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ABSTRACT
This paper provides a taxonomical identification survey of classes
in discrete optimization challenges that can be found in the liter-
ature including a proposed pipeline for benchmarking, inspired
by previous computational optimization competitions. Thereby,
a Black-Box Discrete Optimization Benchmarking (BB-DOB) per-
spective is presented for the BB-DOB@GECCO Workshop. It is
motivated why certain classes together with their properties (like
deception and separability or toy problem label) should be included
in the perspective. Moreover, guidelines on how to select signifi-
cant instances within these classes, the design of experiments setup,
performance measures, and presentation methods and formats are
discussed.
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1 INTRODUCTION
This paper presents a perspective on the Black-Box Discrete Opti-
mization Benchmarking Workshop (BB-DOB@GECCO)1, which is
a part of the Genetic and Evolutionary Computation Conference
(GECCO) 2018. It delivers a taxonomical identification survey of dis-
crete optimization challenges that can be found in the literature, fol-
lowed by a proposed pipeline for benchmarking, which is inspired
by previous computational optimization competitions in continu-
ous settings that used test functions for optimization application
domains [64]: single-objective optimization [33, 34, 36, 53], con-
strained optimization [35, 41, 63], multi-modal optimization [48, 49],
multi-objective optimization [3, 10, 11, 24, 73], target value optimiza-
tion (black-box) [20, 21], noisy optimization [22], bi-objective opti-
mization [57], many objective [32], large-scale optimization [54, 55],
dynamic optimization [3, 31], real world [9], computationally ex-
pensive [8, 38], learning-based [34], and similar.

Previous approaches using specific algorithms to tackle these
optimization application domains at the mentioned competitions in-
clude, e. g., [6, 7, 65, 67–70]. Alongside the presented algorithms, the
authors of the optimization competition papers have usually also
created frameworks for the development of experiments in order
to produce algorithm candidates submitted to these competitions
and subsequent journal publications [5, 72]. These frameworks
range from early awk/sed based unpublished scripts as e.g. for [68],
to public frameworks like jMetal [14], irace [40], COCO [20], etc.
After producing results from the test functions, these had to be
aggregated by means of statistics, e.g., non-parametric tests and
Friedman ranking [18]. However, there is a lack of papers on how
to prepare a benchmark for BB-DOB that would yield black-box al-
gorithms that operate suitably well over different classes of discrete
functions.

In the next section, a taxonomic list of classes for discrete opti-
mization follows. In Section 3, some properties and usage for these
classes are provided. In Section 4, a methodology for selecting sig-
nificant instances is proposed. In Sections 5, 6, and 7, the benchmark
pipeline is further constructed by suggesting experiments setup,
performance measures, and formats for the presentation of results,
which build upon the explanations provided for the proposed in-
stances for benchmarking. In Section 8, conclusions are presented
together with some opportunities for future work.

2 TAXONOMICAL CLASSES IDENTIFICATION
SURVEY

In this section, the subsections list different classes for discrete op-
timization functions through five perspectives, including modality,

1http://iao.hfuu.edu.cn/bbdob-gecco18
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programming representations, real-world challenges modeling, and
budget planning.

2.1 Modality: Unimodal, Bimodal, and
Multimodal Discrete Functions

We discuss pseudo-Boolean optimization problems, e. g., fitness
functions of the form f : {0, 1}n → R as an example and for reasons
of simplicity only consider maximization.

In this context, we call a search point x∗ a local optimum if for
all x with H (x∗,x) = 1 (i.e., the direct Hamming neighbors of x∗),
f (x∗) ≥ f (x) holds. A problem f is called unimodal if and only if
there is a unique local optimum (which in turn is also the unique
global optimum). A problem f is called weakly unimodal if all its
local optima have the same fitness. Otherwise, the problem is called
multimodal.

It is well known that for the (1+1) EA using standard bit muta-
tions (SBM) OneMax is an easiest function (toy problem) with a
unique optimum [13] while Trap is a hardest [23] (and also decep-
tive). An often considered special case of multimodal problems are
bimodal problems, which have exactly two local optima. Here, a
classic example is TwoMax [45], which consists of two symmetric
branches (i. e., OneMax and ZeroMax) and has its two local optima
as far away from each other as possible (i.e., in the all-zero and
all-ones bit string, respectively).

