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ABSTRACT
Ensemble methods combine the predictions of a set of models to
reach a better prediction quality compared to a single model’s
prediction. The ensemble process consists of three steps: 1) the
generation phase where the models are created, 2) the selection
phase where a set of possible ensembles is composed and one is
selected by a selection method, 3) the fusion phase where the indi-
vidual models’ predictions of the selected ensemble are combined
to an ensemble’s estimate. This paper proposes CovSel, a selection
approach for regression problems that ranks ensembles based on
the coverage of adequately estimated training points and selects
the ensemble with the highest coverage to be used in the fusion
phase. An ensemble covers a training point if at least one of its
models produces an adequate prediction for this training point.
The more training points are covered this way, the higher is the
ensemble’s coverage. The selection of the “right” ensemble has a
large impact on the final prediction. Results for two symbolic re-
gression problems show that CovSel improves the predictions for
various state-of-the-art fusion methods for ensembles composed of
independently evolved GP models and also beats approaches based
on single GP models.
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1 INTRODUCTION
Symbolic regression is one of the relevant applications for genetic
programming (GP). Its application possibilities range from crypto
analysis [31] to established products like Eureqa [8, 30]. Symbolic
regression’s ability to find an explanation for a set of observations
in form of a mathematical function makes it attractive for various
applied sciences. In contrast to other approaches like neural net-
works or support vector machines, the results are human-readable
and can further be analyzed what can help researchers as well as
practitioners to gain a better understanding of the studied problem.

Ensemblemethods combine severalmodels’ predictions to achieve
a better overall result in comparison to a single model [26]. A model
can be the output of a machine learning algorithm (for example
a GP run) and represents a mathematical term (used for symbolic
regression) which can be used to make predictions for a given input.
Ensemble methods are widely used in the field of machine learning
and can be applied to combine classification or regression results
to reach a better accuracy and a higher stability either by simple
voting or by a combination of the estimations. Ensemble methods
can be used to improve symbolic regression models but the question
is how to build ensembles and create a prediction from the models
that form an ensemble? Ensembles are often generated by simple
greedy hill-climbing or pruning methods [3, 6]. However, these
methods are usually bound to a certain fusion method that com-
bines the individual models’ predictions to an ensemble’s estimate.
Therefore, their running time depends mainly on the considered
fusion method.

This paper suggests an ensemble selection method based on
maximal coverage (CovSel) that ranks ensembles based on the
coverage of adequately estimated training points and selects the
ensemble with the highest coverage to be used for a fusion method.
An ensemble covers a training point if at least one of its models
produces an adequate prediction for this point. The more training
points are covered, the higher is the ensemble’s coverage.

The used models are evolved by isolated tree-based GP runs
searching for solutions of symbolic regression problems. From each
GP run, the best model on the training points is chosen to become
part of a collection of elaborated regression models M . From the
models contained in this collectionM , we create a set E of candidate
ensembles of pre-defined size by randomly selecting models from
M . We do not include all possible ensembles as candidate ensembles
as the number of combinations would be too large even for small
ensembles sizes. CovSel selects the ensemble from E with the high-
est coverage on the training points. In contrast to other selection
approaches, CovSel works independently from the applied fusion
method because it focuses on the individual model’s performance
and estimates how the complete ensemble acts. After selecting the
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best ensemble from E, a fusion method combines the individual
models’ estimates to the ensemble’s overall estimation.

In Sect. 2, we present related work by describing the usage of
ensembles in GP. Furthermore, we present work on ensemble selec-
tion. Section 3 describes CovSel. We specify how we build, select,
and combine models. In particular, we introduce a novel selection
approach and present four state-of-the-art fusion methods which
can be used to combine individual estimations to an ensemble’s
prediction. In Sect. 4, we describe the experimental setting and
present the results. Furthermore, we analyze the achieved results
and compare CovSel’s performance on different fusion methods.

