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ABSTRACT 
Humanity have long strived to create microscopic machines 
for various purposes. Most prominent of them employ nano-
robots for medical purposes and procedures, otherwise deemed 
hard or impossible to perform. However, the main advantage 
of this kind, of machines is also their main drawback – their 
small size. The miniature scale they work in, brings a lot of 
problems, such as not having enough space for the 
computational power needed for their operation, or the 
specifics of the laws of physic that govern their behavior. In 
our study we focus on the former challenge, by introducing a 
new standpoint to the well-studied predator-prey pursuit 
problem (PPPP) using an implementation of very simple 
predator agents, using nano-robots designed to be 
morphologically simple. They feature direct mapping of the 
(few) perceived environmental variables into corresponding 
pairs of rotational velocities of the wheels’ motors. Our 
previous, unpublished work showed that the classic problem 
with agents that use straightforward sensor, do not yield 
favorable results as they solve only a few of the initial test 
situations. We implemented genetic algorithm to evolve such a 
mapping that results in an optimal successful behavioral of the 
team of predator agents. In addition, to cope with the 
previously described issue, we introduced a simple change to 
the agents in order to improve the generality of the evolved 
behavior for additional test situations. Our approach is to 
implement an angular offset to the visibility sensor beam 
relative to the longitudinal axis of the agents. We added the 
offset to the genetic algorithm in order to define the best 
possible value, that introduces most efficient and consistent 
solution results. The successfully evolved behavior can be used 
in nano-robots to deliver medicine, locate and destroy cancer 
cells, pinpoint microscopic imaging, etc. 1 

                                                           

1 *Produces the permission block, and copyright information 

†The full version of the author’s guide is available as acmart.pdf document 
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1. INTRODUCTION 

With advancement of technology and invention of the optical 
and electric microscopes, the humanity started exploring the 
miniature world. With these new discoveries, however, new 
problems started to arise. To discover the solutions to them, 
mankind turned to creating micro- and nanomachines on their 
own [15]. As a species, striving to survive the various lethal 
conditions, we are exposed to, the most prominent field of use for 
these new nanomachines is in medicine. There are many 
procedures that are hard to perform by a human medical doctor 
and for which the newly created micro-robots are perfectly suited 
[14]. Such tasks are brain surgeries, video diagnostics in hard to 
reach places and pin-point drug delivery, much needed in 
chemotherapy, where the medicine could also harm the body 
tissues. Some of the advantages that the nano-technology 
provides are minimal tissue trauma, relatively less recovery time, 
less post-treatment care required, continuous monitoring and 
rapid response to a sudden change in condition [18]. 
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 In our research we are employing a Multi-Agent system 
(MAS) to create a controller which can be used in simple nano-
robots. The advantage of the developed MAS, compared to 
centralized systems with analogical functionalities, is that it offers 
increased modularity, reduced complexity (offering an intuitive 
solution to the divide-and-conquer approach of developing and 
deploying complex software systems), and flexibility to a diverse 
software- and hardware platforms.  

From consumer viewpoint, the benefits of using MAS are, its 
superior robustness, increased fault tolerance, scalability, and 
performance. The latter is especially true, as the MAS could solve 
(inherently parallel, or distributed) problems much faster than 
centralized (or single-agent-) systems. Moreover, due to their 
complex, non-linear nature, MAS could often solve problems that 
a single agent is unable to solve. The whole team of multiple 
agents is expected to show behavior that can be regarded as 
emergent (high-level) property of the much simpler (lower-level) 
properties of the agents, or as a whole that is “more than the sum 
of its entities” (Aristoteles, 384 a.C.- 322 a.C.), and, therefore, 
could not be devised by applying the conventional top-down 
software engineering approaches. 