A generalization of TwoMax to an arbitrary number of local
optima has been considered [27] by taking inspiration from similar
benchmark functions in continuous optimization [52]. This multi-
modal function class comes with the hope of capturing relevant and
controllable problem features (parameters) by still being accessible
from a theoretical perspective.

A large number of different pseudo-Boolean example functions
has been considered in the literature. However, a complete overview
is out of scope for this paper and left for future work. We remark
that combinatorial optimization problems are usually multimodal
and should therefore also be considered in this context. Moreover,
similar considerations should be made for problems that do not
have a fixed problem dimension.

Finally, pseudo-Boolean optimization problems can be catego-
rized according to other general functions classes and properties
and some of the above fall into several of these categories. Examples
include linear functions (the function value for a search point is
computed as a weighted sum of the values of its bits; OneMax),
monotone functions (functions where a mutation flipping at least
one 0-bit into a 1-bit and no 1-bit into a 0-bit strictly increases
the function value; OneMax), functions of unitation (the fitness
only depends on the number of 1-bits in the considered search
point; OneMax, TwoMax), and separable functions (the fitness can
be expressed as a sum of subfunctions that depend on mutually
disjoint sets of bits of the search points; OneMax, TwoMax). It
should be noted that relationships between these classes can be
established. For example, the class of monotone functions includes
linear functions where all weights are positive. Moreover, all mono-
tone functions are unimodal. Such a categorization is also subject
to future work.

2.2 Genetic Programming
Genetic Programming (GP) [30] has seen a recent effort towards
standardization of benchmarks, particularly in the application area
of Symbolic Regression and Classification [42, 62]. These have been
mostly artificial problems: a function is provided, which allows the
generation of input-output pairs for regression. Some of the most
commonly used in recent GP literature include the sets defined by
Keijzer [28] (15 functions), Pagie [44] (1 function), Korns [29] (15
functions) and Vladislavleva [61] (8 functions).

Not all proposed functions are suitable as benchmarks, however,
and a lack of guidelines for benchmark application results in incom-
parable results between approaches. A recent study has highlighted
this [43], and proposed guidelines for improving benchmarking in
GP (see Table 1 for functions used to generate datasets), such as:

• Careful definition of the input variable ranges;
• Analysis of the range of the response variable(s);
• Availability of exact train/test datasets;
• Clear definition of function/terminal sets;
• Publication of baseline performance for performance com-
parison;

• Large test datasets for generalization performance analysis;
• Clear definition of error measures for generalization perfor-
mance analysis;

• Introduction of controlled noise as simulation of real-world
data.

Some real-world datasets have also been suggested and used
during the last few years, but problems have also been detected
with these [12]. Mostly GP researchers resort to UCI datasets for
real-world data [37].

To learn and exploit model structures in black-box optimization
for possibly atomic representations of partial solutions, gene-pool
optimal mixing and input-space entropy-based building-block learn-
ing is an example approach for scalable Genetic Programming [60];
scalability of GP problems, for example in dimension (number of
input variables), but also through definition of function/terminal
set, is discussed there for artificial problems Order (GP version of
OneMax) and Trap (with scalable size of the problem as the maxi-
mum binary tree height) and an applied domain of challenges in
Boolean Circuits design (Comparator, Even Parity, Majority, and
Multiplexer) with scalable number of inputs.

GP can of course be applied to many other areas; some of the
most popular in recent years have been gaming and automatic
program synthesis, with a range of competitions and workshops
(e.g. Evolving levels for Super Mario Bros [51], Virtual Creatures
Contest2, and The General Video GameAI Competition3) organized.
But in these and other areas, there has not been a concerted effort
to provide benchmark data/setups which can be freely and easily
used by researchers.

2.3 Modeling Real-world Challenges
Additionally to those already mentioned, real-world challenges for
optimization algorithms include:

• knapsack problems (e.g. automatic summarization [39]),

2https://virtualcreatures.github.io/vc2018/
3http://www.gvgai.net/
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Table 1: Sample Symbolic regression problems [43].

