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ABSTRACT
In this paper, we consider the Family Traveling Salesman Problem
(FTSP), which is a variant of the classical Traveling Salesman Prob-
lem (TSP). Given a partition of the nodes into a predefined number
of clusters, called families, the aim of the FTSP is to find a mini-
mum cost tour visiting a given number of nodes from each family.
We describe a novel solution approach for solving the FTSP ob-
tained by decomposing the problem into two smaller subproblems:
a macro-level subproblem and a micro-level subproblem, and solv-
ing them separately. The goal of the first subproblem is to provide
tours visiting the families using a classical genetic algorithm and a
diploid genetic algorithm, while the aim of the second subproblem
is to find the minimum-cost tour, corresponding to the above men-
tioned tours, visiting a given number of nodes from each family.
The second subproblem is solved by transforming each global tour
into a traveling salesman problem (TSP) which then is optimally
computed using the Concorde TSP solver. The preliminary com-
putational results on a usually used set of benchmark instances
prove that our solution approach provides competitive solutions in
comparison to the existing methods for solving the FTSP.
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1 INTRODUCTION
1.1 Problem description and related problems
This paper focuses on the family traveling salesman problem (FTSP),
which is a variant of the classical traveling salesman problem (TSP),
where the nodes are split into a predefined number of clusters,
called families. The FTSP tries to find a minimum cost tour visiting
a predefined number of nodes from each family and with the addi-
tional constraint that the nodes within each family must be visited
contiguously.

The considered optimization problem belongs to the class of gen-
eralized combinatorial optimization problems, known also as the
class of generalized network design problems. This class of prob-
lems extends the classical combinatorial optimization problems in
a natural way and its main characteristics are the following: the
nodes of the underlying graph are split into clusters and the feasibil-
ity constraints of the original optimization problem are expressed
in terms of the clusters instead of individual nodes. For more in-
formation on the class of generalized combinatorial optimization
problems we refer to Pop [15], Feremans et al. [4].

Taking into account its definition, the FTSP is closely related to
the following combinatorial optimization problems:

• the clustered traveling salesman problem (CTSP) introduced
by Chisman Chisman [2] and defined on an undirected graph
whose set of nodes is partitioned into a predefined number
of clusters. The goal of the CTSP is to determine the lowest
cost Hamiltonian tour with the additional constraint that the
nodes of each cluster are visited consecutively. The FTSP is
an extension of the CTSP in the sense that from each family
(cluster) we must visit a given number of nodes. For more
information on the CTSP we refer to Potvin and Guertin
[18].

• the generalized traveling salesman problem (GTSP) which
was introduced independently by Henry-Labordere Henry-
Labordere [7] and Srivastava et al. Srivastava et al. [20] and
defined as follows: given a graph whose nodes are grouped
into a number of predefined clusters, the GTSP aims at find-
ing the minimum cost tour visiting exactly one node from
each cluster. The FTSP extends the GTSP in the sense that
from each family (cluster) we must visit a given number of
nodes. If in the FTSP we have to visit one node per family,
than the problem reduces to the GTSP. For more information
on the GTSP we refer to Pintea et al. [10], Pop and Iordache
[16], Pop et al. [17].

• the generalized covering salesman problem (GCSP) introduced
by Golden et al. Golden et al. [6], where each node may cover
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a given subset of nodes, and it has in addition a prespecified
demand, and we want to determine a minimum cost tour
with the property that the subset of nodes visited on the tour
covers all the nodes of the graph. GTSP is a special case of
the GCSP and therefore the investigated problem FTSP can
be seen as a variant of the GCSP. For more information on
the GCSP we refer to Shaelaie et al. [19].

1.2 Literature review and applications
The existing literature regarding FTSP is rather scarce: the problem
was introduced by Moran-Mirabal et al. Morán-Mirabal et al. [9]
motivated by a practical application, namely for optimizing the
order of picking in warehouses. The same authors provided an
integer programming model of the FTSP and solved it with CPLEX
11 for small instances of the problem, and in addition they proposed
two randomized heuristic algorithms: a biased random-key genetic
algorithm and a GRASP with evolutionary path-relinking. Recently,
Bernardino and Paias Bernardino and Paias [1] described several
compact and non-compact integer and mixed integer programming
formulations of the FTSP and developed an iterated local search
algorithm for solving the problem.