In our work we consider MAS applied for simulation of 
societies of mobile robots. The agents, are represented as 
autonomous software systems that are situated in simulated 
environment, have perception of the state of this environment, 
and act accordingly upon it, have a precise model for the 
functionality of the main components – sensors, controllers, and 
actuators – of real-world mobile robots. This work aims 
especially at the design features of small-scale robots – micro-, 
nano-, and DNA robots. Nevertheless, various challenges can be 
considered as currently slowing the progress of the real-world 
applicability of micro- and nano- robots. One of the greatest 
challenges, come from the very advantage of these robots – their 
small size. The physical constrains imply that these robots could 
not feature a complex morphology – both the sensors and moving 
mechanisms need to be very simple to be able to fit in the limited 
space of the agent’s body. Other researchers have already found 
ways to create robots on a nano-scale, which are guided by an 
external force [16] [17]. Our work focuses on creating 
autonomous units which can traverse the human body without the 
need of outer force or a monitoring. The agents would be 
behaviorally simple too, in that their decision-making would 
involve a direct mapping of the (few) perceived environmental 
states into actuators commands, instead of featuring a complex 
decision making mechanism in each one of them. Most likely the 
communication (if any), between the individual agents, would be 
impossible to be realized in a direct manner and would be 
fulfilled implicitly, using the environment. Such robots can be 
regarded as an ultimate case of Occam’s razor principle, applied 
both the morphology and decision-making of mobile robots.  

To comply with this definition of simple robots, in our 
research we consider predator agents featuring a single beam 
(line-of-sight) sensor providing just two bits of information, and 
two wheels (arranged in a differential drive configuration), 
rotational velocities of which are controlled by two motors. Their 
purely reactive behavior is realized by a simple decision-making 
that does not require any computing. Instead, it involves a direct 
mapping of just four perceived environmental states into 
corresponding pairs of rotational velocities of wheels’ motors. 

Similar robots were previously modeled as agents by Gauci et 
al [1]. The agents were able to self-organize in order to solve the 

simple robot aggregation problem. The same framework was also 
successfully applied for the more-complex object-clustering 
problem [2] in which the agents need to interact with an 
additionally introduced immobile object.  The very possibility of 
a team of such agents to conduct an elaborate social 
(surrounding) behavior in an environment featuring dynamic 
objects was recently demonstrated by Ozdemir et al [3] in solving 
the shepherding problem, where a team of simple agents 
(shepherds) need to guide multiple dynamic agents (sheep) 
toward an a priori defined goal. 

In our study, we are proposing the use of similar team of 
simple agents in the solution of a different task – the well-studied, 
yet difficult to solve predator-prey pursuit problem (PPPP) [5] [6] 
[7] [8]. In the considered PPPP, eight identical, simple agents 
(predators) are required to capture the single dynamic agent 
(prey). Our objective is to investigate the possibility of applying 
genetic algorithms (GA) to evolve such (optimal) direct mapping 
of the four perceived environmental states into respective 
velocities of the wheels of predator agents, as well as sensory 
beam offset, that results in an optimal behavior of the team of 
agents, which will lead to capturing the prey.  

Our motive for using an implementation of PPPP is due to the 
increased complexity of the problem, compared to the previously 
studied tasks. We desire to investigate whether the agents will be 
able to successfully complete the assignment. In comparison to 
the previously investigated domains, PPPP requires the agents to 
exhibit a more diverse behavioral set, including exploration of the 
environment, surrounding and capturing the prey. In contrast to 
[3], in our implementation of the PPPP framework, the 
emergence of such behaviors is made additionally complicated, 
by introduced constrains to the sensory and moving abilities of 
the predator agents. Modeling the real world, they feature 
myopic, limited-range (compared to the unlimited vision in other 
works) sensors, and their movement speed is equal to that of the 
prey, instead of being faster. Furthermore, the initial position of 
the predators is such that the prey is not being surrounded, which 
may ease the task of capturing it. This can be viewed as injecting 
the clustered team of robots at a certain point into the human 
body. 