F1 : f (x1, x2) =
exp(−(x1−1)2)
1.2+(x2−2.5)2

F2 : f (x1, x2) =
exp(−x1)x31 cos(x1) sin(x1)(cos(x1) sin

2 x1 − 1)(x2 − 5)
F3 : f (x1, x2, x3, x4, x5) = 10

5+
∑5
i=1(xi −3)

2

F4 : f (x1, x2, x3) = 30 (x1−1)(x3−1)
x22(x1−10)

F5 : f (x1, x2) = 6 sin(x1) cos(x2)
F6 : f (x1, x2) = (x1 − 3)(x2 − 3) + 2 sin((x1 − 4)(x2 − 4))
F7 : f (x1, x2) =

(x1−3)4+(x2−3)3−(x2−3)
(x2−2)4+10

F8 : f (x1, x2) = 1
1+x−41

+ 1
1+x−42

F9 : f (x1, x2) = x14 − x13 + x22/2 − x2
F10 : f (x1, x2) = 8

2+x12+x22
F11 f (x1, x2) = x13/5 + x23/2 − x2 − x1
F12 : f (x1, x2, x3, x4, x5, x6, x7, x8, x9, x10) =

x1x2 + x3x4 + x5x6 + x1x7x9 + x3x6x10
F13 : f (x1, x2, x3, x4, x5) = −5.41 + 4.9 x4−x1+x2/x53x4
F14 : f (x1, x2, x3, x4, x5, x6) = (x5x6)/(

x1
x2

x3
x4

)

F15 : f (x1, x2, x3, x4, x5) = 0.81 + 24.3
2x2+3x23
4x34+5x

4
5

F16 : f (x1, x2, x3, x4, x5) = 32 − 3 tan(x1)tan(x2)
tan(x3)
tan(x4)

F17 : f (x1, x2, x3, x4, x5) = 22 − 4.2(cos(x1) − tan(x2))(
tanh(x3)
sin(x4)

)
F18 : f (x1, x2, x3, x4, x5) = x1x2x3x4x5
F19 : f (x1, x2, x3, x4, x5) = 12 − 6 tan(x1)

exp(x2)
(x3 − tan(x4))

F20 : f (x1, x2, x3, x4, x5, x6, x7, x8, x9, x10) =
∑5
i=1 1/xi

F21 : f (x1, x2, x3, x4, x5) = 2 − 2.1 cos(9.8x1) sin(1.3x5)

• routing (Traveling Salesperson Problem (TSP) [50], Chinese
Postman (CP) [15], path planning [71]),

• scheduling [47] (including job shop and flow shop [56]),
• bioinformatics (including sequencing, alignment, and pro-
tein folding [4]),

• cryptography [46], and
• computer vision [66].

2.4 Reflective Budget Algorithm Design
In order to introduce solutions to industry that require process im-
provement after very latent evaluation of the process, like, e. g., pro-
cess design in Design for Six Sigma or limited prototype production
with necessary high reliability (e.g. aerospace [16]), an optimiza-
tion algorithm might need to sufficiently quickly self-adjust itself
to a black-box challenge. Such a process should take into account
the work of designing the optimizer approach itself using the total
number of fitness evaluations over a cycle of design and execution.
Such a metric might also indirectly measure (in part) the ease and
efficiency of use of an optimizer.

Measuring the total number of fitness evaluations is perhaps not
an easy task, especially if the fitness evaluations are cheap. How-
ever, in a controlled environment, possibly even due to an economic
requirement, such constraints might be enforced emergently. The
application of an algorithm to a domain would thereby be reflective
and influence the quality of the produced results due to a limited fit-
ness evaluation budget allowed for setting up an optimizer [19, 25].
Finally, some challenges might require to run an expensive simu-
lator for many times before designing an optimization algorithm
that would autonomously carry out work.

