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ABSTRACT
Algorithm selection is useful in decision situations where among

many alternative algorithm instances one has to be chosen. This

is often the case in heuristic optimization and is detailed by the

well-known no-free-lunch (NFL) theorem. A consequence of the

NFL is that a heuristic algorithm may only gain a performance

improvement in a subset of the problems. With the present study

we aim to identify correlations between observed differences in

performance and problem characteristics obtained from statistical

analysis of the problem instance and from fitness landscape analysis

(FLA). Finally, we evaluate the performance of a recommendation

algorithm that uses this information to make an informed choice

for a certain algorithm instance.

CCS CONCEPTS
• Information systems→ Expert systems; Learning to rank; •The-
ory of computation → Facility location and clustering; • Com-
puting methodologies→ Randomized search;
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1 INTRODUCTION
Algorithm selection is an important task when solving hard opti-

mization problems. The approaches that perform best for a certain

problem may vary from instance to instance. A conclusion from the
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NFL-theorem [35] is that algorithms may only perform better than

other algorithms on a subset of the problems and/or instances. Thus,

it is an important task in the application of heuristic algorithms to

characterize the subsets and choose an accordingly best performing

algorithm instance. Even more as we progress to apply heuristic

optimization as automated decision makers (ADM) in environments

that are only occasionally surveyed by human experts. For instance

in logistics scenarios the storage space of some good is determined

by an optimization algorithm upon admission automatically. In

production, a machine may pick the next job for processing from

its buffers, etc. In the light of the digitalization trend and industry

4.0 such scenarios will become more and more common.

The main contributions of this paper to the state of the art are:

(1) Fitness landscape analysis of the generalized quadratic as-

signment problem

(2) Comparing a range of approaches, including both open

source implementations and commercial solvers

(3) Evaluation of a nearest-neighbor-based algorithm selection

approach

1.1 Previous Work
One way to pick a suitable algorithm instance is tuning. It is at-
tempted to derive a set of problem instances that are expected

to be solved in the ADM environment. These instances are then

used to compare the performance of algorithm instances. Identi-

fying a well performing algorithm instance may be done by hand

through design of experiments [4] or by automated methods such

as metaoptimization [5, 17, 22]. With algorithm selection the intent

is to find a mapping between algorithm instances and problem

instances. This approach is described as the algorithm selection

problem (ASP) [20, 30]. In heuristic optimization, the ASP is com-

plicated due to a very high number of different algorithm instances,

i.e. complete parametrizations of an algorithm and even different

implementations which is the actual entity that can be tested and

compared with each other. Nevertheless, portfolios of algorithm in-

stances may be better suited to solve a certain group of problems if

good discriminators can be identified on which algorithm instance

from the portfolio to apply [21, 36].

A further difficulty is given by a large range of different problem

instances. Thus, rather than identifying a mapping between con-

crete elements of the sets of problem instances, it is proposed to

https://doi.org/10.1145/3205455.3205585
https://doi.org/10.1145/3205455.3205585
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describe them through a feature vector [30]. This may be achieved

by fitness landscape analysis (FLA) which has received much at-

tention in recent years. A fitness landscape is given by the triple

(S,N , f ) where S denotes the set of solutions s ∈ S that form the

landscape, N : S → Sn denotes the neighborhood function and

f : S → R denotes the fitness function.

Fitness landscapes may be studied through mathematical anal-

ysis. One successful approach is e.g. by decomposing the fitness

function into so called elementary landscapes [34]. This enables
to compute landscape features such as an autocorrelation coeffi-

cient exactly [12]. In addition problems may be described in terms

of statistical features of the input data, for instance by calculating

coefficients of variation, e.g. of a distance matrix [26]. When a math-

ematical analysis is not tractable or has not yet been performed

features may also be obtained by sampling [25, 27, 29]. The later

approach is called exploratory analysis as the landscape is explored

by sampling points and calculating features from the obtained sam-

ple. One example would be to perform a random walk and estimate

the aforementioned autocorrelation coefficient. Another approach

would be to create a local optima network, i.e. a directed graph that

describes local optima as nodes and the probability to transition

between these in form of weighted edges [27].

2 GENERALIZED QUADRATIC ASSIGNMENT
The generalized quadratic assignment problem (GQAP) is an NP-

hard combinatorial optimization problem. Solving this problems

requires to find the minimal costs of the assignment of all tasks N to

a set of resourcesM . Each task t ∈ N has a certain demand Qt ∈ R
while each resource r ∈ M provides a certain capacity Cr ∈ R. The
objective is formed by installation cost Itr ∈ R of task t in resource

r on the one hand and by the product of communication effort

Wtu ∈ R between two tasks t ,u ∈ N and a communication barrier

Dr s ∈ R between two resources r , s ∈ M . Given a decision variable

xtr ∈ {0, 1} that is 1 iff task t is assigned to resource r the GQAP
can be described as the following quadratic integer programming

problem [28]:

min

∑
t ∈N

∑
r ∈M

(
xtr · Itr + e ·

∑
u ∈N

∑
s ∈M

xtr · xus ·Wtu · Dr s

)
(1)

s.t.

