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ABSTRACT
There is increasing impetus towards ‘Industry 4.0‘, a recently pro-
posed roadmap for process automation across a broad spectrum
of manufacturing industries. The proposed approach uses Evolu-
tionary Computation to optimise real-world metrics. Features of
the proposed approach are that it is generic (i.e. applicable across
multiple problem domains) and decentralised, i.e. hosted remotely
from the physical system upon which it operates. In particular, by
virtue of being serverless, the project goal is that computation can
be performed ‘just in time’ in a scalable fashion. We describe a case
study for value-based optimisation, applicable to a wide range of
manufacturing processes. In particular, value is expressed in terms
of Overall Equipment Effectiveness (OEE), grounded in monetary
units. We propose a novel online stopping condition that takes into
account the predicted utility of further computational effort. We
apply this method to scheduling problems in the (max ,+) algebra,
and compare against a baseline stopping criterion with no predic-
tion mechanism. Near optimal profit is obtained by the proposed
approach, across multiple problem instances.

CCS CONCEPTS
•Computer systems organization→Cloud computing; •Ap-
plied computing → Supply chain management; • Comput-
ing methodologies → Genetic algorithms;
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1 INTRODUCTION
The ‘Industry 4.0‘ concept1 envisions increasingly automated man-
ufacturing, characterized by the integration of Computational In-
telligence methods into the production process. Properties typi-
cally associated with Industry 4.0 include a) interoperability of
the cyber-physical components of the system and b) decentralized
decision-making. Widespread adoption of Industry 4.0 will clearly
not be possible if the Computational Intelligence methods require
significant bespoke effort. The proposed methods must therefore
exhibit both a high degree of cross-domain genericity and also
require minimal end-user expertise to be applied to some variant
application domain. Relative to other optimisation methods, these
are both advantages enjoyed by Evolutionary Computation.

In this article, we present a case study of a distributed ‘Function
as a Servce’ (FaaS) system that uses Evolutionary Computation
to perform scalable optimisation. We address a real-world issue
that is frequently neglected in many traditional benchmarks: the
effect that time spent optimising has on overall manufacturing
profit (OEE). We present a novel stopping condition which takes
this into account. We define a model that combines manufacturing
profit/loss with the predicted value of further computation. To
obtain both genericity and real-world grounding, combined model
values are expressed in terms of monetary units (sometimes termed
‘$EE’ instead of OEE [17]).

The central notion of Industry 4.0 is that, by being rapidly re-
sponsive to the dynamic arrival of manufacturing orders, customers
can then require only several units of a highly customised product
[6]. They will have a set of highly configurable machines with au-
tomated material handling systems and a cloud-based management
system [3]. Such a service-oriented manufacturing model will also
aim to maximise the profit from the plant by sharing manufacturing
resources across a number of manufacturing orders [15].

An ubiquitous optimisation problem in smart factories is the
allocation of manufacturing resources over time, while satisfying
constraints in terms of time and cost [15]. But even a single ma-
chine can be configured in multiple ways, depending on the re-
quired manufacturing schedule (priorities, delivery time, etc) and
sustainability constraints (consumables and/or energy-saving con-
ditions) [4]. Hence, optimisation is naturally interleaved with the
manufacturing process in an online manner. This motivates the pro-
posed approach of scalable optimisation with a grounded stopping
criterion.

1http://www.plattform-i40.de/I40/Navigation/DE/Home/home.html
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As all these parameters are chosen with the implicit aim of
maximizing profit, value-based heuristics may be perceived as par-
ticularly suitable to solve this optimisation problem. Value-based
heuristics have been shown to be beneficial in previous studies
(e.g. in case of HPC system overload [28]). With such heuristics, a
certain value is associated with each optimisation task. This value
represents the importance level of the task and is usually propor-
tional to the benefit accruing to the end-user from task completion.
In the proposed system, we associate a so-called value curve with
each manufacturing order, describing the temporal aspect of the
yielded profit. The utility of an optimisation is therefore intrinsi-
cally time-dependent: completion of the optimisation process at a
time point corresponding to a high value on the curve prevents the
plant from becoming idle, and thus can increase the overall profit
even if a better solution (viewed merely in terms of the optimisation
task itself, rather than that overall profit) could subsequently be
found.