An additional motivation of our research is the recognition that 
while many real-world scenarios could be, indeed, reduced to the 
previously researched wall-following, dispersal [4], clustering 
[1], and shepherding problems [3], there would be few scenarios 
– requiring a direct physical contact with an active prey – that 
could be modelled by the so far unconsidered  PPPP. These 
scenarios include pinpoint drug delivery, surrounding and 
destroying (cancer) cells or bacteria, gathering around cells to 
facilitate their repair or imaging, etc 

The additional rationale to focus on this application domain is 
that, even if the previous implementations of PPPP do actually 
assume some form of subjective simplicity of the predators – such 
as lack of communication abilities, having sensors that perceive 
just one (the closest) entity in the world, and purely reactive 
architecture [9] – the agents are in no way objectively simple as a 
significant amount of computing is still required by their 
perception subsystems (e.g., in order to determine the closest 
entity from all entities in the omnidirectional field of view) and 
their decision-making. To the best of our knowledge, objectively 
simple predators have not been implemented in the so far 
investigated instances of PPPP. 
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2. THE ENTITIES 

2.1 Predator Agents 
Each of the eight (identical) predator agents model a simple 

cylindrical robot with a beam sensor featuring a limited range of 
visibility, and two wheels (controlled by two motors) in a 
differential drive configuration. 

The beam sensor provides two bits of information, where each 
bit encodes whether an entity – either a (nearest) agent or the 
prey, respectively – is detected (if any) in the line of sight within 
the limited range of visibility. The implementation of such sensor 
in nano-robots would consist of two photodetectors sensitive to 
two different, non-overlapping wavelengths of (ultraviolet, 
visible, or infrared) light emitted by predators and prey, 
respectively. Each of these two photo-detectors provides one bit 
of information. For the considered cylindrical predator agents 
with two wheels in a differential drive configuration, this axis 
could be defined as the axis that is perpendicular to the axis of the 
wheels and crosses the geometrical center of agents. Equipped 
with such sensors, the predators could perceive only four possible 
states of the directly faced environment. The main features of the 
agents are shown in Table 1. 

 
Table 1: Features of the entities 

Feature Predator Prey 

Number of agents 8 1 

Diameter, μm  16 16 

Length of the axis of 
wheels, μm  

16 16 

Max linear velocity 
of wheels, μm/s 

10 10 

Max speed of 
predator agents, 
μm/s 

10 10 

Type of sensor 
Beam  

(line-of-sight) 
Omnidirectional 

Range of visibility of 
the sensor, μm  

200 50 

Orientation of sensor 
Counter clockwise 

offset (2~40 
degrees) 

- 

 
In our previous unreleased work, we noticed that the classical 

case, where the sensor is aligned with the longitude axis of the 
agents, the team struggles to find a solution for more than a few 
initial situations as seen in figure 1 below. 

It should be noted, that the environmental states do not provide 
the predators any information regarding the distance to the 
perceived entity or the total number of entities in range of the 
sensor. The state <11>, as shown in Figure 2, is the most 
challenging one to perceive. It could be perceived, however, 
under the following assumptions: (i) the prey is taller than 
predators, (ii) in order not to obscure the shorter predators, the 
cross-section of the prey is either much narrower than predators, 
or (at least partially) transparent for the light emitted by 

predators, and (iii) a conic shape of the beam pattern of the 
(modeled as ideal, single line of sign) light sensors of predators. 

 
 

 
Figure 1: Convergence of the best fitness (top) and the 

number of successful situations (bottom) of 32 independent 
runs of GA. The envelop illustrates the minimum and 

maximum values in each generation. 

 

Figure 2 : The four possible environmental states that are 
perceived by any given predator agent 

To counter the previously mentioned issue, we could widen the 
gap between the capabilities of both types of agents in PPPP – 
either by deteriorating the sensory or moving abilities of the prey 
or enhancing the abilities of the predator team, or combination of 
both. However, we do not wish to simplify the task placed on the 
predators, in such a way. 

