | 15/15  |
| Var2            | 13(1)          | 26(3)            | 37(3)                                   | 49(2)         | 63(4)            | 88(3)              | 112(4)             | 15/15 | Var2           | 7.8(11)  | 21(16)     | 22(11)                                  | 22(4)                                   | 5.5(3)    | 5.4(2)                                  | 5.4(0.3)       | 15/15  |
| Var3            | 13(2)          | 25(2)            | 37(1)                                   | 50(4)         | 62(5)            | 87(5)              | 112(9)             | 15/15 | Var3           | 6.3(6)   | 10(15)     | 16(10)                                  | 18(13)                                  | 4.7(3)    | 5.6(2)                                  | 5.5(0.6)       | 15/15  |
| f2              | 385            | 386              | 387                                     | 388           | 390              | 391                | 303                | 15/15 | f14            | 75       | 239        | 304                                     | 451                                     | 932       | 1648                                    | 15661          | 15/15  |
| RIDOR C         | 71(10)         | 81(0)            | 97(9)                                   | 00(6)         | 02(4)            | 07(4)              | 00(4)              | 15/15 | BIPOP-C        | 7.8(1)   | 5.8(0.8)   | 7 4(1)                                  | 8.6(1)                                  | 8 3(0.6)  | 12(0.7)                                 | 2 3(0 1)       | 15/15  |
| CMARS A         | (10)           | 01(9)<br>79(7)   | 87(8)                                   | 90(0)         | 93(4)<br>01(5)   | 57(4)<br>05(5)     | 27(4)<br>07(5)     | 15/15 | CMAES-A        | 5 3(2)   | 5.0(1.0)   | 63(1)                                   | 8.0(0.4)                                | 8 0(1)    | 12(0)                                   | 2.3(0.2)       | 15/15  |
| UNAES-A         | <b>DD</b> (0)  | 78(7)            | 86(9)                                   | 90(5)         | 91(5)            | 95(5)              | 97(5)              | 15/15 | IPOP CM        | 7 4(2)   | 5.0(1.0)   | 7.1(2)                                  | 8 5(2)                                  | 7.0(1.0)  | 12(2)                                   | 2.3(0.1)       | 15/15  |
| IFOF-CM         | 70(5)          | 81(8)            | 80(0)                                   | <b>69</b> (6) | 91(5)            | 95(2)              | 97(5)              | 15/15 | Vor1           | 5 4(2)   | 4.9(0.5)   | 6 5(0 7)                                | 7.7(0.7)                                | 7.5(1.0)  | 12(1)                                   | 2.3(0.1)       | 15/15  |
| Vari            | 67(8)          | 80(7)            | 85(7)                                   | 89(4)         | 90(4)            | 93(5)              | 95(3)              | 15/15 | Varia<br>Varia | 5.4(5)   | 4.0(0.3)   | 0.5(0.7)                                | 7.7(0.7)                                | 7.0(1)    | 12(0.7)                                 | 2.3(0.2)       | 15/15  |
| Var2            | 68(6)          | 81(5)            | 86(5)                                   | 90(4)         | 92(2)            | 95(5)              | 97(3)              | 15/15 | Var2           | 5.0(1.0) | 4.9(0.7)   | 6.5(1)                                  | 8.0(2)                                  | 7.9(1)    | 12(1)                                   | 2.4(0.1)       | 15/15  |
| Var3            | 67(7)          | 79(10)           | 87(5)                                   | 90(6)         | 92(2)            | 95(2)              | 98(2)              | 15/15 | var3           | 6.4(2)   | 5.0(0.6)   | 6.8(0.5)                                | 7.8(0.9)                                | 7.9(0.6)  | 12(1)                                   | 2.3(0.2)       | 15/15  |
| f3              | 5066           | 7626             | 7635                                    | 7637          | 7643             | 7646               | 7651               | 15/15 | f15            | 30378    | 1.5e5      | 3.1e5                                   | 3.2e5                                   | 3.2e5     | 4.5e5                                   | 4.6e5          | 15/15  |
| BIPOP-C         | <b>24</b> (10) | $\infty$         | $\infty$                                | $\infty$      | $\infty$         | $\infty$           | ∞ 6e6              | 0/15  | BIPOP-C        | 2.0(0.6) | 4.1(1)     | 2.8(1.0)                                | 2.8(1)                                  | 2.8(0.8)  | 2.0(0.7)                                | 2.0(0.7)       | 15/15  |
| CMAES-A         | 48(21)         | $\infty$         | $\infty$                                | $\infty$      | $\infty$         | $\infty$           | ∞ 2e6              | 0/15  | CMAES-A        | 5.5(0.8) | 1.2(0.1)   | 0.59(0.1)                               | 0.59(0.1)                               | 0.59(0.1) | 0.43(0.1)                               | 0.43(0.1)      | 15/15  |