2 RELATEDWORK
Fault-tolerant systems are mainly based on redundancy. To make
hardware-based systems fault-tolerant, critical elements can be
integrated more than once. If one element fails, there is still a re-
placement. To make software-based systems fault-tolerant, a simple
duplication of critical elements is not reasonable because in the
same situation the same error would occur in all elements. For
software-based systems, the error is a result of the software’s inner
logic which is identical in the duplicates. The N-version program-
ming (NVP) method [4, 5] deals with this problem by implementing
at least two independent but equivalent pieces of software based on
the same specification. The necessary independence can, for exam-
ple, be achieved through independent development teams. The aim
of ensemble methods can be compared to this approach: a collec-
tion of trained models working together to correct or compensate
errors.

2.1 Ensemble Methods for GP
Imamura et al. [16, 17] introduced N-value genetic programming
(NVGP) by applying the idea of NVP to the GP context. NVGP
evolves a collection of independent GP models, selects the best
ones, and combines the models to perform classification by voting.
An extension of NVGP introduces a selection approach, which
calculates the expected failure probability of an ensemble (which
contains models with an equal performance on the training set)
using a method for calculating the failure probabilities of hardware
systems [29]. After that, the achieved error on the training set of the
considered ensemble is evaluated. Imamura et al. call an ensemble to
be NVGP optimal if the difference between the expected error and
the error on the training set is lower than a given threshold. NVGP
optimal ensembles can be used for classification tasks because their
failure rate is close to the expected rate which indicates that the
contained models are independent [18].

Just like NVGP, most GP research that makes use of ensemble
techniques focusses on classification problems, especially in the
early years of ensemble usage in GP [11, 19, 24]. Recent work on
classification is often addressing problems due to unbalanced data
sets because it may have a large impact on the classifier’s overall
result if some classes are under-represented in the data set [1, 2, 10].
Such classifiers usually work well on classes with a good represen-
tation in the data set but achieve poor results on minority classes.

However, ensemble methods could not only be used for classifi-
cation but also for regression problems. The aim of ensembles used

for classification is to assign the correct class with a high proba-
bility by eliminating wrong predictions, e.g. by majority vote. For
regression problems, the situation is different as the models’ predic-
tions must be combined to an ensemble’s estimation in a way that
the overall error is lower than the error of a single model. Existing
work on this topic ranges from fundamental research [15, 21] to
more application-oriented studies [13, 35]. Of particular relevance
is the work of Veeramachaneni et al. [34] who compare different
fusion methods for regression problems. Furthermore, they devel-
oped FlexGP [33], a cloud-based platform using ensemble methods
and GP to deal with large regression problems.

2.2 Ensemble Selection
Ensemble methods can improve the prediction quality and stability,
both for classification and for regression problems. However, a large
ensemble may lead to a high computational effort and memory
usage. Ensemble selection approaches usually tackle this problem
by limiting the number of models in an ensemble.

In the field of GP, ensemble selection is not a widely used ap-
proach compared to the ensemble usage at all. For classification
problems, Imamura et al. [18] used some kind of ensemble selection
to find an ensemble containing independent GP models. Also for
classification, De Stefano et al. [7] used a Bayesian network to select
a subset of GP-based models to compose a well performing ensem-
ble. For regression problems, no specialized selection approaches
have yet been proposed.

In the field of general machine learning, often greedy ensemble
selection methods are used [3, 14, 28]. The basic idea is to iteratively
addmodels to an ensemble tomaximize the ensemble’s performance
until the desired ensemble size is reached. Furthermore, greedy
methods starting with a full ensemble and reducing it step-by-step
are possible. A disadvantage of the greedy methods is that they
are fusion method-dependent as a fusion method is required to
evaluate the error of the ensemble during the process.

3 METHODOLOGY
In general, the ensemble process consists of a generation, selection,
and fusion phase. We describe how we generate our symbolic re-
gression models, introduce CovSel as a novel ensemble selection
approach, and present four state-of-the-art fusion methods that
combine individual model’s estimates. Figure 1 illustrates how the
ensemble process including CovSel works. Table 1 lists our problem
notation which is based on Veeramachaneni et al. [34].

3.1 Generation Phase
In the generation phase, a set of candidate models is evolved. Al-
though other machine learning approaches are possible, all of our
models are generated by isolated GP runs using the same training
pointsDGP . The generation of models can be done either sequential
or in parallel. To assess the quality of a candidate modelm during
the GP runs, we use as fitness function themean squared error (MSE)

f (m) = 1
n

n∑
j=1

(ŷmj − zj )2,

where n = |DGP |. At the end of the generation phase, we choose
models from the isolated GP runs to build the setM (Fig. 1). Usually,
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Figure 1: The ensemble process with generation phase, selection phase, and fusion phase.