Although there is not much literature on the FTSP, due to its
complexity and close relation to several combinatorial optimization
problems that have various practical applications, we consider that
the FTSP is worth to be investigated.

1.3 Overview
The aim of this paper is to describe a novel two-level optimization
approach for Family Traveling Salesman Problem. Our approach is
obtained by decomposing the problem into two logical and natural
subproblems: a macro-level (global) subproblem and a micro-level
(local) subproblem. The first subproblem aims at determining the
Hamiltonian tours visiting the families, called global tours, using a
genetic algorithm, respectively a diploid genetic algorithm applied
to the corresponding global graph (see details in Section 3), while
the aim of the second subproblem is to determine the visiting order
of the predefined number of nodes within the families for the above
mentioned Hamiltonian tour. The second subproblem is solved by
transforming each global Hamiltonian tour into a classical TSP
which then is computed optimally using the Concorde TSP solver.
The results of our preliminary computational experiments on the
existing benchmark instances from the literature are presented and
analyzed.

Our paper is organized as follows. In Section 2, we give some
notations and definitions related to the Family Traveling Salesman
Problem that will be used throughout the paper. The two-level
diploid genetic based algorithm for solving the FTSP is described
in Section 3 and preliminary computational experiments and the
achieved results are presented and discussed in Section 4. Finally,
the conclusions are depicted in Section 5.

2 DEFINITION OF THE FAMILY TRAVELING
SALESMAN PROBLEM

In this section we provide an explicit definition of the Family Trav-
eling Salesman Problem as a graph theoretic model.

Let G = (N ,E) be an undirected graph, which we assume to be
complete, with N = {0} ∪ V as the set of nodes and E the set of
edges.

The nodes belonging to V correspond to the customers and
the node 0 corresponds to the depot. The entire set of nodes N is
partitioned into k + 1 mutually exclusive nonempty subsets, called
families and denoted by V0,V1, ...,Vk , i.e. the following conditions
hold:

1. V = V0 ∪V1 ∪ ... ∪Vk
2. Vp ∩Vq = ∅ for all p,q ∈ {0, 1, ...,k} and p , q.

and with the additional condition the family V0 is a singleton, it
contains only the vertex 0, which represents the depot. Therefore
the remaining nodes from V belong to the families V1, ...,Vk .

The number of members belonging to familyVi is denoted by ni
and the following relation holds:

∑k
i=1 ni = |V |. We have to visit

nvi nodes from each family Vi and the total number of nodes that
are required to be visited is denoted by NV , NV =

∑k
i=1 nvi .

We define two kind of edges: edges between nodes belonging
to the same family, called intra-cluster edges and edges between
nodes belonging to different families, called inter-cluster edges. A
nonnegative cost is associated with each edge e ∈ E and the cost of
a tour is equal to the sum of the costs of all the edges belonging to
that tour.

The Family Traveling Salesman Problem consists in finding a
minimum cost tour visiting visiting a given number of nodes from
each family such that the following constraints hold:

• each tour starts and ends at the depot;
• once a salesman enters a family, it visits the required nodes
within the family before leaving it.

An illustration of the investigated family traveling salesman
problem and a feasible solution of the problem are presented in the
next figure.

Figure 1: An example of a feasible solution of FTSP consist-
ing of 24 nodes partitioned into 6 families and the depot

We will call such a tour with the property that it visits contigu-
ously a predefined number of nodes from each family a family
tour.

The FTSP is NP-hard optimization problem because it includes
the classical TSP as a special case when all the families contain only
one member.
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3 THE TWO-LEVEL DIPLOID GENETIC
BASED ALGORITHM FOR SOLVING FTSP

In this section we present our novel approach for solving the FTSP
obtained by decomposing the problem into two logical and natural
smaller subproblems:

1. a macro-level (global) subproblem which provides global
tours visiting the families using a classical GA and a diploid
genetic algorithm, denoted by (2GA),

2. a micro-level (local) subproblem whose aim is to find for
the above mentioned global tours the visiting order of the
required nodes within the families.

Our two-level approach takes advantage of the special structure
of the FTSP, i.e. the nodes of the graph are partitioned into a given
number of families, and offers computational advantages by using
efficient methods for solving the subproblems and by combining
the achieved results in order to provide a solution for the FTSP
without using any post-processing procedure.