| IPOP-CM         | 25(16)         | $\infty$         | $\infty$                                | $\infty$      | $\infty$         | ~                  | ∞ 3e6              | 0/15  | IPOP-CM        | 2.1(1)   | 2.1(1)     | 1.4(0.3)                                | 1.4(0.5)                                | 1.4(0.7)  | 1.0(0.3)                                | 1.1(0.5)       | 15/15  |
| Var1            | 56(12)         | $\infty$         | $\infty$                                | $\infty$      | $\infty$         | $\infty$           | ∞ 4e6              | 0/15  | Var1           | 5.4(0.5) | 1.2(0.1)   | 0.60(0.1)                               | 0.61(0.1)                               | 0.61(0.1) | 0.45(0.1)                               | 0.45(0.1)      | 15/15  |
| Var2            | 60(21)         | ~                | ~                                       | ~             | ~                | ~                  | ∞ 4e6              | 0/15  | Var2           | 5.5(0.4) | 1.2(0.2)   | 0.61(0.1)                               | 0.62(0.1)                               | 0.62(0.1) | 0.46(0.0)                               | 0.46(0.0)      | 15/15  |
| Var3            | 58(43)         | ~                | ~                                       | ~             | ~                | 00                 | 00 4e6             | 0/15  | Var3           | 5.1(0.7) | 1.1(0.2)   | 0.55(0.1)                               | 0.56(0.1)                               | 0.56(0.1) | 0.41(0.1)                               | 0.42(0.1)      | 15/15  |
| f4              | 4722           | 7628             | 7666                                    | 7686          | 7700             | 7758               | 1.465              | 0/15  | f16            | 1384     | 27265      | 77015                                   | 1.4e5                                   | 1.9e5     | 2.0e5                                   | 2.2e5          | 15/15  |
| DIDOD C         | 4/22           | 7028             | 7000                                    | 7080          | 7700             | //38               | 1.403              | 9/13  | BIPOP-C        | 34(0.9)  | 2.0(1)     | 2 3(1)                                  | 2 0(2)                                  | 2.0(1)    | 2.0(2)                                  | 2.0(1)         | 15/15  |
| BIPOP-C         | ~              | ~                | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 00            | ~~               | ~~                 | ∞ 666              | 0/15  | CMATE A        | 3.4(0.9) | 2.0(1)     | 2.3(1)                                  | 2.0(2)                                  | 2.0(1)    | 2.0(2)                                  | 2.0(1)         | 1 4/15 |
| CMAES-A         | ∞              | $\infty$         | $\infty$                                | $\infty$      | $\infty$         | $\infty$           | ∞ 2e6              | 0/15  | UNAES-A        | 43(151)  | 57(10)     | 10(10)                                  | 9.0(7)                                  | 0.7(4)    | 7.1(2)                                  | 0.4(2)         | 14/15  |
| IPOP-CM         | ~              | $\infty$         | $\infty$                                | ~             | $\infty$         | ~                  | ∞ 3e6              | 0/15  | IPOP-CM        | 3.4(1)   | 1.6(1)     | 1.8(1)                                  | 1.7(0.7)                                | 1.7(0.5)  | 2.1(0.7)                                | 2.1(1.0)       | 15/15  |
| Var1            | $\infty$       | $\infty$         | $\infty$                                | $\infty$      | $\infty$         | $\infty$           | $\infty$ 4e6       | 0/15  | Var1           | 65(233)  | 39(35)     | 15(8)                                   | 8.3(5)                                  | 6.4(3)    | 6.1(3)                                  | 5.5(4)         | 15/15  |
| Var2            | $\infty$       | $\infty$         | $\infty$                                | $\infty$      | $\infty$         | $\infty$           | ∞ 4e6              | 0/15  | Var2           | 3.6(1)   | 47(31)     | 17(10)                                  | 10(7)                                   | 7.2(5)    | 7.6(5)                                  | 6.9(4)         | 15/15  |
| Var3            | $\infty$       | $\infty$         | $\infty$                                | $\infty$      | $\infty$         | $\infty$           | ∞ 4e6              | 0/15  | Var3           | 16(0.9)  | 37(23)     | 16(10)                                  | 9.1(4)                                  | 7.5(4)    | 7.2(2)                                  | 6.5(3)         | 15/15  |
| f5              | 41             | 41               | 41                                      | 41            | 41               | 41                 | 41                 | 15/15 | f17            | 63       | 1030       | 4005                                    | 12242                                   | 30677     | 56288                                   | 80472          | 15/15  |