∑
t ∈N

xtr ·Qt ≤ Cr ∀r ∈ M (2)∑
r ∈M

xtr = 1 ∀t ∈ N (3)

xtr ∈ {0, 1} ∀t ∈ N ∧ r ∈ M (4)

The objective in equation (1) describes to minimize the sum

of installation and communication costs given a cost conversion

factor e . Equation (2) constrains the capacity of the resource and

equation (3) requires that each taskmust be assigned exactly one re-
source. While the QAP has received much attention in the scientific

literature and being mentioned in thousands of publications, the

GQAP is still fairly unexplored. Nevertheless, heuristic approaches

to solve this problem have been described [13, 24]. The GQAP al-

though it shares the name is different from the QAP: In heuristic

optimization the assignment in GQAP is typically encoded as a vec-

tor of integers, i.e. encodes the resource that each task is assigned to

instead of a permutation as is the case with the QAP. The size of the

solution space isMN
as opposed to N ! which grows faster when

M = N as is the case of the QAP. In addition, solving the GQAP

requires handling infeasible solutions which may arise out of a

violation of constraint (2). We used a lexicographic fitness function

in this work. The infeasible fitness values were offset by a penalty

P = max(I ) · N + e · max(W ) · max(D) · N 2
high enough that the

fitness intervals of feasible and infeasible solutions are disjunctive.

In the feasible domain we would minimize the objective value as

given in equation (1) while in the infeasible domain the amount of

“overbooked capacity” is to be minimized.

2.1 Benchmark Instances
For the experiments we used 21 benchmark instances from Cordeau

et al. [13] with dimensions from 20 to 50 tasks and 6 to 20 resources.

Instances are generated with different levels of utilization ranging

from 35% to 95%. A utilization of x% means that the total demand∑
t ∈N Qt is x% of the total capacity

∑
r ∈M Cr .

In addition we generated benchmark instances based on prob-

lem instances of the QAPLIB [10]. For every QAPLIB instance of

dimension N ≥ 20 we generated three groups with (rounded) N /6,
N /3, and 2N /3 resources. We ran a hierarchical clustering on the

distance matrix and computed the reduced matrix D by averaging

the distances between the clusters using the original distance ma-

trix. Installation Costs I were generated by sampling independently

from a uniform distribution in the half-open interval [1,N ·W · D)

whereW and D describe the respective mean. The demands Qt
were sampled independently from a uniform distribution in the

half-open interval [1, 100). Then we computed 4 instances per group

with utilizationsU = {35%, 50%, 75%, 95%}. This was achieved by

distributing the total capacity C =
∑
t Qt /(100 − Ui ) randomly

over the resources adhering to the constraint that ∃t ∈N ∀r ∈MCr ≥
Qt ∧∃r ∈M∀t ∈NQt ≤ Cr ∧∀r ∈MCr <

∑
t ∈N Qt . Nevertheless, this

constraint does not guarantee that every generated instance is also

feasible to solve. The generation of I , Q , and C is similar to the

generator described by Cordeau et al. [13], but these instances fea-

ture a wider range of different matrices forW and D. We used 168

instances from this newly generated set. All generated instances

are available online
1
.

2.2 Feature Extraction
In this work we aim to evaluate how the performance of the applied

algorithm instances correlates to characteristics of the problem

instances. For this purpose we calculate problem specific features

that can be calculated from the problem data, i.e. Q,C, I ,W ,D as

well as features from exploratory walks. In total the following

characteristics are obtained:

• Problem specific: dimension (|N |), MN-ratio (|M |/|N |), domi-

nance (CV .. coefficient of variation) forW , D, C, Q , sparsity

forW , D (W0,D0), utilization (

∑
t Qt /

∑
r Cr ), and basic fea-

sibility

• Random walk: autocorrelation(1), correlation length, infor-

mation content (ic), partial information content (pic), density

basin information (dbi), information stability (is), diversity,

1
dev.heuristiclab.com/AdditionalMaterial

dev.heuristiclab.com/AdditionalMaterial
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regularity, total entropy (H (X )), peak information content

(ic
∗
), peak density basin information (dbi

∗
).

• Directed walk: sharpness, bumpiness, flatness

Sparsity is calculated as the ratio between the number of zero

entries to the size of the matrix while basic feasibility describes

whether all tasks can be assigned to all resources given Q and C:∑
t ∈N |{r ∈ M |Qt ≤ Cr }|/(N ·M).
The random walk-based landscape measures are adequately de-

scribed in the existing literature [2, 29, 32]. We used a walk length

of 5,000 and averaged the results of 30 independent walks. Directed

walks are a newer method for characterizing fitness landscapes [7].

Directed walks are based on the path-relinking heuristic, i.e. they

repeatedly connect two points in the search space via a path in

which the best among all alternative choices is made in each step.

All paths are then analyzed and the three aforementioned char-

acteristics are extracted. Sharpness is the average absolute fitness

change in the paths, bumpiness is the relative number of “inflection

points”, i.e. where the fitness delta would change sign, but does not

become 0, while flatness describes the “undulation points” where

the fitness remains the same. Sharpness is normalized to [0; 1] by

the minimum and maximum observed fitness among all paths for

each problem instance.