A typical scheduling problem in smart factories requires sub-
stantial computing resources each time the factory needs recon-
figuration, e.g. on arrival of a new manufacturing order. As these
resources are needed on demand, cloud based optimisation using
Genetic Algorithms (GA) is proposed in this paper. Evolutionary
algorithms have been shown to be particularly effective in such
applications [5] and performing the optimisation process in clouds
can decrease the related costs [16]. To reduce the optimisation cost
even further, the Function as a Service (FaaS) serverless cloud com-
puting model has been chosen. Using this architecture, customers
not only do not have to maintain the computing infrastructure, but
are billed for the actual execution time of the computing resources,
which are expected to become available within milliseconds of
request. Thanks to these properties, the proposed optimisation
scheme can be highly scalable depending on the size of the optimi-
sation problem and timing constraints. Each of these possibilities
is investigated in this paper.

Contribution: We propose a new modeling technique for man-
ufacturing orders. This technique benefits from (i) the a priori
knowledge of the dynamic value stemming from completion of
the optimisation process at certain time, (ii) predicted utility of
further optimisation, (iii) scalable computing resources available
on demand in the serverless cloud computing architecture.

It is typical in optimisation research for the trade-off between
solution quality and execution time to be implicit, with the latter
often being expressed in terms of a coarse measure such as ‘number
of evaluations of the objective function’. This is of course good
scientific practice, but is not sufficient to capture the needs of our
real-world application. The second contribution therefore employs
a value curve to make this trade-off completely explicit, grounding
computational processing in terms of monetary profit, as described
earlier.

2 RELATEDWORK
In this Section, we discuss previous work related the three com-
bined aspects of this paper: i) GA stopping criteria, ii) value-based
heuristics, iii) evolutionary optimisation in the cloud:

Stopping Criteria
According to Michalewicz [19], the most common stopping cri-
teria of a GA are either a) statically-determined upper limits on
the number of generations or fitness function evaluations or b)
dynamic prediction of further improvement based on genotypic
and/or phenotypic convergence. Safe et al [21] argue that dynamic
prediction is preferable. One of such alternatives has been proposed
by Hernandez et al [12], with an adaptive stopping criterion which
was experimentally shown to stop at optimal solutions with a high
probability. In Hajji et al [10], a stopping criterion based on an
approximation of the objective function has been compared with
criteria based on both genotypic and phenotypic convergence. The
genotypic convergence was evaluated by comparing the percentage
convergence of each gene against a certain threshold. The pheno-
typic convergence was evaluated using two metrics: online perfor-
mance converges to a stable value when the solutions converge
and offline performance converges when the probability of improv-
ing the solution decreases. The approximation-based method gave
the best results of the proposed approaches, but at the expense of
greatest computation time. The online and offline performances
were much faster and close to the approximation-based ones with
regard to quality. The genotypic criteria were shown to be not ef-
ficient. Consequently, in our proposed approach only phenotypic
convergence is considered.

In Yin et al [29], the Standard Deviation (SD) of fitness values
is employed as a stopping criterion, terminating the optimisation
process when SD is lower than a given threshold. In that paper, an
SD-based stopping criterion has been shown to speed up the con-
vergence and shorten the search time for scheduling independent
tasks in a grid environment. This criterion is also used as a part of
our proposed stopping criterion.

Perroni et al focus on an estimation of a beneficial stopping
point for any swarm-based search algorithm [20]. In that paper,
a sequence of auto-adapted exponential and log-like curves are
proposed to model the algorithm convergence. In this paper, a
similar approach based on the rational function extrapolation [25]
is used to predict future fitness values and thus apply a value-based
heuristic to trade between the potential value gain due to a better
solution quality and the loss caused by the longer computation.

