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ABSTRACT
Solving problems involves the following two phases. In the
first phase, detail of the problem are determined and the
solution is found according to these condition. In the second
phase, the results are used to narrow down any remaining
ambiguities in the problem. In terms of the flow of a river, the
former lies upstream of solving the problem while the latter
lies downstream. Multiobjective genetic algorithms (GAs)
is are able to find possible solution sets involving trade-offs
among several different objective functions. In this study, we
use a multiobjective GA to grasp variety types of solutions,
not solve the problem directly. In other words, we use it
for the upstream problem-solving step. As a case study of
using multiobjective GAs to explore solutions, we identify
cancer cells where the Nrf3 transcription factor is active and
consider the problem of determining which genes to focus on
in experiments based on that information. In this case, we
selected gene candidates that are likely to be associated with
Nrf3 activity and experiments (which previously had to be
carried out exhaustively) are currently being carried out to
confirm these results.
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1 INTRODUCTION
When solving a given decision-making problem, if it can be
formulated as an optimization problem, solution candidates
can be found via numerical computation; we can then use the
optimization results to defined in detail. In such cases, it can
be helpful to select several solution candidates and analyze
them to obtain more information about the problem. This
kind of so-called upstream analysis can enable us to derive
a more detailed specification of the target problem.

In the engineering design field, many design exploration
frameworks have been introduced [3, 9]. Obayashi et al. in-
troduced one that used a multiobjective genetic algorithm
(GA) to find several candidates for the optimal design at an
early stage of the optimization process [11]. In their frame-
work, the optimal design candidates are derived as a Pareto
solution set and are then analyzed further to identify the
target problem’s characteristics and a strategy to improve
the optimization process and hence derive better solutions.
After this upstream analysis step, the design specification is
confirmed and the design process is continued to take ad-
vantage of optimal design found.

Hiwa et al. generalized this idea and extended it to decision-
making problems [7, 8]. In their approach, the candidate
Pareto solutions are generated by multiobjective optimiza-
tion and the details of the problem are defined by using prin-
cipal component analysis to extract the solutions’ meaning-
ful features and data clustering to classify them. This type
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of upstream problem-solving process is called "solution ex-
ploration" in this study.

This approach can be applied to biomedical science ques-
tions such as finding the physiological relationship between
the transcription factor that activates malignant cancer cells
and the subsequent cell proliferation and cancer. Here huge
numbers of experiments often have to be carried out to iden-
tify genes that are highly correlated with the appearance of
the target transcription factor because researchers initially
have little information about which cancer cells or genes
should be considered. Such experiments are extremely costly.
Here, we assume that the root of this problem lies in the
upstream decision-making process for deciding which of the
many possible experimental candidates to consider.

For such problems, a reasonable approach is to conduct
general-purpose experiments including all the candidates to
increase the likelihood of identifying promising candidates.
However, the effectiveness of this approach tends to decline
as the number of initial candidates increases. There is a
trade-off between the versatility of the experimental method
and the usefulness of its results (i.e., the probability of find-
ing meaningful results).

The first step in dealing with this issue is to confirm this
trade-off by modeling the problem as a multiobjective opti-
mization problem and solving it using a suitable algorithm.
Once the Pareto solution set has been derived, we can de-
termine good candidates for further experiments or promis-
ing experimental approaches by extracting the candidates
(i.e., candidate samples or sample characteristics) that ap-
pear most frequently.

In this paper, we apply this solution exploration method
to the problem of deciding which samples to prioritize for
further analysis in laboratory experiments. Here, we focus
on the problem of determining the cancer cells associated
with the Nrf3 transcription factor. This factor activates ma-
lignant cancer cells and causes cell proliferation [2, 12] and
is attracting attention as a new target for cancer treatment.
If particular genes are highly correlated with Nrf3 activity,
they are likely to influence the onset of cancer.