2.3 Fitness Landscape Analysis
Table 1 shows the correlations among the obtained characteristics.

We observe a moderate (ρ ≈ −0.57) correlation betweenW0 and |N |.
This indicates that larger instances did not tend to include sparse

W matrices. We observe a correlation (ρ ≈ −0.57) between M/N
and basic feasibility we conclude that largerM create search spaces

with more infeasible regions. There was also moderate (ρ ≈ 0.47)

correlation between CV(C) and flatness indicating that instances

where the capacities are very unevenly distributed are also more

flat. However, as there is correlation (ρ ≈ −0.54) between CV(C)
and basic feasibility and also between flatness and basic feasibility

(ρ ≈ −0.56) this may be explained by larger infeasible regions. It

may be assumed that the lexicographic fitness function with ob-

jective and infeasibility minimization respectively, is responsible

for these observations. Utilization has been observed as having

stronger correlations with FLA characteristics, especially on (ic,

pic, dbi, H (X )) (ρ ≈ (−0.58, 0.68,−0.73,−0.60)), but there was also
correlation between utilization and bumpiness (ρ ≈ 0.44). Interest-

ingly, correlation between basic feasibility and utilization was low

(ρ ≈ −0.31). Basic feasibility thus cannot adequately describe an

increase in infeasible solutions due to higher utilization.

3 ALGORITHM INSTANCES
The algorithm instances that we applied to the set of problem in-

stances form a heterogeneous set including single-solution and

population-based methods, open source implementations and com-

mercial solvers, and approximate and exact algorithms. Still, the

considered algorithms only cover a portion of possible algorithms,

for instance there was no representative of a memetic algorithm.

In total for this study we considered:

(1) Iterated Local Search (2 instances)

(2) Evolution Strategy (1 instance)

(3) Iterated Genetic Algorithm (1 instance)

(4) Greedy Randomized Adaptive Search Procedure (1 instance)

(5) Late-acceptance Hill Climber (1 instance)

(6) Age-Layered Population Structure (1 instance)

(7) Linearized Integer Programming (2 instances)

(8) Hybrid Mathematical Programming Solver (2 instances)

(9) Random Search (1 instance)

In the following the algorithm instances shall be detailed, though

it would be outside the scope of this paper to describe them in all

their details. We include random search in this study, not because

we expect it to workwell, but to act as a baseline and give confidence

in the obtained results.

Iterated Local Search
Iterated local search (ILS) is a very general framework that is based

on an efficient neighborhood-based local search [23]. In this meta-

heuristic four heuristics are used: 1) initial solution generation, 2)

local search, 3) solution perturbation, and 4) solution acceptance. In

the case of the GQAP we use the 1-shift neighborhood, i.e. relocat-
ing one task from its currently assigned resource to another. The

size of the neighborhood is N · (M − 1) if enumerated exhaustively.

A locally optimal solution for this neighborhood is said to be 1-opt.
Evaluating the fitness delta of the move can be performed in O(N ).

In this study, both instances accept the new local optimum only

when it is strictly better than the old. But one instance performs a

reassignment of all tasks during perturbation, i.e. “multi-start local

search” (MLS) and uses a uniformly random initialized s0, while
the second instance uses a probabilistic reassignment of on average

10% of the tasks and generates s0 using the greedy randomized

construction described by Mateus et al. [24]. The value of 10% was

determined using irace 2.4 on several benchmark instances in 5,000

experiments. The instances did not make use of a history. Tags:

single-solution, open source, approximate

Late-acceptance Hill Climber
Late-acceptance hill climber (LAHC) [11] is a recent metaheuristic.

Its outstanding feature is a probabilistic acceptance criterion that is

similar to simulated annealing, but does not rely on a temperature

parameter. It is closely related to the ILS framework and also em-

ploys randomly selected 1-shift moves as perturbation. However,

there is no local search heuristic. Two parameterless variants have

been recently introduced [6] of which pLAHC-s (with seeding)

constitutes the implemented instance. This algorithm does not fea-

ture parameters that need to be tuned. Tags: single-solution, open

source, approximate

Evolution Strategy
Evolution strategy (ES) is well known for findingminima ormaxima

in real-valued search spaces. The outstanding characteristic of ES-

based algorithms is a dynamic adaptation of the perturbation, also

called mutation, strength. ES allows to use a population of solutions

and typically generates multiple descendants in each generation.

In this study we chose a self-adaptive (10,1000)-ES with recombi-

nation and use the same perturbation method that is used in ILS as

mutation. A single strategy parameter σi per solution i determines

the probability of how many tasks should be reassigned by convert-

ing it into the interval (0, 1) by a sigmoidal function. Thus the ES
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Table 1: Correlations among FLA characteristics using Spearman’s ρ. The upper diagonal displays significant correlations:
“***” indicate a p-value < 1e−6, “**” indicates p < 1e−3, “*” indicates p < 0.05. All p-values are Bonferroni-adjusted.

