
Applying Accuracy-based LCS to Detecting Anomalous Database
Access

Suin Seo
Dept. of Computer Science

Yonsei University
Seoul, Korea

tndls9304@yonsei.ac.kr

Sung-Bae Cho
Dept. of Computer Science

Yonsei University
Seoul, Korea

sbcho@yonsei.ac.kr

ABSTRACT
Database intrusion detection (DB-IDS) is the problem of detecting
anomalous queries in transaction systems like e-commerce platform.
The adaptive detection algorithm is necessary to find anomaly
accesses when the environment changes continuously. To solve
this problem, we used accuracy-based LCS (XCS), one of the primary
model of adaptive machine learningmethod, for detectingmalicious
accesses in databases. In the problem of database intrusion detection
which changes the detecting targets, we found and analyzed the
patterns of rule generation to show systemically how the adaptive
learning of XCS algorithm is working in practical usage.

CCS CONCEPTS
• Computing methodologies → Machine learning algo-
rithms; • Security and privacy→ Intrusion detection systems;

KEYWORDS
Database intrusion detection system, Accuracy-based learning clas-
sifier system, Analysis of adaptation processes

ACM Reference Format:
Suin Seo and Sung-Bae Cho. 2018. Applying Accuracy-based LCS to De-
tecting Anomalous Database Access. In GECCO ’18 Companion: Genetic
and Evolutionary Computation Conference Companion, July 15–19, 2018,
Kyoto, Japan, Hernan Aguirre (Ed.). ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3205651.3208315

1 INTRODUCTION
For years, the amount of data we are dealing with sharply increased
as using information techniques in everything in our lives. All valid
information is stored in the databases and database management
systems (DBMS) are managing and utilizing them efficiently in
every domain. Among several types of DBMS, the most used DBMS
is relational database management system (RDBMS), that changes
and updates many databases in the world through standard query
language (SQL). However, the databases used in the large platform
are always being exposed to threats of abnormal queries which exe-
cute illegal and harmful transactions. Database intrusion detection
system (DB-IDS) is the system that detects these anomalous queries
and protects the database from the threats. Unlike other domains of

ACMacknowledges that this contributionwas authored or co-authored by an employee,
contractor or affiliate of a national government. As such, the Government retains a
nonexclusive, royalty-free right to publish or reproduce this article, or to allow others
to do so, for Government purposes only.
GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5764-7/18/07. . . $15.00
https://doi.org/10.1145/3205651.3208315

intrusion detection systems (IDS), DB-IDS is hard to build for the
several reasons. First, almost attacks to RDBMS is from the inside,
not the outside [17], and internal intrusions evolve more complexly
than the external ones. Also, internal attacks that are processed by
the authenticated users make the unexpected patterns which are
far from the standard [11].

In the system like e-commerce environments, a vast amount and
various kinds of transactions occur in every second. It is difficult
that modeling abnormal transactions rather than modeling normal
one in this case since there would be few or no anomalies in overall
data. This class imbalance condition occurs when modeling IDS in
the specific domain. Therefore, we generate the model extracting
the characteristics from only of regular queries for classifying the
anomalous queries even if there is no anomaly in training samples.

We use TPC-E benchmark [5] for making the virtual dataset of
queries about e-commerce systems, which have entire 11 trans-
action roles of users such as broker, customer, trade, and so on.
Then we regarded a query as an outlier if the query doesn’t be-
long to any pre-defined ruleset. For distinguish the query which
is non-matched with role-query or not categorized in entire 11
roles, the model should be able to distinguish the proper roles of
the given query. Every object in the transaction schemes has au-
thorities which limit and control their work. In this point of view,
machine learning method is applicable to classify the given queries
as pre-defined roles. Because the characteristics extracted from the
query include the attribute of the events, the algorithm can detect
whether the transaction is invasive by the patterns of the query [3].
However, general machine learning techniques are fundamentally
static learning one which cannot detect the object which changes
over time, also about first-seen attacks. This aspect is because the
classifier model is created after inputting the entire data; thus, we
need the model which trains and tests the data simultaneously.