Value Based Heuristics
The main goal of value-based heuristics is to inform a decision
process that maximises overall value to end-user [1]. Several value-
based heuristics have been employed to allocate processing tasks.
Theocharides et al [27] assumed task values to be fixed, whearas
Burns et al [2] allow task values to change over time. In the lat-
ter case, the value can be described with a so-called value curve,
a function whose domain represents the computation time (with
origin at the release time of the process/container), whereas the
codomain represents the values themselves [13]. Typically, a value
curve is non-increasing and reaches a value of zero at a certain time
point. After that point, there is no benefit from computing the task
and it can be dropped to avoid consuming unnecessary processor
resource. During each scheduling event, a task with the highest
value at that moment can be selected, as discussed in Theocharides
et al. The innate risk of such technique is to select a task with large
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Figure 1: General scheme of the proposed approach

outlying resource requirements, where a set of less computation-
ally expensive tasks may actually be preferable. Burkimsher et al
[1] proposed to first allocate tasks with maximal remaining value,
calculated as the area under the value curve from the current time
to the zero point. A number of value-related heuristics have been
compared by Singh et al [24], highlighting the benefits originating
from the access to historic execution data. In this paper, a similar
assumption is made: the estimated execution time of a GA invoca-
tion (termed a ‘stage’, hereafter), based on historically measured
cases, is used to decide whether to terminate stage sequencing.

Value-based allocation of Docker containers have been proposed
by Dziurzanski et al [8]. However, the authors of that paper focused
on allocation of multiple independent containers to maximise the
cumulative value, whereas the goal of this paper is to maximise the
profit obtained from a single manufacturing order. Moreover, the
related execution cost was not considered in that paper. Similarly,
containers were executed in a local cluster, with customised sched-
uler installed on each node, whereas we instead focus on execution
using serverless clouds.

A complementary notion to the value curve, entitled ‘price curve’,
has been used in Henzinger et al [11] to present a varied cost of
computing resources. In contrast, we assume constant cost for
executing an optimisation engine in a cloud, as this is case for the
major cloud vendors. We share with Henzinger the expression of
value curves in monetary units.

Cloud-based Evolutionary Computation
A recent position paper [22] presents a conceptual workflow for
the deployment and execution of distributed GAs. The software
container technology (Docker) and a lightweight Linux distribution
created to execute containers (CoreOS) has been used for large
and scalable deployments on different infrastructure, focusing on
security, consistency and reliability. This idea has been further ex-
tended in Salza et al [23], where evolutionary machine learning
classifiers have been deployed to the cloud. In the proposed so-
lution, a similar architecture is used for performing evolutionary
optimisation. In particular, Docker containers are used to execute
instances of jMetal [7], a popular Java framework offering a va-
riety of algorithms for single- and multi-objective metaheuristic
optimisation.

In Ma et al [16], a master-slave topology implementing a dis-
tributed evolution algorithm was employed. The master assigned
the individuals from each generation to the slave nodes based on
their load information and then collected the corresponding fitness
values. The comparison with allocation of the same number of in-
dividuals to each node has been conducted for 32, 48 and 64 nodes.
The obtained improvement of the computation time has ranged

from 6% to 39% depending on the cluster size. While shortest time
was achieved for the largest case, the strategy proposed in that
paper has not considered heterogeneous architecture or various
communication costs. The proposed solution also takes communica-
tion overhead into consideration. Since our approach is serverless,
the number of nodes is decided dynamically.

Leclerc et al [14] propose a cloud-based framework facilitating
large scale evolutionary experiments. Their framework provides
a master-slave architecture, with nodes communicating via JSON
over HTTP. The applied scheduling policy aims to uniformly spread
the load across peers. The slave node with minimal load is chosen
for each incoming fitness function evaluation task. There is no
possibility of sharing processing units between tasks. Consequently,
if there is no slave with an idle processing unit, the task is placed in
a FIFO queue. To guarantee the appropriate amount of computing
resources, the framework is intended to be executed on virtual
machines (VMs) whose number is steered by the cloud provider,
using facilities such as Amazon Auto Scaling Group. When the
smoothed expected time to empty the queue is larger or smaller
than certain thresholds, a VM is added or removed, respectively.

In contrast, in an approach advocated by a recent position pa-
per [26], the framework presented in this paper executes a GA
on several machines in accordance with the serverless computing
paradigm. The motivation for the serverless approach is to provide
both scalability and cost-effectiveness: payment is made only for
actual computation performed.

From this literature survey, it follows that there is no prior work
on stopping criteria for maximizing increase the overall benefits
of an optimization process that is itself costly. This problem is
investigated in this paper, the general scheme of which is illustrated
in Fig. 1.