Table 1: Problem Notation

Notation Description

DGP Training points for GP
Df Training points for fusion methods
Dt Testing points
x̄ j Data point containing all coordinates
zj Correct result for a training point x̄ j ∈ Df
m Model
M All models generated to select from
ŷmj Modelm’s prediction for x̄ j
f (m) Returns the fitness for a modelm
Ω An ensemble containing models, where Ω ⊂ M
E Set of candidate ensembles
®bm Modelm’s behavioral vector
®bΩ Ensemble Ω’s behavioral vector
GΩ Measure indicating Ω’s quality
d(x) Binary decision function for errors on DGP
t Problem-specific threshold
β Sum of squared errors
ẑj Ensemble’s estimate

we choose from every isolated GP run the modelm with the lowest
MSE on DGP . Due to the randomness of GP, the set M usually
contains different models.

3.2 Selection Phase
After M is built, the models enter their first selection procedure.
We create the set E by randomly selecting models from M (step
3 in Fig. 1). E consists of several candidate ensembles of size |Ω |.
The set E contains only a subset of all possible ensembles that can
be built using the models in M because considering all possible
combinations would be computationally too expensive.

All candidate ensembles in E can be ranked by CovSel (step 4
in Fig. 1). In contrast to voting-based ensembles for classification,
which just select the class for which the majority of models in
the ensemble votes, ensembles dealing with symbolic regression
problems have to combine the individual models’ estimates to an
ensemble’s estimate (and not only the majority’s guess). It is impor-
tant that the ensemble as a whole performs well on the complete
range of the searched function. In other words, the ensemble’s mod-
els have to reach in combination a high coverage. Consequently,
we evaluate an ensemble Ω’s coverage on the training points DGP
by

GΩ =

n∑
j=1

o∏
m=1

d(|ŷmj − zj |), (1)

where n = |DGP | is the number of the training points, o = |Ω | is
the number of models in Ω, and d(x) is a function that assesses if
a modelm produces an adequate output for a training point. The
coverage of the whole ensemble Ω depends on the coverage of each
modelm contained in the ensemble Ω. For classification problems,
it is straightforward to determine if an estimation is correct as
we only have binary decisions. For regression problems, we use a
threshold t for this decision. Consequently, the function

d(x) =
{

0 if x ≤ t

1 if x > t
, (2)

decides if a model’s output is adequate or not. The setting of the
threshold t allows us to adjust this approach to various problems.

Figure 2 illustrates the calculation of GΩ for an example where
|Ω | = 3. We plot three behavioral vectors ®bm (m ∈ {1, 2, 3}), which
represent the models’ results on the training points in DGP . The
elements of the behavioral vector ®bm = (d(|ŷm1 − z1 |),d(|ŷm2 −
z2 |), . . .d(|ŷmn − zn |)) indicate whether the error is lower or equal
than t (value of 0) or larger than t (value of 1). The ®bm are used
to build the ensemble’s behavioral vector ®bΩ . ®bΩ has a value of 1
at position j, if all vectors ®bm have also a 1 at position j (logical
AND). Otherwise, ®bΩ has a value of 0 at position j. All elements of
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Figure 2: CovSel’s calculation of GΩ .

®bΩ are summed up to get the ensemble’s coverage measure GΩ . A
low value of GΩ indicates a high coverage of an ensemble.

We compute GΩ for every candidate ensemble in E. After that,
we choose the ensemble with the lowest GΩ for the fusion phase.

3.3 Fusion Phase
The fusion phase takes the ensemble Ω (containing o = |Ω | models)
selected by the selection phase as input and calculates the estima-
tion ẑj for a testing point x̄ j by usually combining the individual
models predictions ŷmj (step 5 and 6 in Fig. 1). For our experiments,
we use four state-of-the-art fusion methods trained on the same
training points Df = DGP .

(1) The average (AVG) method calculates for an input of x̄ j the
ensemble’s estimate ẑj by averaging over all ŷmj [21, 35].