To address the challenge in evolving the general behavior of 
predators in the introduced instance of PPPP, we will focus on 
modifying the morphological features of the predators. Instead of 
the commonly considered straightforward sensor, we suggest 
placing a counter clockwise offset to the angle between the sensor 
and the longitude axis of the predator agents. Notice that an 
eventual angular offset of sensors will in no way compromise the 
intended simplicity of the agents. We are curious if such a change 
will improve the general performance of the evolution of the 
team, of predator agents and increase the robustness of the 
evolved behavior to new initial situations. 

The proposed approach is inspired by the visual navigation of 
nocturnal insects, achieved by constantly maintaining the source 
of light (e.g. moon) within the sight of the facets of a compound 
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eye. The sensors of the predators could be viewed as an analogy 
of a very simple, single-facet eye. From another point of view, we 
speculate that a sensory offset would allow the predators to 
implement an equiangular (proportional) pursuit of the prey, 
aiming at the (estimated) point of contact with the moving prey, 
rather than the currently perceived position of the latter. 

The entirely reactive behavior of the predator agents could be 
described as a direct mapping of each of the perceived 
environmental states into a corresponding rotational speed of the 
wheels motors. For simplicity, instead of mapping into rotational 
speeds of motors, from hereon we will assume a mapping into 
linear velocities of the wheels, expressed as the percentage – 
within the range [-100 %…+100 %] – of their respective 
maximum linear velocities (10 μm/s, as shown in Table 1). For 
example, a velocity of -20 % implies that the motor of the wheel 
is rotating at 20 % of its maximum angular velocity (RPM), and 
the wheel propels the corresponding side of the robot in a 
backward (negative) direction with a linear speed of 2 μm/s (i.e., 
20 % of the maximum linear speed of the wheel).  

The purely reactive decision-making of the predator agents 
could be formally defined by the following octet: 

A = { V00L, V00R, V01L, V01R, V10L, V10R, V11L, V11R }  (1) 
where V00L and V00R are the linear velocities (as a percentage – 

within the range [-100%...+100%] – of the maximum linear 
velocity) of the left and right wheels of the robot for the 
perceived environmental state <00>, V01L, V01R, V10L, V10R, V11L, 
and V11R are analogical velocities for the perceived environmental 
states <01>, <10> and <11>, respectively.  

Our objective of evolving (via GA) the optimal direct mapping 
of the four perceived environmental states into respective 
velocities of wheels could be rephrased as evolving such values 
of the velocities, shown in the octet in Equation (1), as well as the 
coevolution of the offset of the sensor, that result in most efficient 
capturing behavior of the team of predator agents. We shall 
elaborate on such an evolution in the next section. 

2.2 Prey 
The prey is equipped with an omnidirectional sensor, with 

limited range of visibility. To balance the advantage that the 
omnidirectional sensor gives to the prey, compared to the single-
line-of-sight sensor of the predators, the viewing distance of the 
prey is only 50μm, compared to the 200μm of predators. The 
maximum speed of the prey, however, is identical to that of the 
predators. We introduced such sensory and moving contrast to 
encourage the agents, to evolve as cooperative behavior as they 
will be unable to capture the prey alone. Another viewpoint 
suggests that a successful solution to PPPP, defined in such a 
way, could demonstrate the virtue of MAS as the latter could, 
indeed, solve a problem that a single predator is unable to solve. 
The main features of the prey agent are shown in Table 2. 

Conversely to the behavior of predators, the behavior of the 
prey is handcrafted. The prey tries to escape from the closest 
predator (if any) by running at its maximum speed in the direction 
that is exactly opposite to bearing of the predator.  

2.3. The World 
The world is simulated as a two-dimensional square [1600 μm 

x 1600 μm]. The perceptions, decision making, and the resulting 
new state (e.g., location, orientation, and speed) of agents are 
updated with sampling interval of 100ms. The duration of trials is 

120 s, modeled in 1200 time steps.  We approximate the new 
state of predators in the following two stages. First, we calculate 
the new orientation (as an azimuth) from the current orientation, 
the yaw rate of agents, and the duration of the sampling interval. 
The yaw rate, is obtained from the difference between the linear 
velocities of the left and right wheels, and the length of axis 
between the wheels. Then, we calculate the new position (as two-
dimensional Cartesian coordinates) as a projection (in time, equal 
to the duration of the sampling interval) of the vector of the linear 
velocity of predators. The vector is aligned with the newly 
calculated orientation, and its magnitude is equal to the average 
of the linear velocities of both wheels. 