3 SYSTEM ARCHITECTURE AND PROBLEM
DESCRIPTION

The class of optimisation problems analysed in this paper concern
manufacturing plants. The value gained by an end-user from the
optimisation depends on both solution quality and the time taken
by the optimisation process itself. Since the optimisation process
is performed by a serverless cloud, the system architecture covers
the problem domain model and the cloud configuration.

In the following, we further describe the two components of
Fig. 1. For the considered case study, the left-hand component
corresponds to the optimisation of manufacturing plant that is
specified via the (max ,+) algebra. In the right-hand component,
the stopping criterion is applied to the iterated application of the
optimisation process in order to maximise overall profit.

3.1 Plant Optimisation
The plant model used in this paper is based on max-plus algebra, a
discrete algebraic system in which themax operation takes the role
of addition (⊕) and the traditional addition operator instead takes on
the role of multiplication (⊗). The max-plus algebra is convenient
for modeling discrete event systems, since the basic operations of
such systems, such as temporal transitions and synchronisation,
can be described with a set of simple linear equations [9].



GECCO ’18, July 15–19, 2018, Kyoto, Japan Piotr Dziurzanski, Jerry Swan, and Leandro Soares Indrusiak

1 2 5 6

3 4

A C F

D

B E

Figure 2: Activity on Arrow representation of a plant

A simple example of a plant is presented in Fig. 2 using the
‘Activity On Arrow’ (AOA) notation. In this notation, the states
(1, . . . , 6 in Fig. 2) represent synchronisation points whereas the
actual manufacturing activities (a.k.a. processes) are performed
on traversal between states via arrows (A, . . . , F in Fig. 2). In this
example, a manufacturing process begins at time t1 in state 1. The
first manufacturing process is performed during transition A be-
tween states 1 and 2, which lasts for dA time units. Thus, state 2
is visited at t2 = t1 ⊗ dA = t1 + dA. Similarly, t3 = t2 ⊗ dB and
t4 = t3 ⊗ dD . The production process represented by arrow F can
start after both C and E are completed, so the max operator is ap-
plied, t5 = (t2 ⊗ dC ) ⊕ (t4 ⊗ dE ). Finally, the last manufacturing
process, represented by arrow F , is finished at t6 = t5 ⊗ dF .

In practice, the processing time in each manufacturing process
is not constant, as machines can operate in various modes [4], for
example full performance or eco modes. The optimisation process
then includes not only the assignment of jobs to machines, but also
the selection of the mode that minimises production cost, thereby
finding a compromise between processing time and dissipated en-
ergy.

As discused above, in the considered optimisation problems, both
solution quality and optimisation time are relevant to the end-user.
The value stemming from the later is described by a value curve
VC [2, 13]. This curve is expressed in a monetary unit (e.g. GBP).
A value curve is usually a monotonically decreasing function. Its
highest value equals toVmax from the manufacturing order arrival
up to the deadline of the manufacturing order scheduling. Then
it trends towards zero with the increasing completion time due
to penalty, for example as shown in Fig. 3, where the value curve
VC of manufacturing order O assumes its maximal value from the
arrival time of O , AT , to the deadline of the optimisation of O , D.
The optimisation time of manufacturing order O lasts from AT to
ET . The total income of an end-user depends partially on the value
of the value curve at ET .

The reduction in the manufacturing order value due to delay
can be determined by observing the value of the value curve at
the delayed completion time. A long optimisation time may result
in zero value and thus the job becomes worthless to its end-user.
Further, the cost of this optimisation can be considered as a loss.
Therefore, the manufacturing order may be rejected if zero or a
negative value is expected after completing it.

3.1.1 GA encoding, operators and fitness. The underlying opti-
misation problem considered in this case study is the configuration
of a manufacturing process, specified by the sequencing of a fixed
number of machines, each with a fixed number of operating modes.
The corresponding geneome is therefore an integer-based represen-
tation, derived from the structure of the AoA network representing

time t

value V

AT D
0

ET

Vmax

VC(t)

VC(ET)

Z

Figure 3: An example value curve of manufacturing orderO

the plant, e.g. as shown in Fig. 2. The genome consists of a sequence
of pairs (m,o) for machinem and operating mode o. There is one
such pair for each arrow in the corresponding AoA representation.