In this paper, we use accuracy-based LCS (XCS) [20] for show-
ing that the adaptive process of XCS is working well in DB-IDS
problems. Learning Classifier System (LCS) [7], the primary model
of XCS, is easy to analyze internal structures as well as to imple-
ment and has the advantages of both machine learning approach
and genetic algorithm by combining both of methods. We experi-
mented XCS for classification tasks in the cases that the set of target
classes changes for the several phases with the simulated data of
TPC-E transaction benchmark. The results show us detailed pro-
cesses about the classifiers update their rules, and behavior patterns
when the target actions vary, for the various cases of environmental
changes.

https://doi.org/10.1145/3205651.3208315
https://doi.org/10.1145/3205651.3208315

GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan S. Seo and S.-B. Cho

2 RELATEDWORKS
2.1 Machine Learning for Intrusion Detection
Intrusion detection system (IDS) divides into two kinds of major
approaches: Signature-based detection, and Anomaly-based detec-
tion. Signature-based, one of the leading methods of IDS, does not
adaptively work since it detects the intrusions by looking for spe-
cific patterns in the dataset, for example, byte sequences found in
network traffic and malicious accesses. Therefore signature-based
IDS is mostly used for anti-virus software in PCs because of the
system is efficient for known attacks although the databases up-
date is essential. However, not applied in DB-IDS problem, because,
notably, in RDBMS domain, the signature-based method is inher-
ently susceptible to evasion methods that take advantage of the
expressiveness of the SQL or alternate character encodings [15].

On the contrary, anomaly-based IDS creates regular profiles by
training normal traffics; then detects intrusions by measuring the
deviation of new traffic from the pattern of the generated model [1].
There are many pieces of research which have been studied IDS
using data-driven machine learning techniques, such as association
rules [6] Bayesian network [9] and hidden Markov model [2]. In
recent, the methods expanded as the Gaussian mixture model, Ad-
aBoost [8], and random forest [16]. However, these static learning
algorithms are not helpful to detect the attacks when the types or
patterns of target change.

There are several methods to work adaptively for the domain
for solving intrusion detection problem. At first, very widely used
adaptive algorithm is the genetic algorithm (GA) which imitates the
heredity system of a living organism [12]. GA is utilized at not only
directly applied in the method but another learning algorithms like
decision tree classifiers [18].

2.2 Preprocess of Queries
2.2.1 Query Log Parsing. A query used in RBDS follows the

grammar of SQL. Therefore, the features of queries are inherent in
each part of grammatical elements. The parser divides the query
into several phrases depending on its clauses and kinds of the main
words, reserved words in SQL, reflecting the characteristics of the
query.

2.2.2 Feature Extraction. The feature extractor extracts the fea-
ture values from each parsed part. In this process, the extractor
output the vector Q about several elements of the input that have
the characteristics of a query.

Q ={SQL-CMD[] + PROJ-REL-DEC[] + PROJ-ATTR-DEC[]
+ SEL-ATTR-DEC[] + ORDBY-ATTR-DEC[]
+ GRPBY-ATTR-DEC[] + VALUE-CTR[]}

(1)

2.2.3 Feature Selection. We use Information Gain (IG) and Gain
Ratio (GR) to select the appropriate features. IG is the difference
between entropy I of a prior state and the present one.

I (S) = −
K∑
k=1

|sk |

|s |
log
|sk |

|s |
(2)

Figure 1: Overall architecture of DB-IDS system using XCS
algorithm with preprocessing of query parsing.

IG(Y) = I (S) −
M∑

m=1

|sm |

|s |
I (Sm) (3)

Where sm is the number of queries in outcomem ∈ M . And GR
is the ratio between Information Gain and Information Value (IV).