(2) The median method (MED) determines for an input of x̄ j the
median of all ŷmj as estimate ẑj . In our experiments, we use
MED instead of the median average model (MAD), because
MAD computes the average of the models’ predictions ŷmj
close to the median and the median itself [21, 34] for a data
point x̄ j . So for small ensembles this approach works like
AVG.

(3) The adaptive regression mixing (ARM) estimates ẑj by apply-
ing a weighted average to every ŷmj [34, 38]. To calculate
the weightsWm for each modelm, we split the set of training
points Df randomly into two parts D(1) and D(2) of equal
size r

2 (with r = |Df |). For the sake of simplicity, we assume
that r is an even number. After that, we compute the maxi-
mum likelihood estimate σ̂ 2

m of the variance of the errors on
D(1) and the sum of squared errors βm =

∑r
j= r2 +1(ŷmj −zj )2

on D(2). Then, we calculate the weights for each modelm as

Wm = exp(Am − log(
o∑
j=1

Aj )),

where

Am = − r
2

log(σ̂m ) + log(−σ̂
−2
m βm
2

).

Next, we split Df randomly again into two new sets D(1)

and D(2) and repeat the described steps for a pre-defined
number of times. After that, we average the model’s weights
Wm . Finally, we calculate the weighted average usingWm for
each model’s estimate ŷmj to get the ensemble’s estimation
ẑj .

(4) For the kernel density estimation (KDE), we use a multivariate
non-parametric kernel density estimator with a Gaussian
kernel [9, 37]. The final estimation ẑk for a test point x̄k is
calculated as

ẑk =

∑n
j=1 zj

∏o
m=1 Kh (ŷmk − ŷmj )∑n

j=1
∏o

m=1 Kh (ŷmk − ŷmj )
,

where o = |Ω |, n = |Df |, and Kh (x) = 1
hϕ(

x
h ). ϕ(x) is the

standard normal density function with bandwidth h ∈ R.
h has a large impact on the result, so it should be a-priori
estimated on Df [34].

An advantage of symbolic regression as application of GP in
contrast to other approaches like neural networks or support vec-
tor machines is that the results are human-readable. A domain
expert could use the resulting expression for further analysis to
gain a better understanding of the studied problem. When using
ensembles, the combination of the individual models’ predictions
in the fusion phase is a limiting factor for the human-readability
especially when applying more advanced fusion methods like KDE.
The individual models can still be used for further analysis, but it
must be considered how they contribute to the ensemble’s overall
prediction. However, when applying GP to symbolic regression
problems the hypothesis space is limited by the function and the
terminal set and maybe the target function cannot be expressed.
The combination of individual models in the fusion phase may help
to overcome this limitation by expanding the hypothesis space and
so maybe a better approximation can be found [39].

4 EXPERIMENTS
We study the performance of CovSel for each of the four fusion
methods presented in Sect. 3.3. As a baseline, we compare CovSel to
a randomly selected ensemble from E as well as approaches using
either the best or a random single GP model fromM .

We evaluate CovSel for two benchmark problems. First, a bi-
variate function defined by Pagie and Hogeweg [27] using Koza’s
function set [23]. Second, a bivariate test function by Vladislavleva
et al. [36]. Both test functions are taken from the curated list of
benchmarks by McDermott et al. [25].

We did not use any other benchmark functions with Koza’s
function set because these benchmarks can be solved with zero or
almost zero error by a single standard GP model. The test functions
proposed by Koza [22, 23] and Nguyen et al. [32] contain only
elements that can be build straightforward with the elements from
the function set. That is why we selected the bivariate function by
Vladislavleva et al. as second benchmark.

4.1 Experimental Setting
For generating the candidate models of the setM , we used the GP
implementation of the evolutionary computation framework DEAP



CovSel: Ensemble Selection Applied to Symbolic Regression Problems GECCO ’18, July 15–19, 2018, Kyoto, Japan

R_GP B_GP R_AVG CS_AVG R_MED CS_MED R_ARM CS_ARM R_KDE CS_KDE

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

M
ea

n 
sq

ua
re

d 
er

ro
r

Figure 3: Boxplots of the MSE for the different approaches on Pagie1 with |Ω | = 3 (outliers not plotted).

