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1 INTRODUCTION

Genetic algorithms (GA) [8] are currently one of the most widely

used meta-heuristics to solve engineering problems. Furthermore,

parallel genetic algorithms (pGAs) are useful to �nd solutions of

complex optimizations problems in adequate times [16]; in particu-

lar, problemswith complex �tness. Some authors [1] state that using

pGAs improves the quality of solutions in terms of the number of

evaluations needed to �nd one. This reason, together with the im-

provement in evaluation time brought by the simultaneous running

in several nodes, have made parallel and distributed evolutionary

algorithms a popular methodology.

Implementing evolutionary algorithms in parallel is relatively

straightforward, but programming paradigms used for the imple-

mentation of such algorithms is far from being an object of study.

Object oriented or procedural languages like Java and C/C++ are
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mostly used. Even when some researchers show that implementa-

tion matters [18], parallels approaches in new languages/paradigms

is not normally seen as a land for scienti�c improvements.

New parallel platforms have been identi�ed as new trends in

pGAs [16], however only hardware is considered. Software plat-

forms, speci�cally programming languages, remain poorly explored;

only Ada [19] and Erlang [5, 13] were slightly tested.

The multicore’s challenge [10] shows a current need for making

parallel even the simplest program. But this way leads us to use

and create design patterns for concurrent algorithms; the conver-

sion of a pattern into a language feature is a common practice in

the programming languages domain, and sometimes that means a

language modi�cation, others the creation of a new one.

This work explores the advantages of Perl6 [21], a relatively new

and decidedly non mainstream languages, since it is not included

in the top ten of any most popular languages ranking) with concur-

rent and functional features in order to develop EAs in its parallel

versions through concurrency. This paper, as well as similar ones

preceding it [3, 7], is motivated by the lack of community attention

on the subject and the belief that using concepts that simplify the

modeling and implementation of such algorithms might promote

their use in research and in practice.

This research is intended to show some possible areas of improve-

ment on architecture and engineering best practices for concurrent-

functional paradigms, as was made for Object Oriented Program-

ming languages [17], by focusing on pGAs as a domain of appli-

cation and describing how their principal traits can be modeled

by means of concurrent-functional languages constructs. We are

continuing the research reported in [2, 7].

The rest of the paper is organized as follows. Next section presents

the state of the art in concurrent and functional programming lan-

guage paradigms and its potential use for implementing pGAs. We

present two di�erent versions of a concurrent evolutionary algo-

rithm in Section 3, to be followed by actual results in section 4.

Finally, we draw the conclusions and present future lines of work

in section 5.

2 STATE OF THE ART

Developing correct software quickly and e�ciently is a never end-

ing goal in the software industry. Novel solutions that try to make a

di�erence providing new abstraction tools outside the mainstream

of programming languages have been proposed to pursue this goal;

two of the most promising are the functional and the concurrent.
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The concurrent programming paradigm (or concurrency ori-

ented programming [4]) is characterized by the presence of pro-

gramming constructs for managing processes like �rst class objects.

That is, with operators for acting upon them and the possibility of

using them like parameters or function’s result values. This simpli-

�es the coding of concurrent algorithms due to the direct mapping

between patterns of communications and processes with language

expressions.

Concurrent programming is hard for many reasons, the commu-

nication/synchronization between processes is key in the design of

such algorithms. One of the best e�orts to formalize and simplify

that is the Hoare’s Communicating Sequential Processes [11], this

interaction description language is the theoretical support for many

libraries and new programming languages.

When a concurrent programming language is used normally it

has a particular way of handling units of execution, being indepen-

dent of the operation system has several advantages: one program

in those languages will work the same way on di�erent operating

systems. Also they can e�ciently manage a lot of processes even

on a mono-processor machine.

Functional programming paradigm, despite its advantages, does

not have many followers. Several years ago was used in Genetic

Programming [6, 12, 23] and recently in neuroevolution [20] but in

GA its presence is practically nonexistent [9].