It should be mentioned that one of the main advantages of our
method concerns the micro-level subproblem, namely our approach
provides not only an optimal way of visiting the required numbers
of nodes (i.e. intra-cluster tours) within the families, but also the
optimal way of visiting the families.

The two-level solution approach proved its efficiency by solv-
ing various complex generalized network design problems, see for
example Expósito-Izquierdo et al. [3], Pop et al. [11, 13].

3.1 The macro-level subproblem
In order to define the macro-level subproblem, as in Pop [14, 15], we
denote byG ′ the graph obtained fromG after replacing all the nodes
of a family Vi with a supernode representing Vi , ∀i ∈ {1, ...,k}, the
cluster V0 (depot) consists already of one node. We will call the
graphG ′ the global graph. For convenience, we identifyVi with the
supernode representing it. The edges of the graphG ′ are defined
between each pair of the graph vertices V0,V1, . . . ,Vk .

We use a classical genetic algorithm and a diploid genetic algo-
rithm applied to the corresponding global graph in order to provide
a Hamiltonian tour visiting the families. We will call such a tour a
global Hamiltonian tour. One of the main advantages of using this
approach is the considerable reduction of the solution space of the
original problem.

In the next figure we represent a global Hamiltonian tour corre-
sponding to the example presented in Figure 1.

Figure 2: A feasible solution in the global graph

There are several family tours corresponding to a global Hamil-
tonian tour visiting the families in a given order. Between these
family tours there exists one called the best family tour (w.r.t. cost
minimization) that will be determined using an efficient transfor-
mation of the global Hamiltonian tour into a classical TSP which
then is optimally computed using the Concorde TSP solver.

3.2 The genetic algorithm
In this subsection we describe the genetic algorithm that provides
us with the global Hamiltonian tours visiting the families.

3.2.1 Representation. We use an efficient representation at the
level of the global graph, in which the chromosome for each candi-
date solution is represented as an array of k + 1 integer numbers,
each number corresponding to the index of a certain family. The
depot is represented by 0. Each global Hamiltonian route is or-
dered in conformity with the order in which the families are visited.
Therefore, in general a chromosome is represented as follows:

(0 i1 i2 ... ik−1 ik ).
For example, for the solution presented in Figure 2, the corre-

sponding chromosome is represented by the following array:
(0 1 2 3 4 5 6).

Each chromosome representing the order in which the families
are visited can be represented at the level of the families as follows:©­­­­­­­­­«
1,a1,a2, . . . ,ani1︸             ︷︷             ︸

Vi1

,ani1+1, . . . ,ani1+ni2︸                   ︷︷                   ︸
Vi2

, . . . ,ak−1∑
l=1

nil +1
, . . . ,a k∑

l=1
nil︸                      ︷︷                      ︸

Vik

ª®®®®®®®®®¬
whereai ∈ {0, 1} ,∀i ∈

{
1, . . . ,

k∑
l=1

nil

}
and {i ∈ Vil |ai = 1} = nvil ,

and can be expanded to the corresponding best family tour using
the transformation that is going to be described in Subsection 3.3.

3.2.2 Fitness evaluation. The fitness function of each individual
chromosome in the population is given by the total length of the
best corresponding family tour associated to the global Hamiltonian
tour specified by the chromosome. This distance also takes into
account the order in which the required nodes within the families
are visited. The aim of the FTSP is to minimize this total distance.

3.2.3 Initial population. Our initial population was generated
randomly from the space of feasible solutions (global Hamiltonian
tours) thus providing an unbiased initial population.

3.2.4 Selection. In our algorithm we considered a deterministic
selection process. The method used is a (µ + λ) selection which
works as follows: the best µ individuals are selected from the pool
of µ parents and λ offspring. This method is well known to stick
in local optima. However, we overcome this shortcoming by using
the diploid representation of the individuals.

3.2.5 Crossover. Our GA uses a custom version of the one cut
point crossover. The crossover function takes two parent candidate
solutions as input, and outputs two solutions that are derived from
the parents. The crossover is applied to the population obtained
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from the selection algorithm, we randomly select a cut point be-
tween 1 and k , and we create two offspring that preserve the order
and indexes of the families in a subsequence of one parent while
preserving the relative order of the remaining indexes of the fami-
lies from the other parent, omitting any symbols that were copied
already from the first parent.