[12]. The initial generation is generated with the ramped-half-and-
half method. As variation operators, we use the framework’s default
one-point crossover and uniform mutation function. Crossover
probability is set to pc = 0.8 and mutation probability is set to
pm = 0.05. For selection, we use tournament selection of size 5.
We use a population size of 300 and stop each GP run after 35
generations.

We generate GP models for two benchmark functions. The first
problem from Pagie and Hogeweg [27] (denoted as Pagie1) is de-
fined as

b(x ,y) = 1
1 + x−4 +

1
1 + y−4 ,

where x ,y ∈ R are the function arguments. As function set we use
the set proposed by Koza [23] without the optional constants

{+,−, ∗,%, sin(n), cos(n), en , ln(|n |)}.
The terminal set contains just the function arguments x and y. The
training points DGP for Pagie1 are the points of a meshed grid with
coordinates ranging from −5.0 to 5.0 evenly spaced with distance
0.4. As test points Dt , we use a more dense grid with coordinates
ranging from −6.0 to 6.0 evenly spaced with distance 0.1.

The second test problem from Vladislavleva et al. [36] (denoted
as Vladislavleva6) is defined as

b(x ,y) = 6 sin(x) cos(y),
where x ,y ∈ R are the function arguments. For this problem, the
function set is defined [25, 36] as

{+,−, ∗,%,n2, en , e−n ,nϵ ,n + ϵ,nϵ},

where ϵ is a uniform random value in the interval [−5.0, 5.0]. Again,
the terminal set contains just the function argumentsx andy. The 50
training points DGP are equally distributed in the two-dimensional
square [0.1, 5.9] × [0.1, 5.9]. As testing points Dt , we use the points
of a meshed grid with coordinates ranging from−0.05 to 6.05 evenly
spaced with distance 0.1.

Vladislavleva6 is a challenging test function for a standard GP
implementation because 1) the number of training points is low
and 2) symbolic regression has to find a way to approximate the
functions sin(n) and cos(n). Due to the difficulty of the problem,
Vladislavleva et al. [36] and Keijzer [20] apply more advanced tech-
niques like interval arithmetic and linear scaling to build qualitative
regression models for this benchmark function.

For both test problems, we evolve models by 50 independent GP
runs and use from each GP run the model with the lowest MSE
on DGP . The selected models form the setM of size |M | = 50. The
set E contains |E | = 100 ensembles and each of the 100 ensembles
contains o = |Ω | randomly selected models fromM . As the number
of possible ensembles is large and equal to

( |M |
o
)
, E contains only

a subset of all possible ensembles. We present results for different
ensemble sizes o ∈ {3, 5, 7}.

CovSel evaluates all 100 ensembles of E and selects the one with
highest coverage on the training points DGP . The threshold t used
by CovSel’s function d(x) determines the maximum accepted error
for a training point x̄ j . For Pagie1, we set t = 0.1. As Vladislavleva6
is a more difficult problem for standard GP models, we set t = 1.0.
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Table 2: MSE and IQR (in brackets) for Pagie1 and Vladislavleva6 using different ensemble sizes |Ω |

Benchmark |Ω | R_GP B_GP R_AVG CS_AVG R_MED CS_MED R_ARM CS_ARM R_KDE CS_KDE

3
0.226

(0.216)
0.086

(0.037)
0.161

(0.706)
0.071

(0.717)
0.135

(0.080)
0.062

(0.062)
0.171

(0.394)
0.082

(0.104)
0.073

(0.077)
0.036

(0.021)

Pagie1 5
0.226

(0.216)
0.086

(0.037)
0.307

(0.292)
0.114

(0.295)
0.115

(0.054)
0.054

(0.045)
0.153

(0.160)
0.080

(0.165)
0.040

(0.036)
0.027

(0.019)

7
0.226

(0.216)
0.086

(0.037)
0.193

(0.134)
0.181

(0.181)
0.125

(0.077)
0.067

(0.052)
0.134

(0.145)
0.111

(0.143)
0.029

(0.021)
0.020

(0.013)

3
17.150

(2627.797)
10.136

(130.656)
631.456
(1.3e10)

567.506
(1.8e14)

8.869
(14.938)