This paradigm is characterized by the use of functions as �rst

class concepts, and for discouraging the use of state changes, with

functions mapping directly input to output without having any side

e�ect. The latter is particularly useful for develop concurrent algo-

rithms in which the communication by state changes is the origin

of errors and complexity. Also, functional features like closures and

�rst class functions in general, allow to express in one expression

patterns like observer which in language like Java need so many

lines and �les of source code.

The �eld of programming languages research is very active in the

Computer Science discipline. To �nd software construction tools

with new and better means of algorithms expression is welcome.

In the last few years the functional and concurrent paradigms have

produced a rich mix in which concepts of the �rst one had been

simpli�ed by the use of the second ones.

Among this new generation, the languages Erlang and Scala

have embraced the actor model of concurrency and get excelentes

results in many application domains; Clojure is another one with

concurrent features such as promises/futures, Software Transaction

Memory and agents. All of these tools have processes like built-in

types and scale beyond the restrictions of the number of OS-threads.

On the other hand, Perl 6 [22] uses di�erent concurrency models,

that go from implicit concurrency using a particular function that

automatically parallelizes operations on iterable data structures, to

explicit concurrency using threads. These both types of concurrency

will be analyzed in this paper.

3 CONCURRENT EVOLUTIONARY

ALGORITHMS AND ITS IMPLEMENTATION

The implementation of evolutionary algorithms in a concurrent

environment must have several features:

• They must be reactive, that is, functions respond to events,

and not procedural or sequential.

• Functions responding to events are also �rst class objects and

are stateless, having no secondary e�ects. These functions

have to be reentrant, that is, with the capability of being run

in a thread without exclusion of other functions.

• Functions communicate with each other exclusively via chan-

nels, which can hold objects of any kind but are not cached

or bu�ered. Channels can be shared, but every object can be

read from a channel only once.

In general, an evolutionary algorithm consists of an interative

procedure where, after generating an initial set of individuals, these

individuals are evaluated, and then they reproduce, with errors and

combination of their features, with a probability that is proportional

to their �tness. As long as there is variation and survival of the

�ttest, an evolutionary algorithm will work. However, the usual

way of doing this is through a series of nested loops, with possibly

asynchronous operation in a parallel context when communicating

with other islands or isolated populations. However, the concept of

loop itself implies state, in the shape of the generation counter, or

even with the population itself that is handled from one iteration

step to the next one.

Getting rid of these states, however, leads to many di�erent al-

gorithms which are not functionally equivalent to the canonical

genetic algorithm above. Of course, a functional equivalent is also

possible in this environment, with non-terminating islands running

every one of them on a di�erent thread, and communicating via

channels. Although this version is guaranteed to succeed, we are

looking for di�erent implementations that, while keeping the spirit

of the evolutionary algorithm, maps themselves better to a multi-

threaded architecture and a concurent language such as Go, Scala

or Perl 6.

This is why in this paper we are going to examine two di�erent

architectures, which basically di�er in the granularity with which

they perform the evolutionary algorithm.

3.1 Individual-level concurrency

In this version of the algorithm, all functions operate on single

individuals or sets of them. We are going to use three di�erent

channels:

• Channel individual, which contains chromosomes without

a �tness function. A subchannel of this channel takes the

chromosomes in groups.

• Channel evaluated, which contains chromosomes paired

with their �tness function. This channel receives individuals

one by one, but emits them in groups of three.

• Channel output, which is used for logging what is happening

in the other two channels and printing output at the end of

the experiment.

There are two functions feeding these channels.

• Evaluator reacts to the individual channel, picking and eval-

uating a single individual and emits it to the evaluated as

well as output channel as an object that contains the original

chromosome and the computed �tness.

• Reproducer picks three individuals from the evaluated chan-

nel, generates a new couple using crossover, and emits it to
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the individual channel. This function also acts as selector,

and in fact it is similar to 3 tournament, since it takes three

individuals and returns only two of them to the channel,

along with the two individuals that have been generated via

crossover and mutation.