feas. CV (C) CV (Q ) |N | CV (D) D0 CV (W ) W0 M/N util. bump. flat. sharp. ac1 corrlen dbi div. ic is pic dbi
∗

ic
∗

reg. H (X )
feas. 1 *** *** *** * *** *** *** *** ** * * *** *** *

CV (C) -0.54 1 *** *** *

CV (Q ) -0.05 0.07 1 **

|N | -0.15 0.18 0.11 1 *** *** *** *** *** *** ** ***

CV (D) -0.17 -0.04 -0.19 0.25 1 ** **

D0 0.44 -0.01 0.1 -0.52 -0.36 1 *** *** ** *** ** * *

CV (W ) 0 0.1 -0.36 -0.01 0.03 -0.21 1

W0 -0.08 0.19 0 -0.57 0.07 0.49 -0.04 1 *

M/N -0.57 -0.03 -0.08 -0.01 0.41 -0.64 0 -0.06 1 *** *** ** ** ***

util. -0.31 -0.06 -0.08 0.03 0.1 -0.02 -0.03 -0.05 0.01 1 *** *** *** *** *** *** *** * ***

bump. 0.47 -0.43 -0.15 -0.16 -0.12 0.37 -0.08 0.04 -0.44 0.44 1 *** *** * ** ** ** **

flat. -0.56 0.47 0.16 0.43 0.23 -0.48 -0.01 -0.15 0.43 -0.06 -0.76 1 *** * *

sharp. 0.42 -0.25 -0.01 -0.47 -0.14 0.36 -0.08 0.23 -0.18 -0.17 0.48 -0.58 1 *** *** *** ** ** ***

ac1 -0.44 0.19 0.15 0.23 -0.24 -0.24 -0.2 -0.3 0.2 0.19 -0.3 0.3 -0.49 1 *** ** *** **

corrlen -0.41 0.11 0.15 0.17 -0.24 -0.23 -0.21 -0.26 0.26 0.18 -0.27 0.26 -0.42 0.94 1 * *** *

dbi 0.13 0.26 0.12 0.11 -0.1 0.01 0.04 0.03 -0.06 -0.73 -0.4 0.07 0.11 -0.07 -0.07 1 ** *** *** *** *** *** ** ***

div. 0.29 0 -0.08 0.43 -0.11 -0.06 0.18 -0.26 -0.36 -0.27 -0.05 -0.14 -0.2 0.11 0.04 0.35 1 * ** *** *** ***

ic 0.31 0.03 0.01 -0.45 -0.09 0.28 -0.03 0.27 -0.02 -0.58 -0.1 -0.11 0.56 -0.37 -0.32 0.54 -0.28 1 *** *** *** *** ***

is 0.61 -0.16 -0.05 -0.01 -0.11 0.18 0.16 -0.07 -0.34 -0.63 0 -0.21 0.38 -0.52 -0.48 0.53 0.37 0.47 1 *** *** *** *** ***

pic -0.15 -0.28 -0.06 0.2 0.07 -0.14 0.01 -0.19 -0.02 0.68 0.35 -0.12 -0.35 0.23 0.21 -0.75 0.1 -0.91 -0.47 1 *** *** ***

dbi
∗

0.16 0.25 0.06 0.13 -0.13 0.01 0.09 0.01 -0.12 -0.68 -0.37 0.06 0.13 -0.02 -0.03 0.84 0.5 0.47 0.52 -0.65 1 *** *** ***

ic
∗

-0.16 -0.25 -0.07 -0.16 0.12 0.03 -0.07 0.03 0.11 0.66 0.34 -0.07 -0.16 0.01 0.03 -0.81 -0.49 -0.49 -0.51 0.66 -0.98 1 *** ***

reg. 0.45 -0.11 -0.11 0.33 -0.14 0.04 0.13 -0.25 -0.46 -0.31 0.1 -0.32 -0.01 -0.01 -0.07 0.39 0.95 -0.15 0.48 0.03 0.51 -0.51 1

H (X ) 0.32 0.04 0.01 -0.43 -0.09 0.28 -0.02 0.26 -0.02 -0.6 -0.11 -0.11 0.54 -0.36 -0.31 0.57 -0.24 1 0.48 -0.92 0.51 -0.52 -0.12 1

instance may dynamically adapt the parameter that we fixed in the

2
nd

ILS instance to 10%. For the strategy parameter mutation we

use an additive mutation scheme as this parameter may become

negative. The parameters µ = 10, λ = 1000 and the use of recombi-

nation and comma selection was determined by irace 2.4 on several

benchmark instances in 5,000 experiments. Tags: population, open

source, approximate

Iterated Genetic Algorithm
Genetic algorithms (GA) are a family of evolutionary methods that

are population-based and which use crossover and to a lesser degree
mutation as variation operators. In this study we chose a variant

called offspring selection genetic algorithm (OSGA) [1]. It is a hy-

brid between evolution strategies and genetic algorithms. In each

generation OSGA samples more offspring than the population size.

However, it does not use a fixed ratio λ/µ as in ES, but dynamically

adjust this success ratio. Each offspring is compared to its parents

and is then either accepted or rejected. OSGA continues to produce

offspring until enough have been accepted to fulfil the success cri-

terion or an upper bound on sampled offspring has been reached in

which case the algorithm terminates. We added a restart procedure

in which we reinitialize the population randomly, but not allowing

to keep the same assignment that it had previously.