IV (S |Y) = −
M∑

m=1

|sm |

|s |
log
|sm |

|s |
(4)

GR = IG/IV (5)

Merit = GR − IG (6)
Then we choose the number of features which have the maxi-

mum difference of average merit of IG and GR in equation (6). As
shown in the chart of Fig. 2, 14 is chosen by this criterion for the
index of maximum value. We sort the features in descending order
of the calculated IG and select the 14 features which are from the
top.

3 PROPOSED METHODS
3.1 Adaptation Process of XCS
XCS is the classifier system that adopts the rule representation of
Michigan approach which represents the pattern of a single rule in
an individual classifier and places a priority on the reinforcement
learning [20].

3.1.1 Rule Representation. The rule of LCS (including XCS) ex-
presses the relation state and predictions. The relations have the
form of {IF: THEN} expression, same as condition −→ action. Given
binary data, the rules of the LCS follow the ternary format: {0, 1, #}l ,
where l is the length of the input data, and ’#’ means "don’t care."
Every condition has action represented as an integer, and every rule
has the weights called fitness. Each condition-action pair constructs
a classifier, which acts as decision boundary. For example, if the
rule of LCS is 00###|##000|000#0 and the range of each variable, x
is 0 to 1, the condition indicates that each variable belongs to the
range of 0 ≤ x1 ≤ 0.8, 0.8 ≤ x2 ≤ 1, and 0.2 ≤ x3 ≤ 0.4. Then from
this decision boundary, LCS predicts the value (action), and fitness,
the weights of the rule. These classifiers compose the population
[P] of LCS by grouping themselves.

Applying Accuracy-based LCS to Detecting Anomalous Database Access GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan

Figure 2: Line plots of IG, GR, and GR-IR for merit, which is
highest at the number of features is 14.

Table 1: Variables and its characteristics selected by equa-
tion 6. The elements in "Type" column means C (categor-
ical), I (integer) and B (binary). The encoding length of
queryLength is manually selected since the type is contin-
uous numeric.

Variables Type Min Max Encode

queryMode C 1 4 4
queryLength I 36 687 custom(11)
fieldNum I 0 16 8
tableNum I 0 10 6
projectionNum.customer I 0 10 6
projectionNum.trade I 0 10 4
projectionId.zip_code I 0 7 1
whereClauseId.watch_list I 0 3 4
orderById.customer I 0 223 1
groupByNum B 0 1 1
groupByNum.broker B 0 1 1
groupById.customer I 0 223 1
stringValueNum I 0 5 6
numericValueNum I 0 7 6
Overall - - - 61

3.2 Component of Model
The population generates match set [M], whose conditions are
satisfied, for the input data. If the number of [M] is less than the
parameter, the system executes covering process within limit of
maximum population N. The process creates a new classifier com-
posed randomly selected matched current condition and pre-labeled
action, among those not included yet in [M]. Updated match set
determines which action to select. There are two ways to choose
the action. One is selecting the action having the highest average of
prediction, and the other is selecting the random action for explor-
ing the search space. The probability of random action is chosen
by the parameter Pexp .

3.3 Fitness Updating Process
At first, the environment returns rewards r, which results the classi-
fier gets the highest score for the matched action with the rule. Then

Table 2: Eleven standard transactions in TPC-E benchmark.
Each transaction type has the allowed query type and au-
thority for updating database.

No. Transactions Available query Authority

1 Broker-volume

SELECT only Read-only

2 Customer-position
3 Market-watch
4 Security-detail
5 Trade-status
6 Trade-lookup
7 Trade-order SELECT/INSERT
8 Trade-update SELECT/UPDATE9 Data-maintenance Read/Write
10 Market-feed SELECT/INSERT/
11 Trade-result UPDATE/DELETE

the prediction p is adjusted by the difference between prediction
and rewards.

p ←− p + β(r − p) (7)
The closer p is to r, the higher accuracy of the rule; β is the

learning rate. After p is updated by equation 7, we update the
prediction error.