• Diversifier is a re-broadcasting of the individual channel,

picks a group of individuals and shu�es it, putting it back

into the same channel, giving them a di�erent order in the

bu�er.

How channels and functions relate to and communicate with

each other is represented in Figure 1. The functions described above

rebroadcast the values they read from the cannel when needed to

other channels so that all channels are kept fed and a deadlock

situation is not produced. This could happen, for instance, if the

reproducer channel, which takes individuals in pairs, is only able

to read a single one; since it is waiting for a second individual it

is not producing new ones and the algorithm will stall. This could

be �xed in a di�erent way by changing from a reactive architec-

ture to a polling architecture, but that kind of architecture also

introduces overhead by polling when it is not needed. You have to

balance when designing these types of algorithms, anyway; polling

is another possibility, but one we are not exploring in this paper.

The concurrency of this situation implies that we can run as

many copies as available of every one of them. Also that there is an

initial process where you generate the initial population, a series

of individuals which must be even, and bigger than the number of

individuals used in the diversi�er. This is equivalent to an initial

population, although in this case there is no real population, since

individuals are considered in groups of three.

Depending on the overhead emission and reception adds, it is

possible that the performance of this channel is not the adequate

one, even if theoretically it is sound. That is why we have also

proposed next a coarse-grained version where the function process

whole populations.

3.2 Population-level concurrency

In this case, the algorithm uses a single channel that emits and

receives populations. However, this channel is also re-broadcast as

another channel that takes the population in pairs. Having a single

channel, even is with di�erent threads, will make several threads

concurrently process populations that will evolve in complete inde-

pendence. This is why there are two functions:

• Singles takes single populations and evolves them for a num-

ber of generations. It stops if it �nds the solution, and closes

the channel at the same time.

• Pairs reads pairs of populations from the sub-channel and

mixes them, creating a new population with the best mem-

bers of both populations. This mixer is equivalent to a pro-

cess of migration that takes members from one population

to another. Since this function takes two elements from the

channel, it must leave two elements in the channel too. What

it does is it emits back a randomly chosen population in the

pair.

Additionally, there must be a function, which can be concurrent,

to create the initial population. The process of migration performed

by the mixer is needed to overcome the stateless nature of the

concurrent process. The state is totally contained in the population;

the mixer respects this state of a�airs by using only this information

to perform the evolutionary algorithm.

This algorithm has several parameters to tune:

• Number of generations that every function runs. This pa-

rameter is equivalente to the time needed to perform some

kind of migration, since it is the time after which popula-

tions are sent back to the channel for mixing and further

evolution.

• initial populations The channel must never be empty, so

some initial random populations must be generated, always

in pairs.

3.3 Notes on implementation using Perl 6

Perl 6 [22] has been chosen to perform the implementation of these

two di�erent versions of a concurrent evolutionary algorithm. This

choice has been due mainly to the existence of an open source

evolutionary algorithm library, recently released by the authors

and called Algorithm::Evolutionary::Simple. This library, re-

leased to the repository of common Perl 6 modules and called CPAN,

includes functions for the implementation of a very simple evolu-

tionary algorithm for optimizing onemax, Royal Road or any other

benchmark function.

Perl 6 [14] is, despite its name, a language that is completely

di�erent from Perl, designed for scratch to implement most modern

language features: meta-object protocols, concurrency, and func-

tional programming. It does not have a formal grammar, but is

rather de�ned by the tests a compiler or interpreter must pass in

order to be called “Perl 6”. It consists of a virtual machine and a just

in time compiler which is written mostly in Perl 6 itself, so that it

can be easily ported from one virtual machine to others. Although

it can target many di�erent virtual machines, the current “o�cial”

implementation includes a virtual machine called MoarVM and a

compiler called Rakudo. All together they compose the so-called

Rakudo start distribution, a stable distribution of compiler + virtual

machine that is released every 4 monts from GitHub and to package

repositories.