We use a new crossover, called “discrete location crossover (DLX)”

shown in Algorithm 1. As mutation it reuses the perturbation

method of ILS reassigning on average 25% of the tasks. It is ap-

plied with a probability of 5% to a new offspring. A population

size of 500 was chosen which was well suited to solve certain prob-

lem instances to optimality. Similar to ES, parents were selected

randomly with equal probability. Tags: population, open source,

approximate

Algorithm 1 Discrete Location Crossover (DLX)

1: procedure DLX(C ↓, Q ↓, P ↓, child ↑) ▷ P =̂ parents
2: (slackr , childt ) ← (Cr ∀r ∈M , −1 ∀t∈N )
3: for r in R do ▷ Randomize order

4: p ← random from {p′ ∈ P |∃t∈N , p′t = r }
5: if p , ∅ then ▷ Perform crossover for resource r
6: N ′ ← {t ∈ N |pt = r ∧ childt = −1}
7: (childt , slackr ) ← (r ∀t∈N ′, slackr −∑

t∈N ′ Qt )
8: end if
9: end for
10: N ′′ ← {t ∈ N |childt = −1} ▷ Unassigned tasks

11: for t in N ′′ do ▷ Randomize order

12: p ← random from {p′ ∈ P |slackp′t ≥ Qt } ▷ prio 1

13: if p , ∅ then
14: (childt , slackpt ) ← (pt , slackpt −Qt )

15: else
16: r ← random from {r ′ ∈ M |slackr ′ ≥ Qt } ▷ prio 2

17: if r , ∅ then
18: (childt , slackr ) ← (r, slackr −Qt )
19: else
20: r ← random from M ▷ prio 3

21: (childt , slackr ) ← (r, slackr −Qt )
22: end if
23: end if
24: end for
25: end procedure

Age-Layered Population Structure
Age-Layered Population Structure (ALPS) [16] is an evolutionary

algorithm that parts the population of solutions into a number

of layers. Each layer performs a similar variation loop to that of

a genetic algorithm, i.e. selection, crossover, and mutation. The

outstanding characteristic of ALPS is the mitigation of premature

convergence by frequently introducing random solutions into lower

layers of the population. Solutions move from lower to higher layers

as they become better.

ALPS uses the same crossover and mutation as in the iterated

OSGA instance. It was configured with a maximum of 10 layers

and 100 solutions per layer, age gap was set to 20, and a polynomial
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ageing scheme was used. The algorithm was set to use 1-elitism,

and a generalized linear rank selection scheme was used to select

parents [31]. The selection pressure parameter of the generalized

linear rank selector was set to 4. Tags: population, open source,

approximate

Greedy Randomized Adaptive Search Procedure
The greedy randomized adaptive search procedure (GRASP) in this

study is described by Mateus et al. [24] and makes use of a path

relinking heuristic. The described heuristics are highly specific

to the GQAP, for instance the path relinking performs a repair

operation after each step while the local search is of a customized

approximate nature not necessarily finishing in a local optimum.

Several parameterizations are analyzed and a recommendation for

default parameters is made [24]. The employed algorithm instance

uses the default recommendation that performed well in the tests

(“f-r-g-g”) and the recommended default parameters have been used

(η = 50%, elite set size = 10, maximum candidate list size = 10, δ = 4,

minimum elite set size = 2, one-move probability = 50%, maximum

iterations for local search = 100). Tags: population, open source,

approximate

Linearized Integer Programming
Two linearized integer programming (IP) models have been im-

plemented that are described in the literature for the quadratic

assignment problem (QAP) and which have been adapted to the

GQAP. On the one hand there is the linearization described by

Frieze and Yadegar [14] and on the other hand the linearization de-

scribed by Kaufman and Broeckx [19]. The models are implemented

in the optimization programming language (OPL) and solved by

CPLEX
2
12.7.0 for which an academic license had been obtained.

The CPLEX solver was run with all parameters set to their default

value. Tags: single-solution, commercial, exact

Hybrid Mathematical Programming Solver
LocalSolver

3
7.5 is, at the time this work was written, the most

recent version of a commercial mathematical programming solver

[9]. Academic licenses can be obtained free of charge and are valid

for one month. Models can be described in a similar way to OPL,

but LocalSolver uses heuristics to solve them. Due to the heuristic

solver it is allowed to use non-linear functions and operators in the

model and thus it is not necessary to perform a linearization. Two

models have been implemented, the first model uses binary decision

variables xi j ∈ {0, 1} to denote the assignment of task i to resource
j while the second model uses integer decision variables xi ∈ M
that directly encode the resource to which task i is assigned to. De-

fault parameters have been used. Tags: single-solution, commercial,

approximate

4 EXPERIMENT SETUP AND EXECUTION
Due to the heterogeneous set of algorithm instances, tests were

performed on the same machine and run-length was measured in

elapsed wall clock time. All open source instances where imple-

mented in C# using .Net Framework 4.5 and were implemented

2
https://www.ibm.com/products/ilog-cplex-optimization-studio

3
http://www.localsolver.com

to run in a single-thread, except CPLEX which could use up to

28 cores. Running CPLEX sequentially gave worse results, but we

decided to give CPLEX an advantage as it is the only exact solver

in the set. The target machine is an Intel®Xeon®E5-2660 running

at 2.0 Ghz to which a Windows 10 (version 1607) virtual machine

(VM) was deployed. It is the only VM instance that was deployed

to this machine while the tests have been conducted. The VM has

access to 125Gb RAM, and 28 cores.

