
Towards Modular Large-Scale Darwinian Software Improvement
Michael Orlov

Shamoon College of Engineering
Beer Sheva, Israel

orlovm@noexec.org

ABSTRACT
This paper proposes to explore a software engineer-assisted method
for evolutionarily improving large-scale software systems. A frame-
work is outlined for selecting and evolving specific components of
such systems, while avoiding treating the complete software as a
single independent individual in the population, thereby forgoing
the high costs of that approach.

CCS CONCEPTS
• Software and its engineering → Search-based software en-
gineering; Genetic programming; Ultra-large-scale systems;

KEYWORDS
Genetic improvement, genetic programming, large-scale software
systems

ACM Reference Format:
Michael Orlov. 2018. Towards Modular Large-Scale Darwinian Software
Improvement. In GECCO ’18 Companion: Genetic and Evolutionary Compu-
tation Conference Companion, July 15–19, 2018, Kyoto, Japan. ACM, New
York, NY, USA, 2 pages. https://doi.org/10.1145/3205651.3208311

1 POSITION
Software complexity and size is constantly increasing [2]. If we are
ever able to automatically improve large-scale software systems
using evolutionary computation, we need to explicitly address the
difficulty of applying traditional evolutionary methods to such
systems. At present, there exist only few examples of improving
large-scale software that are not limited to specific use cases like
bug repair [1]. This paper attempts to analyze why this is the case,
and to propose a practical pathway for extending the approaches
that are in use at present.

2 LARGE-SCALE SYSTEMS
When working with large-scale software systems [2], it is typical
for them to have the following properties:

• very large amount of code;
• long startup and shutdown times;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan
© 2018 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-5764-7/18/07. . . $15.00
https://doi.org/10.1145/3205651.3208311

• complex logic that is hard to formalize algorithmically or via
unit tests;

• dependency on external systemswith state, such as databases.
These features, not exhaustive by any means, make it hard to

evolve the system as-is, by representing all of its code as a single
individual in a large population. Large amount of code makes the
search space impractical, unless focusing on established methodolo-
gies like bug fixing [5]. Long startup and shutdown affect evaluation
time, prohibiting use of non-trivial population sizes, and demanding
methods like grid computing for even the smallest of runs. Unfor-
malizable logic makes it impossible to produce reliable code for
critical infrastructure, although it might be possible to alleviate the
issue with automatically evolved test cases [3]. Finally, dependency
on external systems does not allow treating the code as a single,
independent evolutionary unit due to introduction of side effects.

There are techniques to automatically limit the search space [4],
so code size per se is not an insurmountable problem. However, the
other issues mentioned above pose a barrier to adopting automatic
software improvement for software that cannot be formalized as a
black box with negligible cost of evaluating modifications. Below,
we propose a framework that allows a software engineer to inte-
grate automatic evolution into existing projects, without having to
face aforementioned drawbacks.

3 MODULAR EVOLUTION
In order to be able to automatically improve large-scale software
systems, we need to accept that a software engineer must adapt
the system to genetic improvement at design stage. The problems
described in Section 2 stem from taking an engineered system, and
attempting to evolve it by supplying exclusively external constraints
such as: functional or non-functional fitness function; bias towards
modification of certain parts of code; bias towards allowed types of
modifications, and so on. If a method were devised for evolution of
designated components in a live (i.e., running) software system, it is
possible that the problematic issues could be sidestepped altogether.

Evolving software components in a live system requires a way to
evaluate individual modified components independently, without
having to restart the complete system and all its dependent external
modules. Thus, the engineer needs to employ a specific API for
modules to be evolved, covering:

• module initialization and shutdown logic;
• module evaluation function;
• strict functional restrictions;
• strict and soft non-functional restrictions.

The purpose of this API, as illustrated in Figure 1, is a trilateral
separation of the live large-scale software system, the requirements
of component(s) that are to be automatically improved, and the
evolutionary engine thatmust not concern itself with the large-scale

https://doi.org/10.1145/3205651.3208311
https://doi.org/10.1145/3205651.3208311

GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan Michael Orlov

(Ultra-)Large-Scale Software System

Evolvable
Modules
Evolvable
Modules

Setup / Teardown API
Evolution Support API

Evolutionary
Engine

Figure 1: Conceptual architecture of modular large-scale
software improvement.

system as a whole, but only with its smaller designated modules. It
should be noted that the API is somewhat similar to those used in
unit testing frameworks, and could perhaps be integrated with an
existing framework like JUnit and its variants1.

4 USE CASES
Consider a typical evolutionary benchmark problem: evolving a
car racing controller. Loiacono et al. [6] set up a challenge based on
TORCS open-source 3D car racing simulator2. TORCS is a complex
engine requiring elaborate and time-consuming initialization with
each different controller that we are supposedly trying to evolve.
However, the engine code could probably be modified to support
dynamic loading of controllers, allowing for significantly faster
evaluation of individuals. Functional and non-functional restric-
tions would not be necessary, since this challenge was specifically
designed to make applying evolutionary methods as easy as possi-
ble.

A more realistic use case scenario, such as an industrial software-
based factory control system would require a much more sophis-
ticated setup. Certainly, no one would (hopefully) start up and
shutdown the control system just for the sake of evaluating its
single modification, with obvious efficiency and security implica-
tions. However, an engineer could designate specific modules in
the system that need to be automatically improved — for instance,
a controller for a system of valves that is tasked with maximizing
the throughput of a high-viscosity fluid through a set of pipes.