The advantage of using Perl 6 is that it combines the expressivity

of an interpreted language with the power of concurrency. Not very

many languages nowadays include concurrency as a base feature;

Go, Scala and Erlang are some of them. The concurrency in Go is

done in a similar way to Perl 6, using channels, but Go is a compiled,

non-functional language.

The main disadvantage of Perl 6 is raw performance, which is

much slower than Go, although in general, similar although slower

than other interpreted languages such as Python or Perl. Language

performance is not an static feature, and it usually improves with

time; in a separate paper, we have proved how speed has increased

by orders of magnitude since it was released a few years ago.

This paper, however, is focused on the algorithmic performance

more than the raw performance, so su�ce it to say that Perl 6

performance was adequate for running these experiments in a

reasonable amount of time.

The module used, as well as the code for the experiments, is

available under a free license.
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Figure 3: Boxplot of the number of evaluations needed for di�erent number of bits in the maxones problem. Please note that

axes x and y both have a logarithmic scale.

4 EXPERIMENTAL SETUP AND RESULTS

In order to perform the experiments, we used Linux boxes (with

Ubuntu 14.04 and 16.04), the latest version of the Perl 6 compiler

and virtual machine. First we used a selecto-recombinative evolu-

tionary algorithm, with no mutation, in order to �nd out what’s

the correct population for every problem size [15]. This method

sizes populations looking for the minimal size that achieves a 95%

success rate on a particular problem and problem size; in this case,

size 512 was the ideal for the maxones problem with size 64. This

size was used as a base for the rest of the problem sizes; since the

real evolutionary algorithm actually uses mutation, the population

was halved for the actual experiments. This population size is more
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dependent on the problem itself than on the particular implemen-

tation, that is why we use it for all implementations. First we run
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Figure 4: Boxplot comparing the number of evaluations

needed for solving the 64 bit onemax problem using the

population-leven concurrent algorithm with di�erent num-

ber of initial populations.

a basic evolutionary algorithm with di�erent chromosome sizes,

to get a baseline of the number of evaluations needed for �nding

the solution in that case. Time needed was the main requisite for

choosing the di�erent sizes, although we think that scaling should

follow more or less the same trend as shown for smaller sizes. We

compared mainly the number of evaluations needed, since that is

the main measure of the quality of the algorithm.

We show in Figure 3 the logarithmic chart of the number of

evaluations that are reached for di�erent, logarithmically growing,

chromosome sizes using the individually concurrent evolutionary

algorithm. There is a logical increase in the number of evaluations

needed, but the fact that it is a low number and its scaling prove that

this simple concurrent implementation is indeed an evolutionary

algorithm, and does not get stuck in diversity traps that take it to

local minimum. The number of evaluations is, in fact, quite stable.

We did the same for the population-level concurrent algorithm;

however, since this one has got parameters to tune, we had to �nd

a good result. In order to do that, we tested di�erent number of

initial populations placed in the channel, since this seems to be

the critical parameter, more than the number of generations until

mixing. The results are shown in Figure 4. The di�erence between

using 4 and 6 initial populations is virtually none, but there is a

slight advantage if you use only 2 initial populations to kickstart

the channel. Please bear in mind that, in this case, the concept of

population is slightly di�erent from the one used in island EAs.

While in the latter the population does not move from the island, in
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Figure 5: Boxplot comparing the number of evaluations

needed for solving the 64 bit onemax problem in the indi-

vidually concurrent and canonical EA version.

this case populations are read from channels and acted upon, and

in principle there could be as many initial or unread populations

as wanted or needed; every function in every thread will process a

single population nonetheless.

We can now compare these two algorithms with the baseline EA.

This is a canonical evolutionary algorithm using bit�ip mutation

and two-point crossover, using roulette wheel as a selection method.

It has, as the rest of the implementations of the algorithms, been

implemented using Algorithm::Evolutionary::Simple, the free

software module in Perl 6.