We performed 30 to 45 repetitions per algorithm / problem in-

stance combination for the open source implementations and a sin-

gle repetition for the commercial solvers. All algorithm instances

were given a maximum execution time of 1 minute which was

enough that we found optimal solutions in several problem in-

stances. The experiment of all open source instances was distributed

among 28 cores. The experiments involving the commercial solvers

were run sequentially. Only one instance of the commercial solver

was running at the same time. In total more than 60,000 runs have

been recorded.

We obtained the performance data by tracking a variable that

stores the best fitness per run. In the open source implementations

this variable was updated after calling the evaluation function, but

not during an operator such as the local search. In CPLEX this was

done in a MIPInfoCallback, while in LocalSolver the IterationTicked

callback was used. The wall clock time for all runs has been mea-

sured using the high-precision System.Diagnostics.Stopwatch class.

The experiment data is available online
4
.

4.1 Performance Measurement
The performance of heuristic methods is determined by two di-

mensions: 1) the solution quality and 2) the execution time. Ideally,

we would seek an algorithm that achieves better quality in less

time than any other. However, on the one hand the no-free-lunch

(NFL) theorem suggests this is not attainable over all problems

[35]. And on the other hand it is generally observed that a longer

runtime leads to better quality. In experiments often the run-length

is bounded by some value X and algorithms are compared based on

the distribution of solution qualities obtained after X units. Hoos

and Stützle however proposed to treat the runtime or run-length

as a random variable that is dependent on the target fitness that

should be achieved [15]. They then describe the expected runtime

(ERT) as a measure to describe and compare the performance of

algorithm instances.

In our experiment the algorithm instances will be clustered given

their performance into six classes. We use an optimal 1-dimensional

clustering algorithm [33] to cluster these algorithm instances by

their log
10
(ERT) performance values [3, 15]. Then we sort the clus-

ters by their centroids and assign class 1 to 5 to all instances of that

cluster in this order. Thus the classes are ranked so that class 1 con-

tains the best performing algorithm instances. Class 6 is reserved

for algorithm instances that did not achieve the target quality in

any of the observed runs and thus have an ERT of∞.

5 POST-HOC EXPERIMENT ANALYSIS
Some runs of pLAHC-s ran into limitations due to a very large mem-

ory size and terminated before the time limit and without having

4
dev.heuristiclab.com/AdditionalMaterial

https://www.ibm.com/products/ilog-cplex-optimization-studio
http://www.localsolver.com
dev.heuristiclab.com/AdditionalMaterial
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Table 2: Percentage of achieved ranks per algorithm

Alg.Inst 1
st

2
nd

3
rd

4
th

5
th

6
th

ILS 19% 31% 26% 14% 1% 10%

MLS 4% 5% 5% 7% 13% 66%

pLAHC-s 3% 5% 13% 23% 23% 34%

ES 1% 4% 12% 15% 14% 55%

OSGA 28% 26% 18% 10% 5% 14%

ALPS 1% 4% 24% 22% 17% 32%

GRASP+PR 25% 32% 13% 8% 4% 17%

CPLEX-FY 6% 14% 8% 5% 2% 65%

CPLEX-KB 7% 7% 8% 7% 4% 67%

LocalSolver 01 40% 11% 12% 6% 2% 31%

LocalSolver N 10% 14% 10% 5% 4% 58%

RS 0% 0% 0% 0% 0% 100%

achieved the target quality. We thus simulated a random restart for

this runs by a process similar to bootstrapping in statistics. Instead

of performing an actual restart, a run is sampled from the pool of

observed runs and replayed on top of the shorter run.

In total we evaluated 12 algorithm instances on 189 problem

instances. In the post-hoc analysis we use a target quality with a

gap of 2% to the optimum respectively the best-found quality. We

observed that on average, there were 1.4 algorithm instances ranked

first, 1.5 algorithm instances in the 2
nd

best class, 1.5 instances

ranked 3
rd
, while 1.2 and 0.9 algorithm instances were ranked

4
th

and 5
th

respectively. The majority of algorithm instances: 5.5

on average were ranked in the least suitable class, which means

they did not find the overall best-found solution in any of the

runs. Which of the algorithm instances ranked best depends on the

problem instance. In Table 2 we state the number of ranks observed

for each algorithm instance. It should be stressed again that the

ranks indicate that the respective algorithm instance is expected

to achieve the best-found solution first. It does not mean that the

best found solution was only achieved by the instances ranked 1
st
.

On the contrary all instances up to rank 5 achieved the best-found

solution at least once in a run, but with an increasingly higher

expected runtime (ERT).

At a 2% gap and out of all problem instances, in 126 (66.7%)

cases there was only a single algorithm instance ranked 1
st

and in

11 (5.8%) cases all, but one algorithm instance ranked 6
th
.

Table 3 shows correlations among the classes calculated for the

algorithm instances and between classes and FLA values. We note

that the OSGA instance does not indicate many significant correla-

tions with other instances indicating that it performs different to

other algorithms and would be a suitable member of a portfolio. The

only positive correlation to ALPS (ρ ≈ 0.51) may be explained that

both use the same crossover. While the two CPLEX models showed

similar performance (ρ ≈ 0.71) the two LocalSolver models do not

correlate. The binary LocalSolver model does not correlate with

any other algorithm. The strongest average positive correlations

among FLA features and algorithm ranks was observed with prob-

lem dimension ((ρ ≈ 0.26)), especially concerning the exact solvers.