| BIPOP-C         | 10(1)          | 12(3)            | 12(3)                                   | 12(2)         | 13(2)            | 13(2)              | 13(2)              | 15/15 | BIPOP-C        | 4.3(3)   | 2.0(0.5)   | 2.0(2)                                  | 2.0(2)                                  | 2.5(3)    | 2.7(0.9)                                | 2.7(2)         | 15/15  |
| CMAES-A         | 10(1)          | 13(2)            | 13(2)                                   | 13(1)         | 13(3)            | 13(2)              | 13(1)              | 15/15 | CMAES-A        | 2.7(2)   | 1.7(0.2)   | 2.5(12)                                 | 5.1(4)                                  | 3.3(0.5)  | 2.4(0.4)                                | 1.9(0.3)       | 15/15  |
| IDOD CM         | 11(2)          | 13(2)            | 12(2)                                   | 12(2)         | 12(2)            | 12(2)              | 12(4)              | 15/15 | IPOP-CM        | 4 3(3)   | 1.9(0.5)   | 2 4(4)                                  | 2 0(0 4)                                | 15(10)    | 2.0(0.7)                                | 2.0(1)         | 15/15  |
| IFOF-CIVI       | 11(2)          | 13(3)            | 13(3)                                   | 13(2)         | 13(3)            | 13(3)              | 13(4)              | 15/15 | Vor1           | 1.0(1)   | 2.0(1.0)   | 6 2(10)                                 | 6.0(4)                                  | 2.4(0.2)  | 2.5(0.2)                                | 2.0(0.2)       | 15/15  |
| Vari            | 10(1.0)        | 11(2)            | 12(2)                                   | 12(2)         | 12(2)            | 12(3)              | 12(2)              | 15/15 | Vall           | 1.5(1)   | 2.0(1.0)   | 0.3(10)                                 | 0.0(4)                                  | 3.4(0.3)  | 2.3(0.2)                                | 2.0(0.3)       | 15/15  |
| Var2            | 10(2)          | 11(2)            | 12(2)                                   | 12(2)         | 12(3)            | 12(3)              | 12(3)              | 15/15 | var2           | 2.5(1)   | 1.8(0.9)   | 6.3(6)                                  | 7.7(1.0)                                | 3.8(0.3)  | 2.8(0.5)                                | 2.4(0.2)       | 15/15  |
| Var3            | 11(2)          | 12(2)            | 13(2)                                   | 13(1)         | 13(2)            | 13(2)              | 13(2)              | 15/15 | Var3           | 2.8(4)   | 1.9(0.3)   | 4.1(0.4)                                | 6.3(4)                                  | 3.3(2)    | 2.6(0.3)                                | 2.1(0.4)       | 15/15  |
| f6              | 1296           | 2343             | 3413                                    | 4255          | 5220             | 6728               | 8409               | 15/15 | f18            | 621      | 3972       | 19561                                   | 28555                                   | 67569     | 1.3e5                                   | 1.5e5          | 15/15  |
| BIPOP-C         | 3.1(0.5)       | 2.5(0.2)         | 2.3(0.2)                                | 2.3(0.3)      | 2.2(0.3)         | 2.3(0.2)           | 2.3(0.3)           | 15/15 | BIPOP-C        | 2.1(0.6) | 4.8(9)     | 2.5(2)                                  | 3.2(3)                                  | 2.2(0.7)  | 3.3(1)                                  | 3.2(0.8)       | 15/15  |
| CMAES-A         | 3.2(0.5)       | 2.6(0.4)         | 2.2(0.3)                                | 2.2(0.3)      | 2.2(0.3)         | 2.3(0.2)           | 2.3(0.3)           | 15/15 | CMAES-A        | 1.8(0.4) | 6.0(10)    | 3.6(0.7)                                | 3.6(0.4)                                | 1.7(0.3)  | 1.1(0.2)                                | 1.2(0.4)       | 15/15  |
| IPOP-CM         | 3 3(0 5)       | 2.6(0.2)         | 2 4(0 2)                                | 2 4(0 2)      | 2 3(0 3)         | 2 5(0 2)           | 2 4(0 2)           | 15/15 | IPOP-CM        | 2.2(0.5) | 3.6(4)     | 2.2(2)                                  | 3.1(1)                                  | 1.9(0.3)  | 2.1(0.7)                                | 2.1(0.8)       | 15/15  |
| Vor1            | 2 0(0.5)       | 2.0(0.2)         | 2.2(0.2)                                | 2.2(0.4)      | 2.2(0.4)         | 2.2(0.2)           | 2.2(0.2)           | 15/15 | Var1           | 17(04)   | 2 1(0 1)   | 43(03)                                  | 3 7(0 4)                                | 1.8(0.3)  | 1 2(0 2)                                | 13(01)         | 15/15  |