8.421
(16.224)

131.668
(5.0e6)

645.808
(1.9e10)

8.048
(1.364)

6.898
(1.655)

Vladislavleva6 5
17.150

(2627.797)
10.136

(130.656)
39.270

(4.8e12)
1898.552
(3.3e26)

8.871
(5.118)

8.476
(4.526)

29.781
(4.5e6)

1784.984
(1.1e26)

6.257
(2.512)

6.465
(2.649)

7
17.150

(2627.797)
10.136

(130.656)
220.850
(1.1e26)

2.3e5
(3.0e36)

8.503
(0.670)

8.041
(0.686)

123.366
(8.4e12)

216.289
(2.8e22)

6.519
(1.861)

6.193
(1.836)

For the fusion methods ARM and KDE, we need to define a set
of training points Df . We use the same training points used for
evolving the GPmodelsDf = DGP . For KDE, we also need to define
the bandwidth h, which we set to h = 0.5.

4.2 Results and Discussion
We combined CovSel with four different state-of-the-art fusion
methods. The resulting approaches are denoted as CS_AVG (CovSel
combined with fusion method AVG), CS_MED (median method),
CS_ARM (adaptive regression mixing), and CS_KDE (kernel density
estimation), respectively. As benchmark for CovSel, we randomly
selected an ensemble from the set E. The resulting methods are
denoted as R_AVG (random selection combined with fusion method
AVG), R_MED, R_ARM, and R_KDE, respectively. Furthermore, we
used as baseline the prediction quality of just a single GP model.
The single model is either randomly selected fromM (denoted as
R_GP) or the model ofM that performs best on the set of training
points DGP (denoted as B_GP).

The boxplot in Fig. 3 shows the median and the scattering of the
MSE of the different approaches for an ensemble size of |Ω | = 3 on
the benchmark function Pagie1. The boxplots are based on 100 runs
for every approach. As expected, selecting the best model fromM
(B_GP) outperforms a random model taken from M (R_GP). Fur-
thermore, the median of B_GP is lower than the median of R_AVG,
R_MED, and R_ARM. In contrast, the median of all CovSel variants
is lower than the median of B_GP. Focusing on the scattering of
the results, CovSel leads to lower scattering in comparison to a
randomly selected ensemble. The results show that the average
fusion methods (CS_AVG and R_AVG) lead to high scattering. This
is due to the fact that the averaging fusion methods are sensitive to
outliers as they consider the estimates of all models in an ensemble.

Table 2 compares the median MSE as well as the interquartile
range (IQR) (in brackets) for Pagie1 and Vladislavleva6 for different
ensemble sizes o ∈ {3, 5, 7}, where o = |Ω |. Best values are printed
in bold fonts. The IQR is the difference between the 75th and the

25th percentile and measures the scattering of a set of values. We
use the IQR as a proxy of the MSE’s spread. The results for R_GP
and B_GP are independent of |Ω | as these approaches use only a
single modelm ∈ M .

For Pagie1, CS_KDE has the lowest MSE and also the lowest IQR.
When using kernel density estimation (CS_KDE and R_KDE), the
median MSE and IQR get lower with larger ensemble size |Ω |. With
increasing |Ω |, the differences between CovSel and a randomly
selected ensemble are decreasing as the importance of an optimal
ensemble selection decreases with a larger size of the ensembles.
CS_MED achieves a lower median MSE and IQR for all ensemble
sizes |Ω | compared to R_MED. The results for R_MED and CS_MED
are stable over all studied ensemble sizes |Ω |.

For Vladislavleva6, the medians and IQRs are higher compared
to Pagie1. Again, B_GP outperforms R_GP on median MSE and IQR.
The higher spread of the results confirms that this benchmark is a
hard problem for standard GP. All methods using a fusion method
based on averaging (R_AVG, CS_AVG, R_ARM, and CS_ARM) do
not work well as the performance of the models in one ensemble is
too widely spread and does not give a clear direction for averaging
methods. CS_KDE as well as R_KDE return ensembles with lowest
MSE and a low IQR. Like in Pagie1, when using kernel density
estimation (CS_KDE and R_KDE), the median MSE and IQR get
lower with larger ensembles sizes |Ω |.