The chosen GA operators are the familiar random mutation,
one-point crossover and selection, with mutation probability 0.01
and crossover probability of 0.7, these values being obtained after a
small amount of manual tuning. The population size has been fixed
to 500 in all the experiments.

The fitness of a configuration is given as a weighted sum of the
makespan and energy dissipated, each of which are a function of
both machine placement in the AoA graph and the associated mode
of each machine. It has the same monetary unit as the given value
curve VC of the optimised problem.

3.2 Prediction of Revenue Improvement
The optimisation is performed during a number of stages. During
the i-th stage i ∈ {1, . . .n}, GA iterations are executed in parallel.
Then the results are gathered and a stopping condition is checked,
based on the prediction of the total value improvement in the sub-
sequent stage.

We now describe the parameterisation of the case study consid-
ered in this paper.

3.2.1 Problem parameters. Symbols and abbreviations used are
summarised in full in Table 1. Each problem instance is parame-
terised as follows:

• Input: manufacturing order O including: the plant given in
the AoA form, its value curve VC and arrival time AT , a po-
tentially unbounded number of slave processing nodes with
(monetary) execution cost per time unit β and the number
of individuals sent to each processing node.

• Objective: Maximise the profit obtained from the manufac-
turing order.

The profit from the manufacturing order depends on the follow-
ing factors:

• the fitness value returned by the GA,
• total processing time allocated to the optimisers,
• cloud processing cost (per container invocation).

4 PROPOSED APPROACH
We now proceed to describe the proposed approach.

4.1 Value curve
The value curve models the value of a process to its end-user as a
function of time,VC(t). It may assume various shapes, as discussed
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Table 1: Symbols and abbreviations used in the paper

Symbol Description
O manufacturing order
VC value curve
AT manufacturing order arrival time
D manufacturing order optimisation deadline
Z manufacturing order zero value time
Vmax maximal value of the manufacturing order value curve
fi minimal fitness function value after the i-th stage
f̂i a predicted value of fi
β cost of a container execution per time unit (constant)
pi no. of containers executed during the i-th stage
ti time of computing of the i-th stage (measured)
ci cost of computing the i-th stage
Ti cumulative time of computing the first i stages
Ci cumulative cost of computing the first i stages
Pi profit generated after computing the i-th stage
P̂i prediction of Pi
t̂i prediction of ti
ĉi prediction of ci
Ii income obtained after the i-th stage
sdi standard deviation of the population after stage i

in Burkimsher [1]. For the proposed approach, the shape shown
in Fig. 3 has been chosen, which models generating the maximum
value (e.g. as agreed in a contract) up to a certain deadline, after
which a certain penalty is imposed every time unit. This shape can
be intuitively explained as up to the deadline, the factory is occu-
pied with other, previously configured manufacturing orders. So
the deadline is the earliest time the factory can start manufacturing
new products. Thus, there is no extra benefit in computing a new
configuration well before the deadline, but after the deadline the
factory becomes idle until a new configuration is found. As during
this idle interval both relative overhead cost (ROC) and relative
direct labor cost (RDLC) are incurred proportional to the idle time,
the value of the solution decreases [17]. Without any further mod-
ification of the proposed approach, this shape can be exchanged
with any other non-increasing function if a curve better describing
a certain process is identified.

The chosen value curve assumes positive values starting from
the time of the manufacturing order arrival,AT . As in this paper we
consider only a single order scenario, without any loss of generality
it may be assumed that AT = 0. The maximum value of VC(t)
is equal to Vmax and is observed from AT to a certain deadline,
D > AT . Finally, VC(t) assumes zero value from zero value time,
Z > D. This shape of the value curve can be described with the
following equation

VC(t) =


Vmax for AT < t ≤ D,
−Vmax
Z−D (t − D) +Vmax for D < t ≤ Z ,
0 for t > Z .