ϵ ←− ϵ + β(|r − p | − ϵ) (8)
Error ϵ converges the difference between reward r and prediction

p therefore the more accurate prediction of the classifier, the lower
error. We calculate classifier’s accuracy with the error as follows.

κ =

{
1 if ϵ < ϵ0
α(ϵ/ϵ0)−ν otherwise

(9)

Parameters of equation 9 such as α , ϵ0, and ν control the amount
of decline in accuracy when the classifier is wrong. We compute
the relative accuracy κ ′ dividing the κ by the total accuracies of
actions in the action set and update the fitness F for the κ ′

κ ′ ←−
κ∑

x ∈[A] κx
(10)

F ←− F + β(κ ′ − F) (11)
Through the above processes, fitness F converges to modelâĂŹs

relative accuracy. Therefore, we can evaluate each ruleâĂŹs quality
by the fitness F.

3.4 Use of Genetic Algorithms
After the fitness is updated, the genetic algorithmmodifies the rules
in action set. The applied algorithms are crossover and mutation.
Crossover mixes two conditions at specific points. The algorithm
selects two parent rules in the action set which have the same
prediction, then, generates the children by swapping the parts of
each parents’ rules from one point to another. Applying crossover
algorithm is controlled by crossover probability χ .

Another algorithm is the mutation. The algorithm is a method
of transforming a part of the rules. Among the conditions in action

GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan S. Seo and S.-B. Cho

Table 3: Scenarios used in the experiments. Each phase in-
cludes target classes. Each scenario is about detecting roles
when they are increasing, decreasing, and switching.

Scenario Phase1 Phase2 Phase3

Scenario A [2,4,8] [2.4,8,10] [2,4,7,8,10]
Scenario B [1,5,6,7,9] [1,5,7,9] [1,5,9]
Scenario C [1,3,5,7,9] [2,4,6,8,10] [3,5,7,9,11]

set, the algorithm creates a new condition by replacing the wildcard
of the selected one with real value (0 or 1) while maintaining the
matched condition. Applying mutation is controlled by mutation
probability µ. Genetic algorithms help XCS to generatemore various
rules, exploring available search spaces, even if the most of new
rules are fail for alive in the environment.

3.5 Applying XCS to Query Features
Total 191 attributes are extracted from the raw query by feature
extraction process in Section 2.2, selecting the number of features
as 14, and Table 1 shows the list of the variables. Entire encoding
length of a query is 61.

Encoding process transforms each vector of selected values as a
string of ternary {0, 1, #}l . The length of encoded strings is auto-
matically determined by calculating information gains only about
the training data, 80% of entire data, not about the rest (the test
data). Making decision boundary concerning training data is not
affected by the classification performance even if the same encod-
ing process apply to the test data. Processed query features are
transformed to the required format which represents the numeric
values as categorical, same with one-hot encoding process. In case
of binary format, we assign a single character, which could express
bit information 0 or 1 rather than represent one-hot encoding with
the length of 2 to prevent assigning redundant encodings.

4 EXPERIMENTS
4.1 Experiment Settings

4.1.1 Benchmark Database. We use TPC-E database benchmark
for simulating online transaction processing (OLTP) workload of a
brokerage firm [5]. In this schema, we use 11 standard transactions
in generated 11000 queries for 1000 for each role in Table 1.

4.1.2 Scenario Settings. To analyze the rule generation steps
when the classification target changes, we set several scenarios
which have the different aspect of change. The situations are ex-
pressed in Table 3, and in short, we considered the case of when the
classification target increases, decreases, and switches (maintaining
the number of classes).

4.1.3 Conducting Experiments. We divided training and test
data as 8:2 and get the reward for training data and calculated
classification accuracy for test data for every training epoch of
entire training data. For every training epoch, we inputted the
training data to the classifier to find out whether the system is
precisely adapted.