We also observed mild average correlation (ρ ≈ 0.21) with the flat-

ness characteristic, suggesting landscapes with added flatness are

more difficult to solve. Though, we must add that a negative corre-

lation (ρ ≈ −0.56) between basic feasibility and flatness has been

recorded, thus it may also be an indication of problem instances

with a higher amount of infeasible solutions. We may also find a

Figure 1: ECDF graphs of the algorithms’ performances over
all problem instances for the 2% target.

possible explanation for the stark contrast in performance between

the crossover-based algorithm instances and the others. Utilization

(util.) separates the performance of algorithm instances, i.e. lower

utilization lead to better results for most algorithms, but the corre-

lation with OSGA (ρ ≈ −0.38) and ALPS (ρ ≈ −0.3) is negative. We

hypothesize that crossover is beneficial to find good solutions for

problem instances with high utilization, whereas it prevents good

performance in cases with low utilization. Additionally, we observe

that pLAHC-s performance negatively correlates withM/N ratio

(ρ ≈ −0.18) whereas all other correlations are (slightly) positive.
In the empirical cumulative distribution function (ECDF) curves

in Figure 1 [8] we observe that ILS and GRASP+PR work well in

the beginning, but while ILS does not perform that much better

with added runtime, OSGA and LocalSolver 01 become stronger

indicating that these two need slightly more runtime. With OSGA,

GRASP, and the LocalSolver 01 model we can cover about 74% of

the problem instances in that one of these is ranked 1
st
. If ILS is

added this can be increased to 83%.

6 ALGORITHM SELECTION
We evaluate a k-nearest neighbor-based approach (k-NN) for algo-

rithm selection. The k-NN will use Euclidean distance between two

feature vectors. All features are normalized to a standard normal

distribution N (0, 1). k-NN is an instance-based learning algorithm

which does not require training. The hyperparameter k ∈ N can be

tuned by enumeration. But its performance depends on the features

of course. We will thus use 4 different feature sets that we compare:

(1) Problem specific features only

(2) Random walk features only

(3) Directed walk features only

(4) Problem specific and FLA features

The algorithm instances will be ranked based on the observed

rankings of the k closest problem instances. For k > 1 we must

somehow average different rankings, however as has been hypoth-

esized previously [7] such an averaging does not favor the best, but
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Table 3: Correlation between fitness landscape characteristics and algorithm instances’ ranks using Spearman’s ρ. The upper
diagonal displays significant correlations equally to Table 1

ILS MLS pLAHC-s ES OSGA ALPS GRASP+PR CPLEX-FY CPLEX-KB LocalSolver 01 LocalSolver N RS Average

ILS 1.00 *** ** 0.18

MLS 0.15 1.00 ** *** * *** *** *** *** 0.34

pLAHC-s 0.50 0.37 1.00 *** ** *** 0.23

ES 0.19 0.49 0.40 1.00 * *** ** *** *** 0.37

OSGA 0.01 -0.26 -0.34 0.01 1.00 *** 0.06

ALPS -0.04 0.12 -0.15 0.25 0.51 1.00 ** * * 0.24

GRASP+PR 0.33 0.49 0.44 0.62 0.01 0.19 1.00 ** ** *** 0.36

CPLEX-FY -0.04 0.62 0.12 0.35 -0.07 0.37 0.32 1.00 *** ** 0.31

CPLEX-KB -0.01 0.63 0.19 0.48 -0.06 0.30 0.38 0.71 1.00 *** 0.35

LocalSolver 01 -0.04 -0.01 0.05 0.20 -0.12 0.07 0.17 -0.09 0.04 1.00 0.11

LocalSolver N 0.08 0.42 0.12 0.44 0.04 0.26 0.40 0.37 0.48 0.07 1.00 0.31

RS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.08

feas. -0.14 -0.38 -0.14 -0.36 -0.19 -0.34 -0.42 -0.2 -0.37 -0.09 -0.33 0.00 -0.25

CV (C) -0.02 0.06 0.06 0.15 0.2 0.31 0.1 0 0.12 0.11 0.03 0.00 0.09

CV (Q ) -0.03 -0.01 -0.08 0.09 0.1 0.17 0.08 0.03 0.02 0.06 0.06 0.00 0.04

|N | -0.06 0.48 0.03 0.32 0.03 0.48 0.34 0.74 0.57 -0.11 0.32 0.00 0.26

CV (D) 0.1 0.22 0.04 0.17 0.13 0.35 0.17 0.4 0.28 -0.11 0.27 0.00 0.17

D0 0.01 -0.45 0.07 -0.25 -0.16 -0.43 -0.26 -0.46 -0.57 0.09 -0.4 0.00 -0.23

CV (W ) 0.07 -0.02 0.1 -0.14 -0.1 -0.09 -0.1 -0.02 0.11 -0.1 -0.01 0.00 -0.03

W0 0.19 -0.31 0.1 -0.05 0.11 -0.02 -0.04 -0.49 -0.36 0.26 -0.1 0.00 -0.06

M/N 0.02 0.31 -0.18 0.26 0.3 0.31 0.2 0.23 0.36 0.03 0.4 0.00 0.19

util. 0.39 0.47 0.52 0.26 -0.38 -0.3 0.47 0.17 0.22 -0.05 0.09 0.00 0.16

bump. 0.21 0 0.31 -0.12 -0.46 -0.5 0.06 -0.16 -0.19 -0.04 -0.22 0.00 -0.09

flat. -0.14 0.38 -0.14 0.34 0.26 0.48 0.18 0.4 0.45 -0.03 0.36 0.00 0.21

sharp. -0.03 -0.41 -0.1 -0.31 -0.13 -0.26 -0.29 -0.39 -0.34 0.09 -0.29 0.00 -0.21