Conventional studies require large numbers of laboratory
experiments to check for correlations between Nrf3 and dif-
ferent genes in various types of cancer cells. Our goal in
applying a solution exploration approach to this problem is
therefore to narrow down the list of candidate cells and genes
to reduce the number of laboratory experiments required. In
particular, we focus on the gene expression correlations be-
tween Nrf3 and the TGF-β/SMAD signal factors [5, 13], a
group of genes related to tissue fibrosis and cancer metasta-
sis, and identify the cells that should be preferentially inves-
tigated.

2 SOLUTION EXPLORATION FRAMEWORK
Figure 1 illustrates the solution exploration process we apply
to find promising experimental candidates.
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Figure 1: Solution Exploration Framework

Some trade-offs are involved in initially determining the
problem conditions. For example, in product design, reduc-
ing the production cost and improving the product’s quality
or performance are often competing factors. In our current
problem of selecting candidates for laboratory experiments,
there is a trade-off between the versatility of the experimen-
tal approach and the usefulness of the results. Our solution
exploration framework involves the following three steps: 1)
search using a multiobjective GA, 2) analyze the resulting
Pareto solution set, and 3) select the candidates. The sim-
plest way to analyze the characteristics of the Pareto solu-
tions is to identify which elements appear most frequently,
as these are likely to be important for the target problem.

In the next section, we apply this framework to concrete
experimental problems and explain the process in detail.

3 APPLICATION TO CANCER CELL
DETERMINATION PROBLEM

Using the solution exploration framework described in the
previous section, we now propose a method of determining
cells where the Nrf3 expression level is highly correlated with
those of the signal factors.

3.1 Nrf3 transcription factor
Transcription factors are protein groups that bind to spe-
cific DNA sequences. They are classified as either activators
(which increase the expression of particular genes) or repres-
sors (which decrease the expression levels). They regulate the
process of binding to regulatory regions, such as promoters
and enhancers that control transcription and transcribing
genetic information from DNA into RNA.

The Nrf3 gene belongs to the stress response-related tran-
scription factor group called the Cap’n’collar (CNC) family.
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This family consists of six transcription factors: p45/NF-
E2, Nrf1, Nrf2, Nrf3 (which acts as a transcription activa-
tor), and Bach1 and Bach2 (transcription repressors). Nrf3
is known to be highly expressed in various cancer cells and
is also believed to activate malignant cancer cells and cause
cell proliferation. In lung cancer-derived cells, proteolytic en-
zymes are activated when Nrf3 is highly expressed, which
may bring about carcinogenesis by degrading the tumor sup-
pressor gene. The role of this Nrf3-controlled gene expression
mechanism in cancer development has attracted significant
attention from researchers.

Transforming growth factor β (TGF-β) suppresses the
growth of many types of cells, such as epithelial cells, and can
lead to cell cancerization if it fails to suppress cell growth.
In addition, it can induce epithelial to mesenchymal tran-
sitions that can cause tissue fibrosis and allows epithelial
cells to be converted into mobile mesenchymal cells that can
invade cancer cells and cause metastasis [10].

Three other types of proteins have structures similar to
that of TGF-β: TGF-β1, 2, and 3. These activate two types
of serine threonine kinase-type receptors, TGF-βR1 and -
βR2, resulting in the activation of so-called SMAD signal
factors. When TGF-βR1 activates SMAD2 and SMAD3 due
to the action of TGF-β, SMAD4 is also bound, forming an
SMAD complex. This then translocates into the nucleus and
binds to the DNA and various transcription factors, thereby
regulating the transcription of numerous genes. Here, we
focus on the expression of Nrf3 and its correlations with
those of seven genes, namely, GDF5, SMAD3, SMURF1,
SMURF2, TGF-β2, TGF-βR2, and TGIF, which are in-
volved with the TGF-β/SMAD signaling mechanism. If these
correlations are high in cancer cells, then Nrf3 may be an im-
portant factor in the TGF-β/SMAD signaling mechanism.

3.2 Problem definition
DNA microarrays [1, 14] are used to analyze genes, and in
this case, they were used to generate gene expression data
for various cancer cells. Using these data, we can identify the
cancer cells with high correlations between Nrf3 expression
and those of the other genes and then select the cells where
these genes were most active. However, although methods
that target many types of cancer cells in this way are more
versatile, the expression correlations tend be lower because
cells not associated with Nrf3 are also included in the sample
set, as illustrated in Figure 2.