Table 4: The parameters of XCS which we used in the exper-
iments.

Parameters Symbol Value

Maximum population N 2000
Learning rate β 0.15
Accuracy coefficient α 0.1
Accuracy power ν 5
Error threshold ϵ0 0.01
Crossover probability χ 0.75
Mutation probability µ 0.03
Deletion threshold θdel 2
Wildcard probability P# 0.1
Exploration probability Pexp 0.2

Table 5: Evaluation information at epoch 40, 41, and dif-
ference between them. The rules in epoch 41, are not only
having fewer rules, also quite more precise than the that in
epoch 40.

Point Train
accuracy

Test
accuracy

of
rules

Avg.
fitness

epoch 40 0.7044 0.7238 477 0.1754
epoch 41 0.7628 0.7275 433 0.1835
difference +0.0584 +0.0037 -44 +0.0081

The first experiment uses scenario A, and training process con-
tinued to 30 epochs until showing the overfitting or limit of rule
generation. With second scenario B, same with the scenario A, the
experiment is conducted that one phase experiences 30 epochs of
training. In the case of last scenario C, because the size of training
data is higher than scenario A and B, we trained 50 epochs in one
phase rather than 30.

4.1.4 Selecting Parameters of XCS. There are many parameters,
which set manually, for XCS method. The parameters for the ex-
periments are listed in Table 4. Most of the parameters have been
manually tuned, having no additional meanings, except, deletion
threshold θdel which is the patience step of rules with no matched
conditions. We set the θdel to a small value since we want the XCS
to adapt fast and dispose of meaningless rules as soon as possible.

4.1.5 Evaluation of XCS. We evaluated the rules in XCS for two
metrics. One metric is training/testing accuracy which means that
the XCS rules are generated and fit well in the task environments.
Training accuracy is evaluated instantly as the rule is updated for
the data, and the test accuracy is evaluated in every step after one
epoch of training is over to check how well the model adapts to the
data.

The other metric is fitness to evaluate the quality of rules. Al-
though fitness of the rule is the relative value, we confirmed the
fitness being higher as the model is being converged. Absolute
accuracy κ is another option but we didn’t use, because when-
ever generating a new rule, κ is set to 1 by initial error ϵ0 which
overestimate the model.

Applying Accuracy-based LCS to Detecting Anomalous Database Access GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan

Figure 3: The number of rules, and train, test accuracy in Scenario A, B, and C. Red circle is the point which we analyze at
focusing adaptation processes.

4.2 Results
Fig. 3 showed the number of rules and the accuracy of training and
test data when the system finished the training step at each scenario.
The figures show XCS’s adaptability by showing the convergence
patterns as the learning step proceeds. In the scenario A, the step
between epoch 40 to 41 sharply increases their performance, details
in Table 5. We investigated the difference between these points
which not only increased the accuracy over 5%, also decreased the
number of rules.

4.3 Focusing on Adaptation Process
4.3.1 Performance Improvement. The accuracy of the model

adaptively increased in training steps of each phase in every sce-
nario. Especially, the red circle in Fig. 3 is the point whose accuracy
is increased rapidly, almost 5%, besides the number of rule decreases,
only in one step. Thus, we focused on these points and summarized
what happens and effects to the performance.

The left plot of Fig. 4 shows that the top 30 classifiers’ fitness of
the model in epoch 40 and 41, confirming that fitness of classifiers

GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan S. Seo and S.-B. Cho

Figure 4: Top 30 fitness of rules in epoch 40-41 (left), and
"Fitness / # of rules" in training phase2, Scenario A (right).

Figure 5: Confusion matrixes of classifier models at epoch
40 (left) and epoch 41 (right) for entire dataset of class 2, 4,
8, and 10 used in phase2 of Scenario A.

mainly increased in that period. Whereas, the right chart of Fig. 4
expresses the approximate fitness value assuming one rule virtually
has. The fitness per rule is increased by the training step proceed.
This value means the classifiers are optimized for the data, and
higher fitness per rule result that the system would classify more
accurate only with the fewer rules than the case of the value is low.