Overall, using CovSel for ensemble selection can improve pre-
diction quality compared to randomly selected ensembles and out-
performs methods based on a single GP model. Best results can be
obtained when combining CovSel either with the median method
or a kernel density estimation.

4.3 Robustness of KDE with Respect to
Bandwidth

The quality of R_KDE and CS_KDE depends on the pre-defined
bandwidth h [34]. Especially for small training sets, a proper set-
ting of h is difficult. We study the impact of h on the resulting



CovSel: Ensemble Selection Applied to Symbolic Regression Problems GECCO ’18, July 15–19, 2018, Kyoto, Japan

0.3 0.5 0.7 0.9
Bandwidth

0.02

0.04

0.06

0.08

0.10

0.12

M
ea

n 
sq

ua
re

d 
er

ro
r

Figure 4: Boxplots of the MSE over bandwidth h for Pagie1

MSE by comparing the MSE of CS_KDE for different values of
h ∈ {0.3, 0.5, 0.7, 0.9}.

Figure 4 shows boxplots of the MSE over the bandwidth h for
CS_KDE with an ensemble size of |Ω | = 3 on the Pagie1 benchmark
function. For h = 0.3, CS_KDE achieves a median MSE of 0.034
which is even lower than the result presented in Fig. 3 with h = 0.5.
We find that a larger value of h decreases the prediction quality of
CS_KDE for Pagie1. For example, the median for h = 0.9 is only
0.077. Nevertheless, the results are robust for different values of
h and CS_KDE still returns good results. Furthermore, the IQR
remains low for all studied bandwidths.

5 CONCLUSIONS
Symbolic regression is one of the relevant GP applications. En-
semble methods can combine several models to obtain a higher
accuracy and stability of the results. Currently, no specialized en-
semble selection methods are available for symbolic regression
problems.

This paper proposes CovSel, an approach that ranks ensembles
based on the coverage of adequately estimated training points and
selects the ensemble with the highest coverage to be used for a
fusion method. An ensemble covers a training point if at least one
of its models returns an adequate prediction for this training point.
The more training points are covered this way, the higher is the
ensemble’s coverage.

The symbolic regression models that form ensembles can be
evolved by different, isolated GP runs. From each GP run, the model
with the lowest MSE on the training points is chosen to build a col-
lection of elaborated regression models. By using the models in this

collection, a set of random candidate ensembles is created. From
this set of candidate ensembles, which is a random subset of all
possible ensembles, CovSel selects the ensemble with highest cov-
erage. Finally in the fusion phase, the individual models’ estimates
are combined to the ensemble’s estimation. CovSel works indepen-
dently from the applied fusion method because it focuses on the
individual model’s performance and estimates how the complete
ensemble acts.

We applied CovSel in combination with four state-of-the-art
fusion methods and compared ensembles selected by CovSel to
randomly selected candidate ensembles as well as the best and
a random GP model taken from the set of elaborated regression
models. Our results confirm that CovSel outperforms randomly
selected ensembles. Furthermore, combining CovSel with kernel
density estimation as fusion method outperforms the prediction
quality of the single, best model.

6 LIMITATIONS AND FUTUREWORK
CovSel ranks ensembles based on the coverage of adequately es-
timated training points and selects the ensemble with the highest
coverage to be used in the fusion phase. A training point is con-
sidered as covered if at least one model approximates the result
within the pre-defined threshold t . Thus, CovSel is tuned to work
for ensembles dealing with regression problems and should not
be used for the selection of ensembles for classification problems
because such ensembles attempt to exclude wrong predictions to
correct the errors (e.g. by majority vote). In contrast, ensembles for
regression problems combine or select the models’ predictions to
a combined prediction such that the error is reduced and that is
why the methods CS_MAD and CS_KDE work that well, because
CovSel attempts to provide at least one model with a low error for
every part of the searched function.

In future work, we will compare CovSel with current greedy
selection approaches and try to come up with a greedy ensemble
selection approach that works also independently from the fusion
method. Furthermore, we will study the diversity of CovSel and
integrate methods which increase the diversity of the models in an
ensemble to obtain more diverse ensembles that still have a high
coverage. We will apply this new version of CovSel to real-world
symbolic regression problems.
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