3.2.6 Mutation. After obtaining the offspring from the crossover
algorithm, a mutation operator is applied with a given probability,
set before solving the problem. In our case we use a swapping intra-
cluster mutation operator which acts as follows: we randomly select
two genes of different values and their values are exchanged. As a
consequence, we modify the nodes required to be visited within a
family.

3.2.7 Genetic parameters. The parameters included in our GAs
are very important for the success of our algorithm. Based on prelim-
inary computational experiments, we set the following parameters:
the population size µ has been set at 300, the mutation probability
was set at 5% and the maximum number of generations (epochs) in
our algorithm was set at 5000.

3.3 The diploid genetic algorithm
In our considered diploid genetic algorithm an individual consists
not only of a single solution (chromosome), but in a pair of solution,
as it was suggested by Pop et al. Pop et al. [12]. In this way, we
mimic the natural diploid individuals Mitchell [8]. The advantage
of this representation is that each individual carries twice as much
information as in the classical approach (called also "haploid"). This
assures a higher diversity of the potential feasible solutions Gold-
berg and Smith [5], which, in turn, leads to higher chances of
avoidance of the local optima by the population. This is because
every time a solution is selected for its good fitness, it carries along
a worse solution, both belonging to the same individual.

Therefore, unlike the classical individuals, which were synony-
mous with chromosomes, now we talk about individuals consisting
of a pair of chromosomes:

I = (C1,C2),

where Ci are the chromosomes, with i ∈ {1, 2}. Actually, both
chromosomes are potential feasible solutions belonging to the space
of solutions (i.e. global Hamiltonian tours).

Further we define Cd ∈ {C1,C2} as the dominant chromosome
if it is the best out of the two chromosomes and Cr ∈ {C1,C2} as
the recessive chromosome if it is the worst out of the two.

3.3.1 Fitness function. Let us denote the fitness of the individ-
ual by f (I ) and subsequently the fitness of the two chromosomes
by f (Ci ), with i ∈ {1, 2}. Of course, according to the definition
provided in this section, we have f (Cd ) ≤ f (Cr ).

According to Pop et al. Pop et al. [12], there are different ways
of defining the fitness of an individual:

(1) the fitness of the individual is the fitness of the dominant
chromosome, that is: f (I ) = f (Cd );

(2) the fitness of the individual is the fitness of the recessive
chromosomes: f (I ) = f (Cr );

(3) the fitness of the individual is the sum (or average) of the
fitness values of the two chromosomes: f (I ) = f (C1)+ f (C2);

(4) the fitness of the individual is a weighted average of the
fitness values of the two chromosomes:

f (I ) = w1 · f (C1) +w2 · f (C2),

wherewi =
f (Ci )

f (C1)+f (C2)
with i ∈ {1, 2}.

In our approach, we decide for the third variant, namely the
fitness of an individual is the sum of the fitness values of the two
chromosomes.

3.3.2 Crossover. Having two individuals I1 = (C1
1 ,C

1
2) and I2 =

(C2
1 ,C

2
2), we can define the recombination operator. For a clear dis-

tinction between the crossover at the individual level, respectively
at the solution (chromosomes) level, we will define them as individ-
ual crossover or macro-crossover at the individual level, respectively
solution crossover, chromosomal crossover or micro-crossover at the
solution level.

The macro-recombination is defined in a discrete way, only the
chromosomes interchange between the two individuals. Having
I1 = (C1

1 ,C
1
2) and I2 = (C2

1 ,C
2
2), the offspring are:

O1 = (C11
1 ,C

11
2 ) and O2 = (C22

1 ,C
22
2 ),

where Ckki may be any of the parental chromosomes {C1
1 ,C

1
2 ,C

2
1 ,

C2
2}.
At the solution level, a micro-crossover is applied in a similar

way as it was already mentioned in the case of the classical genetic
algorithm and the mutation is applied at the level of the chromo-
some.

3.4 The micro-level subproblem
In this subsection, we describe an efficient transformation of a
global Hamiltonian tour into a classical TSP. The reason for such
a transformation is based on the fact that we can optimally solve
large instances of the TSP by using the Concorde TSP solver.

The basic idea used in our transformation is to add an artificial
costM to all the inter-cluster edges, this way forcing the salesman
to visit all the required nodes within the family before leaving it.