| Varia<br>Varia  | 2.9(0.3)       | 2.4(0.5)         | 2.2(0.3)                                | 2.3(0.4)      | 2.3(0.4)         | 2.3(0.3)           | 2.3(0.3)           | 15/15 | Var2           | 1.5(0.3) | 3.1(4)     | 4 2(0.5)                                | 3.7(0.2)                                | 1.8(0.2)  | 1.2(0.1)                                | 1.3(0.1)       | 15/15  |
| var2            | 5.2(0.4)       | 2.6(0.5)         | 2.4(0.5)                                | 2.4(0.4)      | 2.4(0.5)         | 2.4(0.5)           | 2.4(0.2)           | 15/15 | Var2           | 1.5(0.3) | 3.1(4)     | 4.4(1)                                  | 3.7(0.2)                                | 1.0(0.2)  | 1.3(0.1)                                | 1.3(0.1)       | 15/15  |
| Var3            | 3.1(0.4)       | 2.5(0.3)         | 2.3(0.3)                                | 2.3(0.2)      | 2.2(0.4)         | 2.3(0.4)           | 2.3(0.3)           | 15/15 | vars           | 1.7(0.2) | 2.2(9)     | 4.4(1)                                  | 5.7(0.5)                                | 1.8(0.2)  | 1.2(0.1)                                | 1.5(0.1)       | 15/15  |
| f7              | 1351           | 4274             | 9503                                    | 16523         | 16524            | 16524              | 16969              | 15/15 | f19            | 1        | 1          | 3.4e5                                   | 4.7e6                                   | 6.2e6     | 6.7e6                                   | 6.7e6          | 15/15  |
| BIPOP-C         | 2.0(1.0)       | 10(5)            | 7.0(2)                                  | 4.4(0.6)      | 4.4(0.5)         | 4.4(0.4)           | 4.3(0.5)           | 15/15 | BIPOP-C        | 338(128) | 4.8e4(1e4) | 2.4(2)                                  | 2.0(0.6)                                | 2.0(0.6)  | 2.0(0.6)                                | 2.0(0.3)       | 15/15  |
| CMAES-A         | 2.7(5)         | 10(0.3)          | 4.9(0.3)                                | 3.1(0.3)      | 3.1(0.3)         | 3.1(0.3)           | 3.1(0.2)           | 15/15 | CMAES-A        | 2.0(0)   | 2.0(0)     | 1.8(0.4)                                | 0.51(0.3)                               | 0.63(0.4) | 1.00(0.6)                               | 0.99(0.9)      | 4/15   |
| IPOP-CM         | 3.8(3)         | 10(2)            | 5.4(3)                                  | 3.4(1)        | 3.4(1)           | 3.4(1)             | 3.3(1)             | 15/15 | IPOP-CM        | 322(66)  | 5.5e4(4e4) | 1.4(1.0)                                | 0.90(0.3)                               | 0.76(0.2) | 0.82(0.2)                               | 0.83(0.2)      | 15/15  |
| Var1            | 1.5(0.2)       | 9.1(0.9)         | 4.6(0.5)                                | 3.0(0.5)      | 3.0(0.5)         | 3.0(0.7)           | 3.0(0.5)           | 15/15 | Var1           | 2.0(0)   | 2.0(0)     | 2.0(0.5)                                | 0.77(0.8)                               | 0.78(2)   | 0.90(0.6)                               | 0.90(1.0)      | 8/15   |
| Var2            | 4.3(5)         | 9.2(0.9)         | 4.9(0.6)                                | 3.2(0.4)      | 3.2(0.5)         | 3.2(0.6)           | 3.2(0.5)           | 15/15 | Var2           | 2.0(0)   | 2.0(0)     | 2.1(0.6)                                | 0.78(0.5)                               | 0.87(0.8) | 1.4(2)                                  | 1.4(1)         | 6/15   |
| Var3            | 5 4(9)         | 8 9(1)           | 4 5(0.8)                                | 2 9(0.5)      | 2 9(0.2)         | 2 9(0.2)           | 2 9(0.4)           | 15/15 | Var3           | 2.0(0)   | 2.0(0)     | 1.7(0.4)                                | 0.94(1)                                 | 0.86(1)   | 1.2(0.9)                                | 1.2(2)         | 7/15   |
| fo              | 2020           | 2971             | 4040                                    | 213(0.5)      | 4210             | 4271               | 2.5(0.4)           | 15/15 | f20            | 82       | 46150      | 3.1e6                                   | 5.5e6                                   | 5 5e6     | 5.6e6                                   | 5.6e6          | 14/15  |
| 10              | 2039           | 36/1             | 4040                                    | 4140          | 4217             | 43/1               | 4404               | 13/13 | PIDOD C        | 8 5 (2)  | 10150      | 2.0(0.()                                | 1.0(1)                                  | 1 0(0 ()  | 1.0(0,()                                | 1.0(1)         | 14/15  |
| BIPOP-C         | 8.0(3)         | 8.1(2)           | 8.7(3)                                  | 9.0(1)        | 9.1(1)           | 9.1(3)             | 9.2(1)             | 15/15 | BIFOF-C        | 0.3(2)   | 10(0)      | 2.0(0.0)                                | 1.5(1)                                  | 1.5(0.0)  | 1.9(0.0)                                | 1.5(1)         | 14/13  |