3. EVOLUTIONARY SETUP 

We decide to apply a heuristic, evolutionary approach to the 
“tuning” of the velocities of both wheels for each of the perceived 
four environmental situations because we are a priori unaware of 
the values of these velocities that would yield a successful 
behavior of the team of predator agents. As we briefly mentioned 
in Section 1, MAS, as a complex system, feature a significant 
semantic gap between the hierarchically lower-level properties of 
the agents, and the higher-level properties of the whole system. 
Consequently, we would be unable to formally infer the optimal 
values of the octet of velocities of the wheels of agents from the 
desired behavior of the team of such agents. 

Alternatively, in principle, we could have adopted another – 
deterministic – approach, such as, for example, a complete 
enumeration of the possible combinations of the eight velocities 
of wheels. If each of these 8 velocities is discretized into, say, just 
40 possible integer values ranging from -100% to +100%, then 
the size of the resulting search space would be equal to 408, or 
about 6.5x1012. This would render the eventual “brute force” 
approach, based on complete enumeration of possible 
combinations of values of velocities computationally intractable. 

GA, on the other hand, is a nature-inspired heuristic approach 
that gradually evolves the optimal values of set of parameters in a 
way similar to the evolution of species in nature. GA has proved 
to be efficient in finding optimal solution(s) to combinatorial 
optimization problems featuring large search spaces [11] [12] 
[13]. Thus, consonant with the concept of evolutionary robotics 
[10], we adopted GA to evolve the optimal values of the eight 
velocities of the wheels of predators that result in an efficient 
behavior – presumably involving exploring the environment, 
surrounding-, and capturing the prey – of the team of predators. 
The main features of the adopted GA – genetic representation, 
genetic operations and fitness function are elaborated below. 

3.1 Genetic Representation 
The decision-making of the predator agents, is represented 

genetically in GA as a “chromosome”. The latter consist of an 
array of eight integer values of the evolved velocities of wheels of 
the agents and an additional allele representing the angular offset 
for the sensor to the longitude axis of the agent. 

The values for the velocities are constrained within the range [-
100%…+100%], and are divided into 40 possible discreet values, 
with an interval of 5% between them. The decided number of 
discrete values (and, the interval between these values, 
respectively) provides a good trade-off between the precision of 
“tuning” and the size of the search space of GA. The angular 
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offset is defined in range between 2 and 40 degree, counter 
clockwise rotation. The population size is 400 chromosomes. The 
breeding strategy is homogeneous in that the performance of a 
single chromosome, cloned to the decision-making mechanisms 
of all predators is evaluated. 

3.2 Genetic Operations 
Binary tournament is used as a selection strategy in the 

evolutionary framework. It is computationally efficient, and has 
proven to provide a good trade-off between the diversity of 
population and the rate of convergence of fitness. In addition to 
the tournament selection, we also adopted elitism in that the four 
best-performing individuals survive unconditionally and are 
inserted into the mating pool of the next generation. Also, we 
implemented – with equal probability – both one- and two-point 
crossover. The two-point crossover results in an exchange of the 
values of both velocities (of the left- and right wheels, respective) 
associated with a given environmental state. This reflects our 
assumption that the velocities of both wheels determine the 
moving behavior of the agents (for a given environmental state), 
and therefore – they should be treated – as an evolutionary 
building block – as a whole. Two-point crossovers would have no 
destructive effect on such building blocks.  