As this paper strives to survey the propositions for benchmark-
ing by proposing a fixed benchmark set with a fixed interface to

black-box optimizers, a measure of performance inclination to any
function class should therefore also be measured. This would yield
the reflectivity measure (influence of the design and tuning of an
algorithm to benchmarked evaluation) for an algorithm that might
not be suitable for it with an arbitrary black-box challenge. An
example function type for this perspective would be an optimizer
that writes/adopts a successful optimizer for a black-box bench-
mark within a limited budget of communications to a benchmark
descriptor. Namely, it should be avoided that the designer (human
or automaton) is able to call the fitness function sufficiently often
during the design phase to extract the encoded information to be
optimized. This would yield a grey-box or even a white-box gen-
erated optimizer, or in the simplest case, unfairly save an encoded
solution itself into the yielded optimizer code.

3 PROPERTIES AND USAGE
Motivations, why certain classes should be included in the perspec-
tive, together with their properties (like deception and separability
or toy problem label) are presented in this section. Some explana-
tions for enabling shifting and rotation follows.

In the previous section four aspects of BB-DOB challenges are
identified. Within each perspective properties for the included func-
tion class types are also listed. To use these perspectives and espe-
cially the mentioned function class types, this paper suggests to
pick a relevant set of representative instances from each of these
perspectives and classes. Using the proposed methodology, the
picked significant instances are presented in the next section.

The shifting and rotation of benchmarking functions is achieved
by transforming the input structure from an optimizer into the
input to the benchmarking function by the two mathematical trans-
formations (shift and rotation) before each call to a fitness function
in the benchmark. Defining such transformations might be easier
for simpler genotypes while for the more advanced ones like trees
this might be more challenging.

4 SIGNIFICANT INSTANCES METHODOLOGY
Guidelines for a methodology on how to select significant instances
within the listed classes are proposed in this section. The section
therefore provides a debate regarding which functions should be
included in the benchmarking testbed.

When preparing a benchmark, formulation as well as data should
be accessible. On the one hand, if designing a narrow application
domain optimizer, then application and performance assessment
to real world challenges for such an optimizer usually yields some-
thing like a domain specific benchmark, which is not applicable for
general black-box re-application of the same optimizer in a different
domain. Also, these domain specific benchmarks might not be fully
disclosed to test other algorithms. On the other hand, some existing
and recognized benchmark sets should be taken into account when
preparing a new discrete optimizer benchmark, like the MIPLIB
2010 benchmark set4. Therefore, a new benchmark set should en-
able existing optimizer providers to utilize it, including the example

4http://plato.asu.edu/bench.html
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solvers like Gurobi5, CPLEX6, XPRESS7, Mosek8, SCIP9, CBC10,
GLPK11, LP_Solve12, and MATLAB13. As a black-box benchmark-
ing suite, the perspectives of the COCO platform [20, 21] could be
followed.

The functions referenced in this paper capture the difficulties of
combinatorial optimization problems in practice and the references
list strives also at the same time to be comprehensible w.r.t. the
classes of challenges, so that the resulting algorithm behaviors can
be understood or interpreted when using the benchmark. The pro-
posed instances list also considers being scalable with the problem
size and non-trivial in the black-box optimization sense, i. e., allow
for shifting the optimum to any point as explained in the previous
section.

As to how to select the instances, we suggest to choose few
representative items from each function class. The instances to be
chosen within a function class should be such that the instances
thoroughly cover the underlying features of the function class that
the class is representing in the terms of challenges it represents. This
should foster the benchmarking of optimization algorithms that are
designed for black-box functions. The distribution of features in the
chosen instances should be non-biased with regard to a function
class as well a benchmark as a whole.

5 EXPERIMENTS SETUP
A standardized experimental set-up proposition is presented in this
section. This begins the overview of the benchmarking pipeline,
explaining how to use the problems discussed in the previous sec-
tions, and is followed by post-processing (performance evaluation)
and ranking in the next section. The experimental setup guidelines
are as follows:

(1) To optimize the instance functions listed in the previous
section, a budget of runtime should be used for determining
the maximum number of function evaluations allowed. This
suggestion is based on the design of algorithms with fixed
budget.

(2) The number of independent runs for an optimizer on a spe-
cific test instance should be set based on the test instance
complexity [1, 2].

(3) The runtime of optimizers should be measured proportional
to the time it takes to execute the fitness functions.