| CMAES-A         | 7.1(0.9)       | 13(1)            | 14(0.5)                                 | 14(44)        | 14(0.6)          | 14(0.9)            | 15(22)             | 15/15 | CMAES-A        | 7.4(2)   | 25(7)      | 0.69(0.4)                               | 0.68(0.3)                               | 0.68(0.6) | 0.68(0.2)                               | 0.68(0.5)      | 9/15   |
| IPOP-CM         | 7.5(2)         | 7.8(2)           | 8.5(2)                                  | 8.7(0.6)      | 8.8(1)           | 8.9(0.9)           | 9.0(1)             | 15/15 | IPOP-CM        | 9.1(3)   | 13(4)      | 1.3(0.4)                                | 1.1(0.2)                                | 1.1(0.4)  | 1.2(0.4)                                | 1.2(0.4)       | 15/15  |
| Var1            | 7.8(3)         | 13(1)            | 14(2)                                   | 14(1)         | 14(2)            | 14(1)              | 15(1)              | 15/15 | Var1           | 7.1(0.9) | 22(9)      | 0.90(0.5)                               | 0.88(0.5)                               | 0.88(0.7) | 0.87(0.9)                               | 0.87(0.5)      | 12/15  |
| Var2            | 7.8(3)         | 8.2(2)           | 8.8(1)                                  | 9.0(1)        | 9.1(1)           | 9.2(2)             | 9.3(1)             | 15/15 | Var2           | 7.7(0.9) | 22(11)     | 0.89(0.3)                               | 0.96(0.6)                               | 0.96(0.6) | 0.95(0.5)                               | 0.95(0.9)      | 12/15  |
| Var3            | 7.1(1)         | 13(20)           | 14(20)                                  | 14(20)        | 14(20)           | 14(1)              | 14(20)             | 15/15 | Var3           | 7.5(1)   | 24(7)      | 0.87(0.3)                               | 0.85(0.5)                               | 0.85(0.8) | 0.85(0.6)                               | 0.84(0.5)      | 11/15  |
| f9              | 1716           | 3102             | 3277                                    | 3379          | 3455             | 3594               | 3727               | 15/15 | f21            | 561      | 6541       | 14103                                   | 14318                                   | 14643     | 15567                                   | 17589          | 15/15  |
| BIPOP-C         | 9.4(3)         | 11(6)            | 12(1)                                   | 12(2)         | 12(8)            | 12(5)              | 12(5)              | 15/15 | BIPOP-C        | 6.3(0.7) | 84(168)    | 67(100)                                 | 67(136)                                 | 65(79)    | 62(182)                                 | 55(82)         | 13/15  |
| CMAES-A         | 8.0(2)         | 9.3(1)           | 10(2)                                   | 10(2)         | 10(1)            | 10(1)              | 10(1.0)            | 15/15 | CMAES-A        | 8.0(26)  | 255(331)   | 151(218)                                | 149(76)                                 | 146(73)   | 138(161)                                | 122(289)       | 8/15   |
| IPOP-CM         | 9.2(1)         | 11(0.9)          | 12(0.7)                                 | 12(5)         | 12(0.8)          | 12(0.6)            | 12(0.6)            | 15/15 | IPOP-CM        | 7.5(18)  | 145(123)   | 114(235)                                | 113(146)                                | 110(179)  | 104(134)                                | 92(137)        | 7/15   |
| Var1            | 10(3)          | 27(23)           | 28(44)                                  | 29(44)        | 28(44)           | 28(22)             | 28(1)              | 15/15 | Var1           | 8.5(13)  | 664(1079)  | 392(748)                                | 386(666)                                | 378(747)  | 355(484)                                | 315(523)       | 7/15   |
| Vor2            | 10(2)          | 28(1)            | 20(24)                                  | 20(2)         | 20(44)           | 20(22)             | 20(1)              | 15/15 | Var2           | 8 0(14)  | 748(1377)  | 594(780)                                | 586(1/100)                              | 573(618)  | 539(784)                                | 477(978)       | 5/15   |
| Vdf2<br>Var2    | 10(3)          | 20(1)            | 27(24)<br>10(0.0)                       | JU(2)         | JU(49)           | JU(44)             | 47(4/)<br>11(0.()  | 15/15 | Var3           | 54(24)   | 717(1204)  | 440(754)                                | 133(360)                                | 121(254)  | 300(527)                                | 353(712)       | 7/15   |
| var5            | 0.3(1)         | 10(0.4)          | 10(0.6)                                 | 11(0.7)       | 11(0.7)          | 11(0.6)            | 11(0.6)            | 15/15 | foo            | 34(24)   | /1/(1200)  | 22.401                                  | 24142                                   | 24040     | 3/7(327)                                | 12-5           | 12/15  |