3.3 Fitness Evaluation 
Our aim is to evolve behaviors of the team of predators that are 

general to multiple initial situations, rather than a behavior that is 
specialized to a particular one situation. To force such an 
evolution, in the implementation of our simulation environment, 
we introduce 10 different initial situations and evaluate each of 
the evolved chromosome on them. In each of these situations, the 
prey is located in the center of the world, and oriented in a 
random direction. The predators are scattered in a small cloud 
situated south of the prey. The distance between the center of the 
cloud and the prey gradually increases (2 μm per situation) with 
the increase of the numerical identifier (from 0 to 9) of the current 
situation. This introduces a gradual increase in the difficulty of 
the situations, the agents are place in. This way of incremental 
evolution employed in an attempt to improve the computational 
efficiency of GA as initially the agents are not expected to solve 
more than a few initial situations. A snapshot of a sample initial 
situation is shown in Figure 3.  

The overall fitness is the sum of the fitness values, scored in 
each of the 10 initial situations. For a successful situation (i.e. the 
predators manage to capture the prey during the 120 s trial), the 
fitness is equal to the time needed to capture the prey. If the 
initial situation is unsuccessful, the fitness is calculated as a sum 
of (i) the closest distance – registered during the entire trial – 
between the prey and any predator and (ii) a penalty of 10,000. 
The former component is intended to provide the evolution with a 
cue about the comparative quality of the different unsuccessful 
behaviors. We verified empirically that this heuristic metrics 
quantifies the “near-misses” well, and correlates with the chances 
of the predators – pending small evolutionary tweaks in their 
genome – to successfully capture the prey in the future. The 
second component is introduced with the intension to heavily 
penalize the lack of success of predators in any given initial 
situation. We believe that it should “encourage” the predators to 
search for such a general behavior that yields a successful 
resolution of as many initial situations as possible, preventing 

their “fixation” on eventual improvements in already successfully 
solved situations.  

 

Figure 3: A snapshot of a sample initial situation 

Lower fitness values correspond to better performing team of 
predator agents. Since we are aiming to discover the best possible 
solution to the problem, there is not restriction to end the 
evolution upon reaching certain fitness values. Instead the 
termination criteria is either 200 generations or stagnation of the 
fitness for 32 consecutive generations – whichever comes first. 
The main parameters of adopted GA are shown in Table 3. 

 
Table 2: Main Parameters of GA 

Parameter Value 

Population size 400 chromosomes 

Selection Binary tournament 

Selection ratio 10% 

Elite Best 4 chromosomes 

Crossover Both single- and two-point 

Mutation Single-point 

Mutation ratio 5 % 

Fitness cases 10 initial situations 

Duration of the 
fitness trial 

120 s per initial situation 

Fitness value 

Sum of fitness values of each situation: 
  (a) Successful situation: time needed to  
        capture   the prey  
  (b) Unsuccessful situation: 10,000 +  
        shortest distance  between the prey and  
        any  predator 

Termination 
criteria 

(# Generations>200) or (Stagnation of 
fitness for 32 consecutive generations) 

4. EXPERIMENTAL RESULTS 

In this section we will present the experimental results of 
evolving the optimal values of the velocities of the motors and the 
angular offset of the sensor that yield an optimal successful 
behavior of the predator agents. We will evaluate the proposed 
approach in terms of efficiency and consistence of evolution, 
generality of evolved behavior, and robustness to noise. 

Predators 

Prey 
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4.1 Evolving the predator agents 
As Figure 4, 5 and 6 illustrate, just by adding the offset, the 

results in number of successful initial situations and overall 
fitness dramatically improves compared to the standard 
definition, where there was no angular offset. On average, the 
predators were able to resolve all 10 initial situations until 10th 
generation.  From all 20 independent runs of GA, there is one 
distinguished solution, which offers 8 successful situations, out of 
10(from now on we will refer to is as run #9), on the first 
generation. That individual chromosome has an offset of 20 
degrees. Unfortunately, it is not the one with the best overall 
fitness after from all the runs. 

 

 
Figure 4: Convergence of the best fitness of 20 independent 

runs of GA. 

 
 

Figure 5: A more detailed illustration of the convergence of 
the best fitness of 20 independent runs of GA. 