The comparison is shown in Figure 5, which shows, in a log-

arithmic y scale, a boxplot of the number of evaluations for the

baseline, as well as the two di�erent concurrent algorithms, at the

population and individual level. As it can be seen, this last algo-

rithm outperforms the other two, achieving the same result using

many less evaluations, almost one order of magnitude less. In fact,

both concurrent algorithms are better than the baseline, and please

note this measures the number of evaluations, equivalent to the

algorithmic complexity, and not time. This �gure is the base to

reach our conclusions.

5 CONCLUSIONS AND DISCUSSION

It is natural to take advantage of the multithreading and multipro-

cess capabilities of modern architectures to make evolutionary or

other population-based algorithms faster; that can be done in a very

straightforward way by parallelizing the evolutionary algorithm

using the many available models, such as island model; however,

it is possible that adapting the algorithm itself to the architecture

makes its performance better.
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However, this change implies also a di�erent vision of the al-

gorithm, that is why the �rst thing that has to be evaluated is the

actual number of evaluations that need to be done to solve the

problem. This is what we have done in this paper. We have pro-

posed two di�erent concurrent implemtations of an evolutionary

algorithms with di�erent grain: a �ne-grained one that acts at the

individual level, and a coarse-grained one that acts at the level of

populations.

The individual-level concurrent EA shows a good scaling across

problem size; besides, when comparing it with the population-level

concurrent EA and the canonical and sequential evolutionary algo-

rithm, it obtains a much better performance, being able to obtain

the solution with a much lower evaluation budget. Second best is

the population-level concurrent algorithm, to be followed by the

baseline canonical GA, which obtains the worse result. This proves

that, even from the purely algorithmic point of view, concurrent

evolutionary algorithms are better than sequential algorithms. If

we consider time, the di�erence increases, since the only sequential

part of the concurrent algorithms is reading from the channels,

but once reading has been done the rest of the operations can be

performed concurrently, not to mention every function can have

as many copies as needed running in di�erent threads.

These results are not so much inherent to the concurrency itself

as dependent on the selection operators that have been included in

the concurrent version of the algorithms. The selection pressure

of the canonical algorithm is relatively low, depending on roulete

wheel. The population-level concurrent algorithm eliminates half

the population with the worst �tness, although every generation it

is running a canonical GA identical to the baseline; however, this

exerts a high selective pressure on the population which, combined

with the increased diversity of running two populations in parallel,

results in better results. Same happens with the individual-level

concurrent EA: the worst of three is always eliminated, which ex-

erts a big pressure on the population, which thus is able to �nd

the solution much faster. Nothing prevents us from using these

same mechanisms in an evolutionary algorithm, which would then

be functionally equivalent to these concurrent algorithms, but we

wanted to compare a canonical EA to canonical concurrent evolu-

tionary algorithms, at the same time we compare di�erent versions

of them; in this sense, it is better to use this individual-level con-

current algorithm in future versions of the evolutionary algorithm

library.

Themain conclusion of this paper is that evolutionary algorithms

can bene�t from concurrent implementations, and that these should

be as �ne grained as possible. However, a lot of work remains to

be done. One line of research will be to try and use the implicitly

concurrent capabilities of Perl 6 to perform multi-threaded evalua-

tion or any other part of the algorithm, which would delegate the

use of the threading facilities to the compiler and virtual machine.

That will have no implications on the number of evaluations, but

will help make the overall application faster.

Of course, time comparisons will also have to be made, as well

as a more thorough exploration of the parameter space of the

population-level evolutionary algorithm. Since this type of algo-

rithm has a lower overhead, communicating via channels with

lower frequency, it could be faster than the individual-level concur-

rent EA. Measuring the scaling with the number of thread is also

an interesting line to pursue; since our architecture is using single

channels, this might eventually be a bottleneck, and will prevent

scaling to an inde�nite number of threads. However, that number

might be higher than the available number of threads in a desktop

processor, so it has to be measured in practice.

Finally, we would like to remark that this paper is part of the

open science e�ort by the authors. It is hosted in GitHub, and the

paper repository hosts the data and scripts used to process them,

which are in fact embedded in this paper source code using Knitr

[24].
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