(1)

4.2 Time and cost of stage execution
The optimisation is performed in stages until the applied stopping
condition is satisfied. The stage index is denoted with i , i ∈ N.
During the i-stage, the optimisation is performed on pi slave nodes.
As these nodes are executed in the FaaS manner, the monetary cost
of using them is given by value β per second for each instance (for
example, in IBM Cloud it was $0.000017 per second of execution,
per GB of memory allocated on 21.01.2018). The maximal slave

execution time in the i-th stage is equal to ti . Thus the upper-
bound on cost of the execution of this stage for container ci is given
by:

ci = β · ti · pi . (2)
The cumulative cost of computing the first i iterations, Ci , is

equal to:

Ci =
i∑
j=1

c j . (3)

The predicted execution time of a stage, t̂i is determined via the
extrapolation mechanism described in Section 4.3. The manufactur-
ing income yielded after the i-th iteration is a difference between
the income given by value curve VT at the moment of completion
the i-th stage and the manufacturing cost, described by fitness value
fi , i.e.

Ii = VC(Ti ) − fi . (4)
The profit generated after execution of the i-th stage is expressed

as a difference between the income and the cumulative cost of the
optimisation:

Pi = Ii −Ci . (5)

4.3 Value prediction
The values of ti and fi can be predicted via extrapolation. The
extrapolation method used is the Bluirsch and Stoer algorithm [25],
an extension of the well-known Neville interpolation/extrapolation
algorithm to diagonal rational functions p(x)/q(x) for polynomials
p,q where p is of degreem (the length of the history vector from
which to extrapolate) and the diagonal property requires that q is
of degreem orm + 1, according asm is even. In many cases, this
method can be analytically shown to provide superior accuracy
to more traditional methods of polynomial extrapolation [25]. For
history lengths of 3 or less, such extrapolation is either undefined
or else the result was empirically determined to be inaccurate: the
predicted value of fi is then given by the best fitness found so far
and that of ti by the last (actual) processing time. After predicting
the values f̂i , t̂i , they are used to predict the profit generated after
the subsequent, (i + 1)-th stage as follows:

P̂i+1 = VC(Ti + t̂i+1) − f̂i+1 −Cn − ĉi+1. (6)

This value can be used in a value-based stopping criterion, as
described in the subsection below.

4.4 Stopping criteria
The stopping criteria are evaluated for a container at each stage i .
We first apply an absolute criterion (ensuring that the process will
eventually terminate) by comparing the i to a fixed upper bound
on the number of stages (here, a value of 100 was empirically cho-
sen). The phenotypic convergence criterion compares the Standard
Deviation sdi of the GA population against a threshold value (here,
0.02), similarly to e.g. Yin et al [29]. The predicted profit criterion
uses the method of diagonal rational extrapolation described above
to predict whether the execution of the subsequent stage will not
decrease the profit generated by the optimised process or not:

Pn > P̂n+1. (7)

The benefits of these stopping criteria are evaluated in Section 6.
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5 IMPLEMENTATION ISSUES
Similarly to Leclerc et al [14], the proposed optimisation process
is implemented using a master-slave paradigm: the master is exe-
cuted locally and awaits manufacturing orders. Upon arrival of a
manufacturing order, its role is to prepare an appropriate plant con-
figuration scheme and generate a set of individuals for the GA-based
optimisation. This data is sent to a certain number of slave nodes,
where, at each stage, the actual GA-based optimisation algorithm is
executed for a certain number of iterations. Finally, the results are
returned to the master node which evaluates the stopping condition
as described earlier in this paper.

The GA-based optimiser, executed remotely by the slave nodes,
has been implemented within the jMetal framework and placed
inside a Docker container [18]. This container acts as a REST-
compliant Web service, awaiting input in the form of a population
of proposed plant configurations (i.e. manufacturing workflows)
to be optimised. After performing the stipulated number of GA
iterations (see Section 6), the container returns a new generation of
proposed plant configurations. Communication between the master
and slave nodes is performed via JSON over HTTP.

As previously mentioned, since the slave nodes are stateless, they
are not bound to a particular optimisation process and thus can be
executed in accordance with the serverless computing paradigm.
This means that the slave nodes are executed on demand without
provisioning virtual machines. Slave nodes do not have to be active
between consecutive invocations and thus the company is billed
only for the real computation time of the slaves. One of the public
vendors that offer ‘on demand’ execution of a Docker container is
IBM OpenWhisk2. When an OpenWhisk Docker action is invoked
by the master via a REST API call, OpenWhisk pulls the Docker
image for the slave node from Docker Hub and then forwards the
input HTTP POST request with the configuration and individuals.
After finishing the computation, the request responds with the
resulting population of configurations and the slave node is killed.
Alternatively, Apache OpenWhisk3 can be also used in a private
cloud or a public cloud provided by other vendors.