 
Figure 6: Convergence of the number of successful situations 

of 20 independent runs of GA. 

The most efficient evolution and most general behaviors were 
obtained for sensory offset of 18 degrees (run #5). While a bit 
slower in evolution, by reaching 10 solutions on 8th generation 

(second generation for run #9), this individual manages to reach a 
fitness of 377, compared to 417 for the former.  

In figure 7 we can see the angular offset for the best 
chromosome from each of the 20 runs of GA. From the results we 
can deduce that the best solutions in regards of speed to capture 
the prey are found with angular offset between 18 and 22 degrees, 
even though successful behavior can be evolved for any offset in 
the range.  

 
Figure 7: Different values for the angular offset and the 

corresponding fitness for the evolved chromosome. 

Two of the runs resulted in finding a solution with offset of 38 
degrees – run number 6 and 17, but although having the same 
offset, there is a big difference in their fitness – 562 and 395 
respectively. This shows that there may be multitude of results for 
the evolution with the same offset, as a longer evolution might 
yield better results. 

It’s interesting to note that while some of the runs experienced 
a wide variation of sensory offsets, as shown on figure 8, that’s 
not the case for others like the run with best fitness – run #5 or 
the previously discussed run 6. We see that having a diverse set 
of angle offsets is not needed rather we are searching for the 
correct configuration that shows best behavior for given mapping 
of the wheels’ motors as, from generation one, until the 
stagnation criteria was met, the angle remained constant with a 
value of 18 degrees. 

 

 
Figure 8: Evolution of sensor offset for run #1 

 

4.2 Robustness to perception noise. 
To finish evaluating the efficiency of the genetically generated 

solutions, we will test the reaction of the best chromosome from 
every independent run of GA to random perception noise. We 

10

15

20

25

30

35

40

377 392 395 404 410 414 420 430 442 562

An
gu

la
r o

ffs
et

, d
eg

re
es

Fitness value (lower is better)

10

15

20

25

30

35

40

1 11 21 31 41 51 61 71

An
gu

la
r o

ffs
et

, d
eg

re
es

# Generations

0

20000

40000

60000

80000

100000

0 10 20 30 40 50

Fi
tn

es
s

# Generations

Min (best)
Average
Max (worst)

300
400
500
600
700
800
900

1000

0 10 20 30 40 50 60 70 80

Fi
tn

es
s

# Generations

Min (best)
Average
Max (worst)

0

2

4

6

8

10

0 5 10 15

# 
Su

cc
es

sf
ul

l S
itu

at
io

ns

# Generations

Max (best)
Average
Min (worst)



GECCO’18, July 15-19, 2018, Kyoto, Japan 

introduced two types of noise – false positive (FP) and false 
negative, respectively. The former results in either of the two bits 
of perception information to be occasionally (with given 
probability) read as “1” regardless of whether an entity is 
detected in the line of sight of the predators or not. False negative 
noise (FN) results in readings of “0” even if an entity is seen. We 
focused on these types of noise as we assume that the perception 
subsystem of predators, yet being rather simple, would require an 
appropriate thresholding of the sensory signal. A combination of 
unfavorable factors, such as incorrectly established threshold, 
variable noise levels in the environment or in sensors would 
result in the considered two types of perception noise. Figures 9 
and 10 show the variation of number of successfully solved 
situations to different levels of noise, respectfully for false 
positive noise and false negative noise. 

 

 
Figure 9: Robustness to false positive noise of each of the 20 

best evolved solutions. 

 
Figure 10: Robustness to false negative noise of each of the 20 

best evolved solutions. 