On the other hand, if we look at a narrower range of cancer
cell types, we may miss groups of cancer cells showing high
correlations. Previous studies have explored which genes are
highly correlated with Nrf3 using a cell set called the Na-
tional Cancer Institute (NCI)-60 cancer cell line panel, which
comprises 60 different human cancer cell lines (e.g., leukemia,
malignant melanoma, colon, central nervous system, lung,
ovary, breast, prostate, and kidney). While it is not neces-
sary to analyze all 60 cell lines, there has been no way to
reduce the number considered because there was no way to

specify which cells were important for detecting the most
significant correlations between Nrf3 and other genes.
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Figure 2: Gene correlations using (a) a small number of care-
fully selected cells and (b) all cells.

We used our solution expression framework to overcome
this problem. Specifically, we focused on the correlations be-
tween Nrf3 and the genes representing the TGF-β/SMAD
signal factors associated with tissue fibrosis and cancer metas-
tasis, extracting the set of cancer cells with strong correla-
tions via multiobjective optimization.

To achieve this, we formulated this as the optimization
problem of deciding which of the 60 cancer cell lines showed
the highest correlations. In this problem, each of 60 decision
variables x = (x1, x2, . . . , xd) (xk ∈ {0, 1}, d = 60) indicates
whether or not one of the NCI-60 cell lines is selected when
searching for the optimal group of cells. For each decision
variable, the value 1 means that the corresponding cancer
cell is "of interest," while 0 means the opposite.

In this problem, to aim is to obtain the optimal group of
cancer cells with the most significant correlations between
Nrf3 expression and those of the TGF-β/SMAD signal fac-
tors. We therefore calculated the Pearson correlation coeffi-
cients R between Nrf3 and the other genes and utilized its
square as the objective function. Figure 3 illustrates the ob-
jective function evaluation procedure.

There is, however, a trade-off between the number of cells
selected and the probability of finding potential gene ex-
pression correlations. In order to investigate this trade-off,
we used the number of cells selected as a second objective
function. Both objective functions were maximized by the
optimization process.

The resulting multiobjective optimization problem was
formulated as follows:

maximize f1 (x) = {R(ENrf3 (x), EA (x))}2

f2 (x) = ||x||1 (1)
subject to xk ∈ {0, 1} (k = 1, . . . , d)

where ENrf3 (x) and EA (x) denote the expression levels of
Nrf3 and the target gene A, respectively, calculated for the
sample set x.
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Figure 3: Objective function evaluation procedure

4 NUMERICAL EXPERIMENTS
4.1 Baseline method
In this paper, we focus on finding correlations between the
Nrf3 expression level and those of the seven TGF-β/SMAD
signal factors in cancer cells to evaluate the effectiveness of
the proposed method. The seven genes are GDF5, SMAD3,
SMURF1, SMURF2, TGF-β2, TGF-βR2, and TGIF. In the
baseline approach, all 60 cells in the NCI-60 panel were uti-
lized for the correlation analysis.

4.2 Proposed method
Here, we solved the multiobjective optimization problem us-
ing the nondominated sorting GAs II (NSGA-II) [4], adopt-
ing the binary genotype representation, uniform crossover
(crossover rate = 1.0), and bit-flip mutation (mutation rate
= 1/chromosome length). Table 1 summarizes the parame-
ters used. We carried out 10 independent runs for each sig-
nal factor gene. The algorithm was implemented using the
Distributed Evolutionary Algorithm in Python library [6].
Since each of the seven genes was optimized separately, we

Table 1: NSGA-II parameters used

Parameter Value
Population size 100
Chromosome length 60
Number of generations 200
Crossover rate 1.0
Mutation rate 1/60

obtained seven Pareto solution sets.