We consider that we have a global Hamiltonian tour visiting
families. Then we define the TSP on the subgraph G

′

associated to
G as follows:

1. The set of nodes of G and G
′

are the same.
2. The entries of the cost matrix G

′

are defined as follows:
a) if vi ,vj ∈ Vl then c

′

(vi ,vj ) = c(vi ,vj )

b) ifvi ∈ Vq ,vj ∈ Vl withq , l then c
′

(vi ,vj ) = c(vi ,vj )+M

whereM >
∑

(vi ,vj )∈E(G)

c(vi ,vj ).

Obviously, there exists a one-to-one correspondence between
Hamiltonian cycles inG

′

and family tours inG . This correspondence
is depicted in Figure 3.

Based on the definition of the cost matrix inG
′

it results straight-
forward that the cost of the family tour in G is equal to the cost of
the Hamiltonian tour in G

′

less (k + 1)M .
As we have already mentioned, an important advantage of our

proposed method to solving the lower-level (local) subproblem is
the fact that our approach provides not only an optimal way of
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Figure 3: The corresponding Hamiltonian tour in G
′

to the
family tour presented in Figure 1

visiting the required nodes within the families but also the optimal
way of visiting the families.

4 PRELIMINARY COMPUTATIONAL
RESULTS

In this section we present our preliminary computational results in
order to determine the efficiency of our proposed hybrid diploid
genetic algorithm for solving the FTSP.

We conducted our computational experiments for solving the
FTSP on a set of 12 often used benchmark instances generated by
Moran-Mirabal et al. Morán-Mirabal et al. [9]. The instances were
generated using instances from TSPLIB as follows: a number k
of families was chosen, the number of members ni for each fam-
ily Vi was selected uniformly at random respecting the condition:∑k
i=1 ni = |V | and total number of nodes nvi that are required

to be visited from each family was selected at random such that
1 ≤ nvi ≤ ni and NV =

∑k
i=1 nvi . The set of 12 instances is

composed by three instances for each combination of the form:
(|V |,k,kN ) of nodes, families and visits. The number of visits differ
from one instance to the next ones within the same class.

Our proposed solution approach for solving the FTSP has been
implemented, and in our experiments we performed 10 independent
runs for each instance. The testing machine was a Dell Inspiron 15,
with Intel i5 2.2GHz and 8GB RAM and the algorithmwas developed
in Java.

In order to study the performance of our proposed solution ap-
proaches, we compared them with the existing heuristic algorithms
from the literature.

The obtained computational results are presented in Table 1.
The first column of Table 1 gives the name of the instance, fol-
lowed by four columns that provide the best and average solutions
achieved by the biased random-key genetic algorithm (BRKGA) and
the greedy randomized adaptive search procedure (GRASP) with
evolutionary path-relinking (evPR) developed by Moran-Mirabal et
al. Morán-Mirabal et al. [9]. The last four columns contain the best
and average solutions obtained by our solution approaches: the
classical genetic algorithm (GA) and the diploid genetic algorithm
(2GA). The results written in bold represent cases for which the
obtained solution is the best existing from the literature.

Analyzing the reported computational results we observe that
our two-level diploid genetic based algorithm is competitive in
comparison with the existing heuristics for solving the FTSP in

terms of the achieved solution quality. We were able to improve the
existing solutions 3 out of 12 instances. As well we can observe the
superiority of the proposed diploid genetic algorithm in comparison
with the classical GA.

Next, we present a statistical analysis using the T-test for depen-
dent samples. The paired sample t-test null hypothesis assumes that
the true mean difference is equal to zero. The significance is based
on the probability p of observing the test results under the null
hypothesis. A low p-value indicates decreased support for the null
hypothesis. In the current paper the cutoff value for determining
statistical significance is considered 0.1; this corresponds to a 10%
(or less) chance of having a result like the one observed if the null
hypothesis was true.

Given the best solutions reported on Table 1, we calculate the
t −value and probability p as follows:

• BRKGA vs. 2GA: the t−value is -1.489738 and the probability
is 0.082198;

• GRASP+evPR vs 2GA: the t − value is -1.669544 and the
probability is 0.061595;

• GA vs. 2GA: the t −value is -1.483055 and the probability is
0.083067.

All the above comparisons show that the achieved results are
significant for p ≤ 0.10.

Furthermore, the results of the T-test statistical analysis between
the reported average solution results from Table 1.