The engineer would then likely need to implement the following
functionality in order to allow for modular software improvement
of the selected component:

• quick setup and release of valves access during initialization
and shutdown;

• logging of current component specifications and outcomes;
• fitness evaluation of current component performance during
and after its operation;

• restrictions on allowed operations by the component, pre-
venting it from causing physical damage to the system;

• security restrictions on the component to comply with regu-
latory requirements on unverified code — e.g., a sandboxed
execution;

• code size, memory and other resource-related strict and soft
restrictions stemming from system limits.

1See https://junit.org/
2See http://torcs.org

Viability of this approach might be the one to make the differ-
ence between “let’s not!” and “what is the procedure?” outlook of
managers and engineers on genetic improvement of complex and
critical large-scale infrastructure systems.

5 IMPLEMENTATION
As mentioned in Section 3, unit-testing frameworks are good can-
didates for adding modular software improvement functionality.
Frameworks like JUnit typically allow annotating code with having
relevance to certain functions and classes, which can be used to
define the API described previously in a developer-friendly fashion.
The developers need not concern themselves with evolutionary
engine details, as that part can be handled by the extended frame-
work. There is no reason why a researcher-friendly framework like
ECJ [7] cannot be used in such a setup.

6 CONCLUSION
This paper described an early-stage practical approach to evolution-
arily improving large-scale and ultra-large-scale software systems.
With software systems growing in size with no limit in sight, it is
clear that we will eventually have to face the need to automatically
improve systems that are actually of scale. It is, however, unclear
which method of handling that unique problem is preferred by the
genetic improvement community. Should the evolutionary engine
locate the code parts to improve or repair by itself, or should the
software engineer assist with that task [8, 9]? This question has
both practical and fundamental considerations, due to the inher-
ent conflict presented by applying a nature-inspired method to an
engineered system. Hopefully, a proof of concept of the approach
presented here will soon allow to make progress in this debate.

REFERENCES
[1] Andrea Arcuri. 2008. On the Automation of Fixing Software Bugs. In Companion

of the 30th International Conference on Software Engineering (ICSE Companion ’08).
ACM, New York, NY, USA, 1003–1006. https://doi.org/10.1145/1370175.1370223

[2] Peter Feiler, Richard P. Gabriel, John Goodenough, Rick Linger, Tom Longstaff, Rick
Kazman, Mark Klein, Linda Northrop, Douglas Schmidt, Kevin Sullivan, and Kurt
Wallnau. 2006. Ultra-Large-Scale Systems – The Software Challenge of the Future.
Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA 15213-
3890, USA. https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=30519

[3] Yue Jia and Mark Harman. 2011. An Analysis and Survey of the Development of
Mutation Testing. IEEE Transactions on Software Engineering 37, 5 (Sept. 2011),
649–678. https://doi.org/10.1109/TSE.2010.62

[4] William B. Langdon and Mark Harman. 2015. Optimizing Existing Software with
Genetic Programming. IEEE Transactions on Evolutionary Computation 19, 1 (Feb.
2015), 118–135. https://doi.org/10.1109/TEVC.2013.2281544

[5] Claire Le Goues, Michael Dewey-Vogt, Stephanie Forrest, and Westley Weimer.
2012. A Systematic Study of Automated Program Repair: Fixing 55 out of 105 bugs
for $8 Each. In 34th International Conference on Software Engineering (ICSE 2012),
Martin Glinz (Ed.). IEEE, Zurich, 3–13. https://doi.org/10.1109/ICSE.2012.6227211

[6] Daniele Loiacono, Julian Togelius, Pier Luca Lanzi, Leonard Kinnaird-Heether,
Simon M Lucas, Matt Simmerson, Diego Perez, Robert G Reynolds, and Yago Saez.
2008. The WCCI 2008 Simulated Car Racing competition. In 2008 IEEE Symposium
On Computational Intelligence and Games, Philip Hingston and Luigi Barone (Eds.).
IEEE, Perth, WA, Australia, 119–126. https://doi.org/10.1109/CIG.2008.5035630

[7] Sean Luke. 2017. ECJ then and Now. In Proceedings of the Genetic and Evolutionary
Computation Conference Companion (GECCO ’17). ACM, New York, NY, USA,
1223–1230. https://doi.org/10.1145/3067695.3082467

[8] Kwaku Yeboah-Antwi and Benoit Baudry. 2017. Online Genetic Improvement
on the Java Virtual Machine with ECSELR. Genetic Programming and Evolvable
Machines 18, 1 (March 2017), 83–109. https://doi.org/10.1007/s10710-016-9278-4

[9] Shin Yoo. 2017. Embedding Genetic Improvement into Programming Languages.
In Proceedings of the Genetic and Evolutionary Computation Conference Companion
(GECCO ’17). ACM, New York, NY, USA, 1551–1552. https://doi.org/10.1145/
3067695.3082516

https://doi.org/10.1145/1370175.1370223
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=30519
https://doi.org/10.1109/TSE.2010.62
https://doi.org/10.1109/TEVC.2013.2281544
https://doi.org/10.1109/ICSE.2012.6227211
https://doi.org/10.1109/CIG.2008.5035630
https://doi.org/10.1145/3067695.3082467
https://doi.org/10.1007/s10710-016-9278-4
https://doi.org/10.1145/3067695.3082516
https://doi.org/10.1145/3067695.3082516

	Abstract
	1 Position
	2 Large-Scale Systems
	3 Modular Evolution
	4 Use Cases
	5 Implementation
	6 Conclusion
	References