| f10             | 7413           | 8661             | 10/35                                   | 13641         | 14920            | 17073              | 17476              | 15/15 | 122            | 407      | 5560       | 25491                                   | 24105                                   | 24948     | 20847                                   | 1.505          | 12/15  |
| BIPOP-C         | 3.8(0.4)       | 3.7(0.3)         | 3.1(0.3)                                | 2.5(0.2)      | 2.4(0.1)         | 2.2(0.1)           | 2.2(0.1)           | 15/15 | BIPOP-C        | 14(28)   | 26(31)     | 225(101)                                | 219(338)                                | 212(281)  | 197(231)                                | 39(76)         | 5/15   |
| CMAES-A         | 3.5(0.5)       | 3.6(0.1)         | 3.1(0.2)                                | 2.6(0.1)      | 2.4(0.1)         | 2.2(0.1)           | 2.2(0.1)           | 15/15 | CMAES-A        | 164(890) | 2353(1714) | ~                                       | ~                                       | ~         | ~                                       | ∞ 2e6          | 0/15   |
| IPOP-CM         | 3.5(0.5)       | <b>3.5</b> (0.4) | 3.1(0.2)                                | 2.5(0.1)      | <b>2.4</b> (0.1) | 2.2(0.1)           | 2.2(0.1)           | 15/15 | IPOP-CM        | 460(36)  | 312(402)   | $\infty$                                | $\infty$                                | $\infty$  | $\infty$                                | ∞ 1e6          | 0/15   |
| Var1            | 3.7(0.4)       | 3.6(0.4)         | 3.1(0.1)                                | 2.5(0.1)      | 2.4(0.0)         | 2.2(0.1)           | 2.2(0.1)           | 15/15 | Var1           | 28(31)   | 1437(1796) | $\infty$                                | $\infty$                                | ~         | $\infty$                                | ∞ 4e6          | 0/15   |
| Var2            | 3.6(0.3)       | 3.7(0.2)         | 3.2(0.3)                                | 2.6(0.1)      | 2.4(0.0)         | 2.2(0.1)           | 2.2(0.1)           | 15/15 | Var2           | 128(415) | 1437(1613) | $\infty$                                | $\infty$                                | $\infty$  | $\infty$                                | ∞ 4e6          | 0/15   |
| Var3            | 3.7(0.4)       | 3.6(0.3)         | 3.2(0.3)                                | 2.6(0.1)      | 2.4(0.1)         | 2.2(0.1)           | 2.2(0.1)           | 15/15 | Var3           | 23(33)   | 1080(2869) | $\infty$                                | $\infty$                                | $\infty$  | $\infty$                                | ∞ 4e6          | 0/15   |
| f11             | 1002           | 2228             | 6278                                    | 8586          | 9762             | 12285              | 14831              | 15/15 | f23            | 3.0      | 1614       | 67457                                   | 3.7e5                                   | 4.9e5     | 8.1e5                                   | 8.4e5          | 15/15  |
| BIPOP-C         | 21(1)          | 10(0.3)          | 3 9(0 2)                                | 3.0(0.1)      | 2.8(0.1)         | 2 4(0 1)           | 2 1(0 0)           | 15/15 | RIDOD C        | 0.2(0)   | 64(40)     | 2 0(2) *2                               | 2 5(4) *4                               | 20(2)*4   | 2 4(1 0) *4                             | 2 4(0 0) *4    | 15/1-  |
| CMARC A         | 20(2)          | 10(0.9)          | 3.8(0.2)                                | 3.0(0.1)      | 2.0(0.1)         | 2.7(0.1)           | 2.1(0.0)           | 15/15 | DIFUP-C        | 9.2(9)   | 04(48)     | 2.0(2)                                  | 3.3(4)                                  | 3.9(3)    | 2.4(1.0)                                | 2.4(0.8)       | 13/15  |
| UNALS-A         | 20(2)          | 10(0.9)          | 3.0(0.2)                                | 3.0(0.1)      | 2.7(0.1)         | 2.3(0.0)           | 2.0(0.1)           | 15/15 | CMAES-A        | 3.3(2)   | 367(800)   | 416(379)                                | $\infty$                                | $\infty$  | $\infty$                                | ∞ 2e6          | 0/15   |
| IPOP-CM         | 22(6)          | 11(2)            | 4.1(0.2)                                | 3.2(0.5)      | 2.9(0.5)         | 2.4(0.1)           | 2.1(0.1)           | 15/15 | IPOP-CM        | 9.1(14)  | 2.4e4(3e4) | ~                                       | ~                                       | $\infty$  | ~                                       | ∞ 3e6          | 0/15   |
| Var1            | 20(2)          | 10(0.7)          | 3.8(0.2)                                | 3.0(0.1)      | 2.7(0.1)         | 2.3(0.1)           | 2.0(0.0)           | 15/15 | Var1           | 4.7(8)   | 205(21)    | 831(712)                                | $\infty$                                | $\infty$  | $\infty$                                | ∞ 4e6          | 0/15   |