• BRKGA vs. 2GA: the t−value is -0.679729 and the probability
is 0.255364;

• GRASP+evPR vs 2GA: the t − value is -0.670789 and the
probability is 0.258096;

• GA vs. 2GA: the t −value is -2.959288 and the probability is
0.006496.

For the first two comparisons the result is not significant for
p ≤ 0.10, while for GA vs. 2GA the result is significant for p ≤ 0.10.

In the next two figures we present a comparison of the Relative
Percentage Differences (RPD) between the achieved best and aver-
age solutions. The RPD is computed using the following formula:

RPD =
Solution − Best

Best
,

where Solution is solution provided by each of considered algorithm:
BRKGA, GRASP+evPR andGA and Best is the best solution obtained
by 2GA.

Some important features of our proposed solution approaches
for solving the FTSP are:

• the use of a two-level approach that decomposes the prob-
lem into two logical and natural smaller subproblems: a
macro-level (global) subproblem and a micro-level (local)
subproblem;

• the use of an efficient GA which delivers the global Hamil-
tonian tours visiting the clusters;

• the use of a diploid representation that assures a high diver-
sity of the potential feasible solutions;

• the use of an efficient method in order to determine the best
corresponding family tour for a given global Hamiltonian
tour.
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Table 1: The comparison of the solvers quality

Instance BRKGA GRASP + evPR GA 2GA
Best sol. Avg. sol. Best sol. Avg. sol. Best sol. Avg. sol. Best sol. Avg. sol.

burma_1 13.93 13.93 13.93 13.93 13.93 13.93 13.93 13.93
burma_2 25.66 25.66 25.66 25.66 25.66 26.74 25.66 25.66
burma_3 11.89 11.89 11.89 11.89 11.89 11.89 11.89 11.89
bayg_1 5345.86 5345.86 5345.86 5345.86 5345.86 5594.36 5345.86 5421.15
bayg_2 5791.01 5791.01 5791.01 5791.01 5791.01 5845.88 5791.01 5816.34
bayg_3 5544.33 5544.33 5544.33 5544.33 5544.33 5586.66 5544.33 5557.64
att_1 23686.02 23686.02 23686.02 23686.02 23686.02 24763.45 23686.02 24126.79
att_2 20609.09 20609.09 20635.57 20635.57 20609.09 21135.42 20609.09 20746.55
att_3 9024.58 9024.58 9024.58 9024.58 9024.58 9115.60 9024.58 9024.58
bier_1 36913.74 36950.75 36800.39 36856.17 36778.50 37421.23 36241.75 36673.15
bier_2 98216.10 98333.46 97615.41 98370.63 96224.16 97464.85 95946.62 96574.68
bier_3 50513.10 50891.36 50715.49 50920.77 50066.42 51264.61 50024.16 50954.28

Figure 4: A comparison of the Relative Percentage Dif-
ferences between the Best solutions achieved by BRKGA,
GRASP+evPR and GA and the best solutions obtained by
2GA

5 CONCLUSIONS
This paper considers the family traveling salesman problem. For
solving this optimization problem we decompose it into two logical
and natural smaller subproblems: a macro-level (global) subprob-
lem and a micro-level (local) subproblem. We developed a classical
genetic algorithm and hybrid diploid genetic algorithm. The first
subproblem provides tours visiting the families using a classical
genetic algorithm and a diploid genetic algorithm, while the sec-
ond subproblem finds the minimum-cost tour, corresponding to
the above mentioned tours, visiting a given number of nodes from
each family. The second subproblem is solved by transforming each
global tour into a traveling salesman problem (TSP) which then is
optimally computed using the Concorde TSP solver. One important
feature of our approach is the use of a diploid representation of the
individuals that assures a higher diversity of the potential feasible

Figure 5: A comparison of the Relative Percentage Differ-
ences between the average solutions achieved by BRKGA,
GRASP+evPR and GA and the average solutions obtained by
2GA

solutions. The preliminary computational results show that our hy-
brid genetic algorithm is robust and compares favorably to existing
approaches.

In the future, we plan to evaluate the generality and scalability
of the proposed solution approach by testing it on larger instances
and on instances derived from those used in the case of the gener-
alized traveling salesman problem. It would also be promising to
investigate the combination of our hybrid diploid genetic algorithm
with a local search procedure.
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