Fig. 5 represents the confusion matrixes of XCS models whose
training step epoch is each 40 and 41 in phase2 of scenario A. As
the figure shows, we can verify the classification performance is
remarkably better at epoch 41 than 40. The accuracies of epoch
40 and 41 are each 79.3 and 86.25 which slightly differ from the
accuracies in the training step since the target data is entire dataset
(training data + test data) for showing how the model fit as well in
the whole dataset.

The improvement points are just the higher classification per-
formances of rule 4 and rule 8 as shown in the differences of the
matrices in Fig. 5. Could we conclude that the differences between
epoch 40 to 41 are just generation of effective rules for class 2 and 4
(or deletion of meaningless rules for class 2 and 4)? So, we tried anal-
ysis about actual classifiers’ action and their fitness values which
are changed in that step.

4.3.2 Rule Analysis. Not only for seeing the adaptation of the
XCS algorithm, but also for finding the differences of rules in the
classifier while training, we make the indexes of the classifiers to
check which rule is selected or not. Then, generate a set of the rules,
then investigate the result subtraction and intersection of classifier
sets.

Table 6: Fitness per rules in epoch 40, 41, and between
them (diminished, updated, maintained). Entire fitness per
rule is not very changed since generated rules have low fit-
ness than others. Nevertheless, we observed large fitness im-
provements of maintained classifiers, regardless of higher
accuracy in that step. Entire fitness is just average of four
fitness values for each action.

Categories Actions # of rules Avg. fitness per rule

2 51 0.155
4 57 0.150

set40 8 221 0.177
10 148 0.175

entire 477 0.164
2 55 0.166
4 47 0.150

set41 8 165 0.172
10 166 0.171

entire 433 0.165

set40
(diminished)

2 26 0.145
4 29 0.144
8 142 0.177
10 66 0.182

entire 263 0.162

set41
(updated)

2 30 0.138
4 19 0.112
8 86 0.136
10 84 0.151

entire 219 0.134
2 25 0.166

set40 ∩ set41 4 28 0.155
(maintained, 8 79 0.178
epoch 40) 10 82 0.170

entire 214 0.167
2 25 0.199

set40 ∩ set41 4 28 0.169
(maintained, 8 79 0.211
epoch 41) 10 82 0.402

entire 214 0.245

In the first four large rows in Table 6, even if the age of updated
rules is one, the fitness values of classifiers are not overwhelming
the previous ones, besides, weaker than the residential rules. From
this result, we conclude that the rapid increase of the accuracy is
by existed classifiers from before not the newly generated ones.
Therefore, we analyzed the accuracy for just remained rules in
epoch 40 to 41 on the last two rows in Table 6.

Contrary to expectations, there is a huge improvement of fitness
in classifiers for class 10, small about class 4 and 8 (although fitness
values of every class increase). From these observations, the rapid
growth of the performance is from updating the importance of
existed rules, not the new rules, and throwing away the wrongly
produced classifiers. Mainly, there is the considerable progress in
fitness values of classifiers which classify class 10, but the actual

Applying Accuracy-based LCS to Detecting Anomalous Database Access GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan

accuracy has no improvement as shown in Fig. 4. However, a preci-
sion enhancement of 0.719 (epoch 40) to 0.867 (epoch 41) at class
10 indicates that the updated classifier affects the categorization of
other classes (4 and 8) without no doubt.

4.3.3 Cases of Scenario B and C. We tested Scenario B whose
the classification target decreases, but the system discards well
the useless classifiers as soon as possible automatically by small
deletion threshold θdel . In the former steps of phase 2 in Scenario
B, generating rule process occurred, but is for improving accuracy
with exploration and genetic approach. In Scenario C, as we expect,
the accuracy is hitting bottom when the phase is changed. For
handling this strange situation, the system sweeps the existed rules
and generates many rules for adjusting to new environments. There
is no relation between classifiers in phase1 to phase2 and phase2 to
phase3 since the characteristics of the encoded feature string are
different for the classes.