6 PERFORMANCE MEASURES
The benchmark should be relevant from a practical perspective and
accessible from a theoretical perspective, with a strong focus on
discrete search spaces and discrete optimization problems. Gaining
insight to mutual advantages and disadvantages of optimization
algorithms is vital for the design of improving such algorithms.

5http://www.gurobi.com/downloads/download-center
6https://www.ibm.com/analytics/data-science/prescriptive-analytics/cplex-
optimizer
7https://www.solver.com/xpress-solver-engine
8https://www.mosek.com/
9http://scip.zib.de/
10https://projects.coin-or.org/Cbc
11https://www.gnu.org/software/glpk/
12http://lpsolve.sourceforge.net/
13https://www.mathworks.com/products/optimization.html

To support this and in order for the benchmarks that are devel-
oped to be a highly visible focus point for anyone interested in the
application of nature-inspired search and optimization heuristics,
they should also be made publicly available as part of a website,
which is maintained for a sufficiently lasting timespan so that others
can submit their performance evaluations for new algorithms.

Rules for measuring the performance over the suggested test
functions are presented here. Generally, optimizer performance
measures take in account the:

• runtime,
• fixed budget [26], or
• fixed precision.

After collecting the performance measures, Friedman ranking [18]
should be presented for the algorithms, using the set of collected val-
ues from performance measures. Post-hoc procedures as, e.g., listed
in [17] should also be used to report the significance of differences
among the algorithms.

As to enable more feedback to the designer of an optimizer, fur-
ther deep statistics should be welcome, regarding, e.g., evolution
and behavioral tracking of the population and memory of an opti-
mizer (e.g., population values). Visualization of these traits using
graph plot views should be supported, through drawing the val-
ues of these traits or their processing metrices. Examples include
plots of fitness convergence, control parameters, optimizer memory
(e.g., population), and in the case of generational optimizers, analy-
sis of optimizer memory reading (e.g., generational connections of
evolved population members).

In the case of limited budget for algorithm design, e.g., irace [40],
fast chess rating system for evolutionary algorithms [58] for pa-
rameter tuning [59], or merely a single value performance mark
using some aggregative formula [31], should be used instead for
the intermediate evaluation of algorithms before producing a final
algorithm.

7 RESULTS PRESENTATION METHODS AND
FORMATS

To support compatibility, generation of data output, procedures for
post-processing, ranking, and presentation formats for the results
are presented here.

The tables necessary to report results, should present fitness
function values attained at different stages of the optimization runs
during several cut-off points, statistically as best, worst, median,
average, and standard deviation values, as based on these further
comparisons can usually be made between experiments. Further-
more, the evaluation results should be stored in a cloud-compatible
format, possibly online as a structured database or archive, com-
prising the evaluation as well as its corresponding solution values
for each of these cut-off points at each run, using binary compilant
architecture to enable an Application Binary Interface (ABI) when
re-using the experiments at different computers.

Based on the results presentation, competitions could be launched
by creating composite functions, e. g., one perspective type com-
petition per year, including some of the set of function classes
mentioned.
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8 CONCLUSIONS
This paper presents a taxonomical identification survey of classes in
discrete optimization through a perspective on Black-Box Discrete
Optimization Benchmarking (BB-DOB). By listing these classes
and providing their properties, usage, and instances, as well as an
experimental setup, performance measures, and formats for result
representation, it delivers a complete benchmarking pipeline for
BB-DOB. It builds upon listing previous successes in benchmarking
of optimization algorithms, as well as looking beyond toy problems
and specific domain benchmarking, towards challenges for more
general discrete optimization algorithms that will be able to tackle
new unknown problems as a black box and will be automating
performance over those problems.

Further work on Black-Box Discrete Optimization Benchmarking
(BB-DOB) perspectives is expected with the BB-DOB@GECCO
Workshop. When the WG3 of ImAppNIO wiki14 will list sufficient
benchmarking suggestions, it is expected that a benchmark code
package could be facilitated. Fostering of the contributions is also
expected through BB-DOB workshop at PPSN 2018 and inviting
more researchers to contribute to the benchmark and competitions
that will provide black-box algorithms.
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