| Var2            | 21(2)          | 10(0.4)          | 3.9(0.1)                                | 3.0(0.1)      | 2.8(0.2)         | 2.4(0.1)           | 2.1(0.1)           | 15/15 | Var2           | 2.8(2)   | 649(1245)  | 386(312)                                | $\infty$                                | $\infty$  | $\infty$                                | ∞ 4e6          | 0/15   |
| Var3            | 20(2)          | 10(0.3)          | 3.8(0.1)                                | 3.0(0.1)      | 2.7(0.1)         | 2.3(0.1)           | 2.0(0.0)           | 15/15 | Var3           | 5.8(3)   | 403(1249)  | 831(1039)                               | $\infty$                                | $\infty$  | $\infty$                                | ∞ 4e6          | 0/15   |
| f12             | 1042           | 1938             | 2740                                    | 3156          | 4140             | 12407              | 13827              | 15/15 | f24            | 1.3e6    | 7.5e6      | 5.2e7                                   | 5.2e7                                   | 5.2e7     | 5.2e7                                   | 5.2e7          | 3/15   |
| BIPOP-C         | 6.1(0.2)       | 7.9(11)          | 9.0(5)                                  | 10(6)         | 8.9(5)           | 3.9(1)             | 4.1(2)             | 15/15 | BIPOP-C        | 2.0(2)   | 1.6(2)     | 1.2(1)                                  | 1.2(0.6)                                | 1.2(1)    | 1.2(0.5)                                | 1.2(0.8)       | 3/15   |
| CMAES-A         | 5.2(0.2)       | 6.4(5)           | 9.0(6)                                  | 10(5)         | 8.9(2)           | 3.9(0.9)           | 4.0(1)             | 15/15 | CMARS          | ~        | ~ ~ ~      | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ~~(1)     | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ~ 206          | 0/15   |
| IPOP-CM         | 10(7)          | 11(8)            | 11(8)                                   | 12(5)         | 10(6)            | 4 3(2)             | 4 4(2)             | 15/15 | IDOD OF        |          | ~          | ~                                       | ~                                       | ~         | ~                                       | ~ 200<br>~ Fai | 0/15   |
| Wor1            | 4 5(2)         | 4 7(2)           | = 7(5)                                  | 6 7(2)        | 6 5(1)           | 4.3(2)<br>2.0(0.0) | 4.4(4)<br>2.9(0.7) | 15/15 | IPOP-CM        | 00       | ~          | ~                                       | ~                                       | ~         | ~                                       | ∞ 5e6          | 0/15   |
| Var1<br>Var2    | *.3(3)         | 4.7(3)           | <b>3.</b> /(3)                          | 0.7(5)        | 0.3(1)           | 3.0(0.9)           | 3.2(U./)           | 15/15 | Var1           | ~        | ~          | ~                                       | $\infty$                                | ~         | ~                                       | ∞ 4e6          | 0/15   |
| varz            | /.4(6)         | 9.0(8)           | 10(0)                                   | 10(4)         | 9.1(3)           | 3.9(2)             | 4.0(2)             | 15/15 | Var2           | ~        | ~          | ~                                       | ~                                       | ~         | ~                                       | ∞ 4e6          | 0/15   |
| var3            | 5.5(4)         | 8.1(5)           | 8.9(4)                                  | 9.3(4)        | 8.5(3)           | 3.6(1.0)           | 3.8(0.8)           | μ5/15 | Var3           | $\infty$ | $\infty$   | $\infty$                                | $\infty$                                | ~         | $\infty$                                | ∞ 4e6          | 0/15   |

Table 4: Average runtime (aRT in number of function evaluations) divided by the respective best aRT measured during BBOB-2009 in dimension 20. The aRT and in braces, as dispersion measure, the half difference between 10 and 90%-tile of bootstrapped run lengths appear for each algorithm and target, the corresponding reference aRT in the first row. The different target  $\Delta f$ -values are shown in the top row. #succ is the number of trials that reached the (final) target  $f_{opt} + 10^{-8}$ . The median number of conducted function evaluations is additionally given in *italics*, if the target in the last column was never reached. Entries, succeeded by a star, are statistically significantly better (according to the rank-sum test) when compared to all other algorithms of the table, with p = 0.05 or  $p = 10^{-k}$  when the number k following the star is larger than 1, with Bonferroni correction by the number of functions (24). A  $\downarrow$  indicates the same tested against the best algorithm from BBOB 2009. Best results are printed in bold.