6 EXPERIMENTAL RESULTS
To evaluate the proposed optimisation approach, we first describe
the application to a single large manufacturing plant. We then
consider a larger number of problem instances.

6.1 A larger problem instance in-depth
The selected plant is representative of the larger instance sizes
encountered when the system is coupled to the real-world equip-
ment of the project’s industrial partners. It is described by an AoA
instance with 22 nodes, 6 levels and 43 arrows. Each manufactur-
ing process can be executed using one of 8 machine types, each
having from 1 to 9 operating modes with different performance
and energy dissipation. The manufacturing cost depends on the
selected machines and their modes, as described earlier. The search
space for such an instance is too large to be realistically solvable by
exhaustive methods without incurring overall monetary loss due
to increased optimisation time.
2https://console.bluemix.net/openwhisk/
3https://openwhisk.apache.org/
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Figure 4: Profit yielded after each stage of the example plant
with computation cost β = 0.5GBP

The value curve given for this particular instance is consistent
with equation (1), with assumed parameters AT = 0, D = 500s,
Z = 1000s, Vmax = 5000GBP. One second of computations is
assumed to cost β = 0.5GBP (lower values of this parameter are
applied later in this section) and the initial number of containers
run in parallel is set to p1 = 10. In each stage, a fixed number of
generations of a GA is executed.

As described above, the following baseline dynamic stopping
criteria are applied to each container: (i) the Standard Deviation
of population fitness after the ith stage, sdi ≤ 10−6 or (ii) minimal
fitness function value fi was not improved during the previous 20
stages or (iii) the number of stages i = 100, used as a guarantee
for the computation ending. The proposed criteria differs from this
baseline by the additional inclusion of profit prediction.

During execution, criterion (i) stopped the continuation in a
certain container after the 34th stage for the first time. So, after this
stage, 9 parallel containers continued the execution (i.e. p35 = 9)
up to stage 46th, where another container stopped computation
and so on. Finally, as many as 71 stages have been computed and
during the last stage only two containers continue the optimisation
process (p71 = 2).

After each ith stage, the fitness function value to be computed in
the next (i + 1-st) stage is predicted as described in subsection 4.3.
The average prediction error was circa 2%. This accurate prediction
can be well exploited by the proposed value-based stopping criteria,
as discussed later.

The profit Pi obtained after ending computation at each ith stage
is presented in Fig. 4. The highest profit is obtained after relatively
early i = 5th stage. After this point, due to increasing computation
cost and the decreasing slope of the value curve after the 40th
stage, the yielded profit is significantly lower and beyond the 49th
it becomes negative. Clearly, the baseline stopping criterion triggers
too late. This is in contrast to the criterion proposed in equation (7).
After applying this criterion, the profit is predicted to decrease after
the 6th stage, which is the second best during the whole analysed
range and only 2% worse than the highest possible profit.

In the previous example, a rather high cost of performing com-
putation has been assumed. Let us compare these results with the
second extreme case presented in Fig. 5, when the computation is
performed for free, i.e. β = 0. In this case, the proposed stopping
criterion from equation (7) terminates the execution after the 41st
stage, which yields the highest possible profit. After this stage, the

https://console.bluemix.net/openwhisk/
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Figure 5: Profit yielded after each stage of the example plant
with no computation costs
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Figure 6: Profit and execution time obtained for containers
executing assorted iteration numbers

profit drops due to the decreasing slope of the associated value
curve.

6.2 Granularity
In this experiment, different numbers of GA generations, namely
100, 200 and 500, have been executed at each stage, during each
container invocation. The experiment has been conducted for 10
different manufacturing orders, with representative characteristics,
with the number of required manufacturing processes ranging from
18 to 59. The averaged results are presented in Fig. 6. As it is visible
in the graph, the analysed granularity levels have no influence on
the profit yielded by algorithm, as in all three cases it is almost equal
to the maximal achievable profit from the given plants. However,
the execution times of the considered optimisation processes differ
significantly as it is more than 4 times longer for 500 generations
per stage than 100 generations per stage.