ac1 0.01 0.34 0.02 0.29 0.05 0.09 0.34 0.18 0.22 0 0.19 0.00 0.14

corrlen 0.01 0.32 0 0.28 0.06 0.08 0.32 0.18 0.22 0.02 0.19 0.00 0.14

dbi -0.33 -0.41 -0.36 -0.08 0.35 0.32 -0.27 -0.11 -0.12 0.05 -0.09 0.00 -0.09

div. -0.05 -0.15 -0.06 -0.1 0.08 0.23 -0.03 0.17 -0.02 -0.04 -0.07 0.00 0.00

ic -0.29 -0.46 -0.32 -0.25 0.14 -0.12 -0.51 -0.41 -0.35 0.04 -0.26 0.00 -0.23

is -0.32 -0.52 -0.34 -0.36 0.08 0.04 -0.51 -0.17 -0.29 0.02 -0.31 0.00 -0.22

pic 0.36 0.38 0.35 0.13 -0.23 -0.11 0.43 0.25 0.2 -0.06 0.16 0.00 0.16

dbi
∗

-0.33 -0.35 -0.35 -0.11 0.27 0.28 -0.28 -0.06 -0.09 0.07 -0.1 0.00 -0.09

ic
∗

0.32 0.32 0.36 0.1 -0.26 -0.28 0.28 0.05 0.08 -0.06 0.1 0.00 0.08

reg. -0.08 -0.27 -0.11 -0.19 0.05 0.13 -0.14 0.06 -0.14 -0.05 -0.17 0.00 -0.08

H (X ) -0.3 -0.46 -0.33 -0.25 0.15 -0.1 -0.51 -0.4 -0.35 0.04 -0.26 0.00 -0.23

Average(Abs) 0.17 0.33 0.23 0.26 0.19 0.25 0.30 0.27 0.29 0.10 0.24 0.03

rather generally well performing methods. In this work we thus

set k = 1 and as a target set a 2% gap to the best fitness that has

been recorded, respectively the optimum if it is known. We do not

apply Euclidean distance to the raw features, but normalize them to

a standard normal distribution N (0, 1). We evaluate this approach

using leaf-one-out crossvalidation (LOOCV). This creates a total

of 189 folds with 188 problem instances known and one being the

new one for which algorithm instances should be selected.

6.1 Recommendation Performance Measures
We will use the following measures to show the performance of the

proposed recommender:

(1) Normalized Discounted Cumulative Gain (NDCG)

(2) Spearman’s ρ

The NDCG [18] measure originates in the domain of information

retrieval and describes the gain of a certain document based on its

position in the produced ranking. The discount penalizes documents

with worse rank so that a good document provides less gain if it

is ranked later. This DCG measure is normalized with the ideal

DCG (iDCG) which is the discounted gain of a perfect ranking. The

NDCG is thus in the range [0; 1] and a value closer to 1 indicates

better performance. One can apply this measure only to the first n
ranked documents which is then called the NDCGn measure.

Table 4: Correlation analysis of an ideal selection vs k-NN

Features NDCG1 ρ

statistical 0.69 0.49

random walk (fla) 0.56 0.39

directed walk (fla) 0.65 0.43

statistical + fla 0.68 0.48

statistical + directed walk 0.69 0.49

6.2 Results
When using all features we observed that the combined algorithm

instance achieved ranks 1 − 6 in 41%, 22%, 12%, 5%, 3%, and 17%

of the cases respectively. Thus, we would not pick an unsuitable

configuration so often if LocalSolver 01 was applied alone. In Table 4

we give the NDCG and ρ values. The best results are achieved with

statistical features only, although there is only very little difference.

It is noteworthy that directed walks, although this are just three

features performs much better than characteristics obtained from a

random walk which does not really improve selection. We used all

12 algorithm instances for these tests, but it would be meaningful

to limit the analysis to only the top three or four as outlined before.
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7 CONCLUSION AND OUTLOOK
We have evaluated the application of algorithm selection to the

generalized quadratic assignment problem. We performed fitness

landscape analysis (FLA) and studied possible correlations to algo-

rithm performances. In looking at correlations between algorithm

performances we observed that many algorithm instances actu-

ally perform somewhat similar, but that algorithm instances using

crossover may work well on problem instances that other instances

do not work well for. We hypothesized that crossover may be a

necessary heuristic to solve problem instances with a high utiliza-

tion based on the correlations that we observed. We also evaluated

two commercial solvers and found them to be very well suited to

solve instances of the GQAP. While CPLEX did have its limitations

in such a short time, especially with respect to larger instances,

LocalSolver could provide good solutions to a number of instances

and in short time.
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