Run #5 and run #9, which we previously considered best due 
to optimal fitness and fastest evolution, do not give good results 
when noise is introduced. Most of the tests, they fail to solve 
some of the initial situations as the cases with false negative noise 
give the worst results, where the agents from run #5 cannot catch 
the prey in any of the situations and the evolved agents from run 
#9 are successful in only half of the situations for 16% and 9 
situations for 8% noise. Instead, as more robust, the mapping of 
agents from run #11 and run #14, emerge as more robust to FP 
noise and FN noise, respectfully. The controller from run #11 
manages to solve the tests with false positive noise perfectly, 
while maintaining satisfactory performance in the tests with false 

negative noise, being able to solve from 7 to 10 initial situations, 
depending on the level of noise. On the contrary, the agents from 
run #14 solve the situations with false negative noise perfectly, 
while being able to solve 9 out of 10 initial situations in the 
situations with false positive noise, which gives the best overall 
performance. It should be noted that run #11 evolved to use an 
angle offset of 18 degrees and run #14 offset of 20 degrees, which 
confirms our previous results for best offset. 

5. DISCUSSION 

With this research, we’ve shown that introducing an offset to 
the viewing sensor beam helps for a more effective behavior of 
the team of agents and increases the efficiency of the evolution of 
GA. This effect is possible, because in its essence, the offset 
helps to implicitly determine the position of the prey in relation to 
the chasing agent if the prey goes out of sight. Having a 
counterclockwise displacement, means that most of the time the 
prey will be to the left of the predator and a slight turn will allow 
to locate it again. This allow for faster localization compared to 
classic case with sensor oriented towards the longitudinal axis, in 
which the agent will be unsure to which side the prey 
disappeared.  

The experiments determined that an angle of 20 degrees was 
optimal in robustness to noise and close enough in terms of 
fitness to the best performing team of agents without noise, 
having a fitness of 411 compared to 377. We consider this the 
best configuration for the team of agents. Furthermore, higher 
values of the offset would imply a higher value of the tangential- 
and lower value of the radial (i.e., towards the prey) component 
of the vector of the speed of chasing predator, and consequently, 
a slower overall chasing speed of the latter. 

In the suggested use for medical nano-robots, the task of the 
agents should be easier, as the “prey” in that case is not 
necessarily trying to avoid the agents. The complexity comes 
from the movement of the complexity of the body structure and 
the inherently larger search space of the three dimensional 
environment, in which the entities will be located. 

6. CONCLUSION 

Nano-robots are newly emerging technology, made 
possible by the rapid technological advancements in the last 
century. Creating man-made machines on a miniature level, 
however, shows that there are significant problems to 
overcome, due to the differences in physics laws and the 
limited resourced available due to the small size. Furthermore, 
as medicine is the most prominent field of use for these new 
machines, they need to be reliable and precise in their work, 
which requires making no compromises in the quality of their 
operation. In attempt to solve these restrictions, we employed 
a variation of the predator-prey pursuit problem (PPPP), 
implementing very simple predator agents, equipped with a 
single beam sensor with an angular offset to the base 
longitude axis of the agent, and a simple control of the 
velocities of their two wheels. The simulated agents are 
morphologically simple in that they utilize a direct mapping of 
the perceived environmental states into corresponding 
velocities for their pair of wheels. 
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We implemented a genetic algorithm, used to evolve such 
a mapping of the wheels and angular offset of the sensor, 
which results in finding such behavior for the team of predator 
agents that allows capturing the prey in minimal time 
(optimization by fitness). The results from our unreleased 
research showed that PPPP could not be solved for more than 
just a few initial situations by the commonly considered 
predator agents with a sensor beam aligned with their 
longitudinal axis. This experiment, featuring a coevolution of 
the angle of the sensor and the velocities of the wheels, shows 
that the offset of 18 degrees yields a most efficient behavior of 
the team of agents in all of the 10 tested initial situations in 
regard to optimal capture time. 

Such a behavior for a team of simple agents can be used in 
micro and nano-robots, where computational are limited or 
impossible to implement with current technology [14]. It 
would be specifically useful in medicinal nano-surgery where 
it will allow of pinpoint medicine delivery and operations on 
hostile organisms or mutated tissues (such as cancer cells), on 
a microscopic level. In our future work, we are planning to 
employ a three dimensional model which will resemble a 
more realistic environment such as the human body, and test 
the capabilities of this method, of evolution for real life 
applications. 
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