5 RESULTS AND DISCUSSIONS
5.1 Baseline method
Figure 4 shows the results of the baseline analysis, which
calculated the correlations between the Nrf3 expression and
those of the other seven genes for all the cancer cell lines in
NCI-60. The R2 value was less than 0.4 for all seven genes,
meaning it was unable to find any strong correlations be-
tween Nrf3 and the TGF-β/SMAD signal factors.
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Figure 4: Correlation between Nrf3 and the TGF-β/SMAD
signal factors, calculated using all 60 cell lines in NCI-60

5.2 Proposed method
Figure 5 shows the Pareto solution sets (dots) obtained by
NSGA-II for the seven genes. The purple regions indicate
where the correlation between Nrf3 and the target gene in
each Pareto solution (corresponding to a set of cancer cells)
is significant. This indicates that all of the obtained Pareto
solutions lie in reliable areas. Furthermore, we found higher
correlations between Nrf3 and the seven genes than with the
baseline method. From a biological viewpoint, it is impor-
tant to obtain higher correlation levels and to understand
why these strong correlations are present. We therefore in-
vestigated which of the cancer cell lines were most frequently
selected for the optimized sample set. After discussions with
biological experts, we counted how frequently the cell lines
were selected for all seven Pareto sets combined. We only
counted solutions with R2 ≥ 0.9 because we were aiming to
discover which cells were most likely to show that Nrf3 is
involved in the TGF-β/SMAD signaling mechanism. Figure
6 shows the total number of times each NCI-60 cell line was
selected for a Pareto solution set, in descending order of the
number of times selected.

The top three cell lines selected for the Pareto sets were
as follows: ME_MDA_MB_435 (24 times), BR_T47D (23
times), and ME_MALME_3M (21 times). All of which were
sampled from melanomas and breast cancers. Since these
cell types can be regarded as likely to exhibit high correla-
tions between Nrf3 expression and those of multiple TGF-
β/SMAD signaling factors, we believe that Nrf3 affects the
TGF-β/SMAD signaling mechanism and is also associated
with the incidence of melanoma and breast cancer.

In contrast, the BR_HS578T breast cancer-derived cells,
CNS.SF_295 central nervous system-derived cells, and
LE.RPMI_8226 leukemia-derived cells were never selected.
This suggests that there are also cancer cells in which Nrf3
expression is not correlated with those of the seven genes,
and that Nrf3 is not involved in the TGF-β/SMAD signaling
mechanism in these cells. These results will contribute to
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(a) GDF5 (b) SMAD3 (c) SMURF1 (d) SMURF2

(e) SMURF2 (f) TFFBR2 (g) TGIF1

Figure 5: Pareto solution sets of seven genes of TGF-β/SMAD signal factor
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Figure 6: Pareto solution sets (dots) for the seven TGF-β/SMAD signal factors

preventing further laboratory experiments examining cells
where there is no Nrf3 association.

Using these results, we were able to obtain experimental
candidates involving Nrf3 transcription factor activity. How-
ever, our current study has some limitations that will need
to be addressed in future work.



GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan L. Perino et al.

First, we have only used NSGA-II in this preliminary
study, and the most appropriate parameter values and num-
bers of iterations and runs required to produce stable results
need to be investigated further. In addition, other state-of-
the-art algorithms, such as MOEA/D and NSGA-III, may
potentially work well, so we should assess which algorithms
are suitable for the cancer cell determination problem. Sec-
ond, biological experts are currently attempting to confirm
that the cancel cell candidates determined by our method
are actually associated with a combined Nrf3 and TGF-
β/SMAD signaling mechanism via laboratory experiments.

6 CONCLUSIONS
The solution exploration framework determines the target
problem details based on the solutions produced by multi-
objective optimization. In this paper, we have examined the
effectiveness of this framework for determining which cancer
cell samples involve Nrf3 transcription factor activity. In our
numerical experiments, we used the proposed method to au-
tomatically extract the cancer cells most likely to yield cor-
relations between Nrf3 expression and those of seven other
genes from 60 cell line candidates. Further analysis of the
Pareto solution sets then revealed which cancer cells were
most likely to feature strong Nrf3 activity. Laboratory ex-
periments are currently being conducted to verify these re-
sults.
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