6.3 Scalability
The proposed approach benefits from a serverless cloud execu-
tion, so that the number of containers executed in parallel can be
easily scaled. The number of containers executed in parallel does
not influence the total computation time, but it increases the total
computation cost, as each second of container computation costs β .

Fig. 7 visualises the profit obtained from the optimisation of
the plant described in subsection 6.1. In this experiment, various
numbers of containers computing in parallel, from 1 to 10, were
tested, with computation costs ranging from β = 0 to β = 0.5GBP.
Despite the fact that ‘number of containers’ is discrete, a 3D surface

Figure 7: Computation cost per second by parallelisation

plot has been used to facilitate observation. It is worth noting
that the β axis is expressed in a logarithmic scale (excepting the
boundary case β = 0), as typical serverless computation cost is
expected to be close to 0.00005GBP, but other orders of magnitude
are added to cover a wider range of cloud architectures.

From this figure, it follows that the highest profits are yielded in
the middle of the analysed range, for pi = 4. This value can be then
treated as a trade-off between the benefits of parallel execution,
i.e. evolving the best results independently by a few optimisation
processes and the increased monetary cost by executing a higher
number of containers in parallel. But even in case of lower execution
costs (including the extreme case β = 0), no additional profit is
yielded by scaling pi beyond 4.

Since using the larger number of containers increases costs, the
higher standard deviation of the yielded profit considering various
β has been observed for the largest number of the containers run
in parallel pi = 10. This value decreases almost linearly up to
pi = 4, for which standard deviation of the yielded profit is almost
10 times lower than for pi = 10. So, if no parallelism is applied, the
computational cost β is less important.

6.4 Stopping criteria
In order to compare the proposed approach with the baseline stop-
ping criterion, 30 manufacturing orders whose number of manu-
facturing process steps ranged from 18 to 59 have been optimised
using both the approaches. The maximal possible income value
from each of the manufacturing order is equal to 5000GBP.

The stopping criterion used for baseline comparison does not
consider profits: it is triggered when the fitness function value
has not been improved for a certain number of generations. This
is in contrast with the proposed stopping criterion, which aims
to maximise profit by stopping the optimisation when no further
profit gain is predicted. Consequently, the optimisation of a manu-
facturing order is stopped much earlier. For the considered set of
manufacturing orders, the optimisation process has been completed
18.5 times faster. Hence, during such significantly shorter time, the
obtained fitness function values are, on average, 34% worse, as
shown in the box plot in Fig. 8 left (lower is better). However, the
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Figure 8: Comparison of the fitness function value (left) and
profit (right) obtained with the proposed and the baseline
stopping criteria

goal of the proposed method is to maximise the profit, which de-
pends both on the fitness function value and the computation time.
The impact of the latter results in the fact that using the baseline
stopping criteria, 86% of the considered manufacturing orders lead
to financial loss, whereas all of them are profitable when the pro-
posed stopping criterion is applied. These profits are shown on the
right of Fig. 8 (higher is better). Applying the proposed criterion
leads to a cumulative profit of 83877GBP, whereas the baseline cri-
terion lead to the negative profit of -124497GBP. Formal statistical
comparison of the proposed and baseline profits for each problem
instance (pairwise, via the Wilcoxon Signed Rank test) confirms
significance (with p-value 1.9 ∗ 10−9).

7 CONCLUSION
This article describes a serverless, cloud-based architecture that
provides general and scalable support for the ‘Just in Time’ man-
ufacturing process envisioned for ‘Industry 4.0’. The architecture
is equipped with a novel adaptive stopping criterion for optimis-
ing Overall Equipment Effectiveness (OEE), in which the predicted
cost/benefit ratio of performing further optimisation is grounded
in monetary units. The method was applied to a collection of repre-
sentative case studies for optimal configuration of manufacturing
plants, as specified via the (max ,+) algebra. We determined the
most effective parallelisation strategy (implemented via stateless,
Dockerised containers) and obtained near maximum profit from
the resulting optimisation.
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