4.3.4 Saturation of Classifier Rules. In every scenario, because
the maximum population N is previously set before the training
step, XCS has the inherent limitation of storing information of
the input data. These characteristics disturb rule generation and
optimization when there are many kinds of class or are large data
which contains the intricate pattern. Since the more various and
complicated patterns of the dataset, the more classifiers need, so
that the number of rules affects to the model’s convergence point.
By looking the convergence points of each phase of Scenario A and
C in Fig. 3, there is the weak relationship between the number of
classes and the convergence accuracy, the more the class, the less
the convergence accuracy. This intuition gives us that XCS is not
fit the dataset which has the considerable number of actions.

5 CONCLUSIONS
In this paper, we applied XCS for intrusion detection on database
transactions for investigating the adaptation principles of XCS. The
empirical experiments show that XCS deals with the adaptation of
input query, demonstrating the usability for solving the problem
whose detecting target is continuously updated. The very notable re-
sults of the experiments are that the accuracy of classifiers increases
although the entire number of rule decreases in target training step
(40-41) as shown in Table 5.

One of the main conclusion of this investigation is that we em-
pirically show that the performance of XCS is dominantly affected
by updating the rule, not the guarantee the noticeable rules from
genetic algorithms. Of course, not only the genetic algorithm but
also exploration which sometimes occurs help to create the proper
rules but are just exploration processes that search the rule space,
not for generating the notable classifier.

Also, in the process of training step, XCS learns and generates
the rules and update the classifiers at once, decreasing the number
of rules. This characteristic of training is shown in exploration-
optimization (increase-decrease pattern of the number of rules)
pattern of the number of rules in every scenario.

In the future works, we will study and analyze the roles of each
element in training steps of XCS to propose the idea of developing
the XCS/LCS algorithms for practical problems. The saturation
of rule of XCS is fundamental problem of XCS (also of LCS) but

recently are solvable using Self-Organized Classifiers [19] or XCS
whose the rules are more complex [4, 10].

We simply applied the fundamental model of XCS. Therefore, it
is possible to apply other alternatives or updated versions of XCS,
for example, the hybrid model with another algorithm or approach,
such as XCSR (XCS with autoencoder) [13], and XCSAM (XCS with
adaptive action map) [14]. Then we could analyze the differences
of inter-model to find the model specialized in target problem.

ACKNOWLEDGMENTS
This work was supported by Defense Acquisition Program Admin-
istration and Agency for Defense Developmentnder the contract.
(UD160066BD)

REFERENCES
[1] Ajayi Adebowale, SA Idowu, and Otusile Oluwabukola. 2013. An overview of

database centred intrusion detection systems. Int. J. Eng. Adv. Technol 3, 2 (2013),
273–275.

[2] Daniel Barbará, Rajni Goel, and Sushil Jajodia. 2003. Mining malicious corrup-
tion of data with hidden Markov models. In Research Directions in Data and
Applications Security. Springer, 175–189.

[3] Salah Eddine Benaicha, Lalia Saoudi, Salah Eddine Bouhouita Guermeche, and
Ouarda Lounis. 2014. Intrusion detection system using genetic algorithm. In
Science and Information Conference (SAI), 2014. IEEE, 564–568.

[4] Martin V Butz, Pier Luca Lanzi, and Stewart W Wilson. 2008. Function ap-
proximation with XCS: Hyperellipsoidal conditions, recursive least squares, and
compaction. IEEE Transactions on Evolutionary Computation 12, 3 (2008), 355–376.

[5] Transaction Processing Performance Council. 2010. TPC BENCHMARKTM E.
http://www.tpc.org/tpce/.