Data produced with COCO v2.2



Figure 2: Bootstrapped empirical cumulative distribution of the number of objective function evaluations divided by dimension (FEvals/DIM) for 51 targets with target precision in  $10^{\left[-8..2\right]}$  for all functions and subgroups in 5-D. As reference algorithm, the best algorithm from BBOB 2009 is shown as light thick line with diamond markers.

- [5] N. Hansen, A Auger, D. Brockhoff, D. Tušar, and T. Tušar. 2016. COCO: Performance Assessment. ArXiv e-prints arXiv:1605.03560 (2016).
- [6] N. Hansen, A. Auger, S. Finck, and R. Ros. 2012. Real-Parameter Black-Box Optimization Benchmarking 2012: Experimental Setup. Technical Report. INRIA. http://coco.gforge.inria.fr/bbob2012-downloads
- [7] N. Hansen, A. Auger, O. Mersmann, T. Tušar, and D. Brockhoff. 2016. COCO: A Platform for Comparing Continuous Optimizers in a Black-Box Setting. ArXiv e-prints arXiv:1603.08785 (2016).
- [8] N. Hansen, S. Finck, R. Ros, and A. Auger. 2009. Real-Parameter Black-Box Optimization Benchmarking 2009: Noiseless Functions Definitions. Technical Report RR-6829. INRIA. http://coco.lri.fr/downloads/download15.03/bbobdocfunctions.pdf Updated February 2010.
- [9] N. Hansen and S. Kern. 2004. Evaluating the CMA Evolution Strategy on Multimodal Test Functions. 282-291 pages. DOI:http://dx.doi.org/10.1007/ 978-3-540-30217-9\_29



Figure 3: Bootstrapped empirical cumulative distribution of the number of objective function evaluations divided by dimension (FEvals/DIM) for 51 targets with target precision in  $10^{[-8..2]}$  for all functions and subgroups in 20-D. As reference algorithm, the best algorithm from BBOB 2009 is shown as light thick line with diamond markers.

- [10] N. Hansen, T. Tušar, O. Mersmann, A. Auger, and D. Brockhoff. 2016. COCO: The Experimental Procedure. ArXiv e-prints arXiv:1603.08776 (2016).
- [11] D. M. Nguyen and N. Hansen. 2017. Benchmarking CMAES-APOP on the BBOB Noiseless Testbed. In Proceedings of the Genetic and Evolutionary Computation Conference Companion (GECCO '17). ACM, New York, NY, USA, 1756–1763.
- [12] K. Nishida and Y. Akimoto. 2016. Population Size Adaptation for the CMA-ES Based on the Estimation Accuracy of the Natural Gradient. In Proceedings of the Genetic and Evolutionary Computation Conference 2016 (GECCO '16). 237–244.
- [13] K. Price. 1997. Differential evolution vs. the functions of the second ICEO. In Proceedings of the IEEE International Congress on Evolutionary Computation. 153–157.
- [14] R. Ros. 2010. Black-box optimization benchmarking the IPOP-CMA-ES on the noiseless testbed: comparison to the BIPOP-CMA-ES. In GECCO '10: Proceedings of the 12th annual conference comp on Genetic and evolutionary computation. ACM, New York, NY, USA, 1503–1510. DOI: http://dx.doi.org/10.1145/1830761.1830766