[6] Pedro Garcia-Teodoro, J Diaz-Verdejo, Gabriel Maciá-Fernández, and Enrique
Vázquez. 2009. Anomaly-based network intrusion detection: Techniques, systems
and challenges. Computers & Security 28, 1-2 (2009), 18–28.

[7] John H Holland and Judith S Reitman. 1978. Cognitive systems based on adaptive
algorithms. In Pattern-directed Inference Systems. Elsevier, 313–329.

[8] Weiming Hu, Jun Gao, Yanguo Wang, Ou Wu, and Stephen Maybank. 2014.
Online adaboost-based parameterized methods for dynamic distributed network
intrusion detection. IEEE Transactions on Cybernetics 44, 1 (2014), 66–82.

[9] Yi Hu and Brajendra Panda. 2004. A data mining approach for database intrusion
detection. In Proc. of the Symposium on Applied computing. ACM, 711–716.

[10] Muhammad Iqbal, Will N Browne, and Mengjie Zhang. 2017. Extending xcs
with cyclic graphs for scalability on complex boolean problems. Evolutionary
Computation 25, 2 (2017), 173–204.

[11] Ashish Kamra, Elisa Bertino, and Guy Lebanon. 2008. Mechanisms for database
intrusion detection and response. In Proc. of the 2nd SIGMOD PhD Workshop on
Innovative Database Research. ACM, 31–36.

[12] Wei Li. 2004. Using genetic algorithm for network intrusion detection. Proc. of
the United States Department of Energy Cyber Security Group 1 (2004), 1–8.

[13] Kazuma Matsumoto, Yusuke Tajima, Rei Saito, Masaya Nakata, Hiroyuki Sato,
Tim Kovacs, and Keiki Takadama. 2016. Learning classifier system with deep
autoencoder. In Evolutionary Computation (CEC), Congress on. IEEE, 4739–4746.

[14] Masaya Nakata, Pier Luca Lanzi, and Keiki Takadama. 2015. Rule reduction by
selection strategy in XCS with adaptive action map. Evolutionary Intelligence 8,
2-3 (2015), 71–87.

[15] Frank S Rietta. 2006. Application layer intrusion detection for SQL injection. In
Proc. of the 44th annual Southeast Regional Conf. ACM, 531–536.

[16] Charissa Ann Ronao and Sung-Bae Cho. 2015. Mining SQL queries to detect
anomalous database access using random forest and PCA. In Int. Conf. on Indus-
trial, Engineering and Other Applications of Applied Intelligent Systems. Springer,
151–160.

[17] Abhinav Srivastava, Shamik Sural, and Arun K Majumdar. 2006. Database intru-
sion detection using weighted sequence mining. Journal of Computers 1, 4 (2006),
8–17.

[18] Gary Stein, Bing Chen, Annie S Wu, and Kien A Hua. 2005. Decision tree
classifier for network intrusion detection with GA-based feature selection. In
Proc. of Southeast Regional Conf.-Volume 2. ACM, 136–141.

[19] Danilo V Vargas, Hirotaka Takano, and Junichi Murata. 2013. Self organizing
classifiers and niched fitness. In Proc. of Conf. on Genetic and Evolutionary Com-
putation. ACM, 1109–1116.

[20] Stewart W Wilson. 1995. Classifier fitness based on accuracy. Evolutionary
Computation 3, 2 (1995), 149–175.

http://www.tpc.org/tpce/

	Abstract
	1 Introduction
	2 Related Works
	2.1 Machine Learning for Intrusion Detection
	2.2 Preprocess of Queries

	3 Proposed Methods
	3.1 Adaptation Process of XCS
	3.2 Component of Model
	3.3 Fitness Updating Process
	3.4 Use of Genetic Algorithms
	3.5 Applying XCS to Query Features

	4 Experiments
	4.1 Experiment Settings
	4.2 Results
	4.3 Focusing on Adaptation Process

	5 Conclusions
	Acknowledgments
	References

