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ABSTRACT
For optimisation problems with multiple objectives and large search

spaces, it may not be feasible to find all optimal solutions. Even if

possible, a decision maker (DM) is only interested in a small number

of these solutions. Incorporating a DM’s solution preferences into

the process reduces the problem’s search space by focusing only

on regions of interest. Allowing a DM to interact and alter their

preferences during a single optimisation run facilitates learning

and mistake correction, and improves the search for desired so-

lutions. In this paper, we apply an interactive framework to four

leading multi-objective evolutionary algorithms (MOEAs), which

use reference points to model preferences. Furthermore, we pro-

pose a new performance metric for algorithm responsiveness to

preference changes, and evaluate these algorithms using this metric.

Interactive algorithms must respond to changes in DM preferences

and we show how our new metric is able to differentiate between

the four algorithms when run on the ZDT suite of test problems.

Finally, we identify characteristics of these methods that determine

their level of response to change.
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1 INTRODUCTION
Any real-world optimisation problem will involve a Decision Maker

(DM) who has a vested interest in solving the problem and imple-

menting the results. In the case of a single objective problem with
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a single optimal solution, the DM has a simple choice to either

accept the solution or reject it. However solving problems with

multiple objectives involves finding a set of solutions representing

the best trade-offs between conflicting objectives. The solution sets

found by multiobjective optimisation algorithms can be large, but

are usually presented to the DM regardless, who is then expected

to select a small subset of solutions for further evaluation.

Aside from the computational waste of this a posteriori approach,

a significant problem exists when a set of optimal solutions to a

multiobjective problem is too vast for a DM to effectively choose

from[3, 11]. Preference-based algorithms aim to ameliorate this prob-

lem by incorporating the DM’s preferences and expert knowledge

to reduce the search space and focus the search only on a preferred

region of interest[5, 37]. While many preference-based methods

involve the DM at the start (a priori), or at the end (a posteriori)

of an algorithm’s run, there is an increasing interest in eliciting

preferences interactively throughout the optimisation process [11].

The advantages of an interactive method are particularly apparent

when the DM is uncertain about their preferences and the inter-

active process is able to educate the DM and allow mistakes to be

corrected [5, 37].

The ability of an optimisation algorithm to facilitate the correc-

tion of DM mistakes is a key attribute of interactive techniques

[18, 33, 34]. However to respond to such corrections requires an

algorithm to quickly re-focus on a new region of interest, without

sacrificing convergence momentum. Further, an algorithm’s sensi-

tivity to preference change determines its suitability for interactive

application. As a result, this work develops a new performance

metric for interactivity which allows comparison of algorithm re-

sponsiveness.

To achieve this goal we first examine how algorithms adapt

and respond to preference changes during optimisation. When a

reference point based MOEA is interrupted and the DM changes

the reference point, the problem becomes dynamic with one of the

key inputs altered.

Dynamic multiobjective optimisation problems (DMOPs) con-

tain constraints, objectives or parameters that change over time

and potentially alter the problem’s Pareto front[12, 30]. In the case

of interactive reference point methods, the reference point is a

discrete dynamic parameter which changes during optimisation.

This change then guides the search toward solutions in a region

of interest defined by the new point. Unlike a DMOP, the problem

landscape and Pareto front are not altered in the case of a reference

point change. However the need to respond to a changed environ-

ment applies to both, and the role of the diversity of the population

in responding to change remains.

https://doi.org/10.1145/3205455.3205624
https://doi.org/10.1145/3205455.3205624
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The ability of an interactive algorithm to respond to preference

changes is important for the benefits of the technique to be realised.

An objective measure is therefore required to assess and compare

the relative performance of interactive MOEAs in responding to

DM preference changes. Using such a metric, the characteristics

of an algorithm’s ability to respond can be identified. By assessing

the performance using a series of standard benchmark problems

we may find algorithmic traits that lead to better results.

This work provides a new performance metric for interactivity

which allows comparison of algorithm responsiveness. Involving

the DM during optimisation is becoming more popular as problems

become more complex. An interactive MOEA needs to respond to

a DM’s change of preferences yet there is no current measure to

determine how well a method responds to change. The accumu-

lated hypervolume metric developed here assists in identifying the

characteristics of different MOEAs and how they perform in an

interactive, dynamic environment.

2 BACKGROUND
2.1 Multiobjective optimisation
MOEAs have had considerable success in solving optimisation prob-

lems where multiple objectives are in conflict. They use a stochastic

approach which evolves a population of individuals (candidate so-

lutions), and evaluates them with a fitness function. Each iteration

or generation of this process seeks to find solutions that have ‘bet-

ter’ fitness than previous ones. The optimisation process continues

until a termination criteria is reached and a final (optimal), set of

solutions found.

Due to an MOP’s conflicting objectives and the resultant solu-

tions representing trade-offs between objectives, the identification

of a single ‘best’ solution cannot be made. Further, the concept of

ordering these solutions in a meaningful way for the DM to chose

from is difficult. To overcome this problem, most multi-objective op-

timisation algorithms use the concept of dominance to distinguish

between optimality of solutions[6, 7].

A solution to a MOP is a vector of real-valued or discrete de-

cision variables containing decision alternatives. Given a solution

vector ®x with n decision variables (x1,x2, ...,xn ), and an objective

function f (®x) that evaluates solutions, the general form of a MOP

is formulated as[6, 7, 37]:

Minimise/Maximise [f1(x), ..., fm (x)]; (1)

subject to x ∈ Ω (2)

where Ω is the decision space denoting the set of all possible solu-

tions. The objective functions fi map values from the decision space

to the objective space fi : Ω → R where i = 1, 2, ...,m, Rm is the

objective space andm is the number of objective functions. Feasible

solutions within the decision space Ω are defined by a series of

inequality constraints restricting values of the decision variable xi .
The set of all feasible solutions is called the search space.

2.2 Preference models
To represent DM information, preference models have been devel-

oped to quantify information so that they may be incorporated into

the optimisation process. Some models require input from a DM a

priori, while others can be used during optimisation in an interac-

tive way, or to help select desirable solutions after optimisation (a

posteriori).

The types of preference models differ in terms of the type of in-

formation required from the DM, and the type of information that is

shown to the DM [21]. The use of weightings, trade-offs, pair-wise

comparisons, outranking and thresholds are common approaches

that perform well in eliciting DM preferences[2, 3]. Unfortunately

for problems where three or more objectives need to be considered,

the demands, or burden on the DM rapidly increases[2, 4, 17]. This

is undesirable, and a compromise is required between a model’s so-

phistication and its ability to scale to larger problems. The use

of reference points can address this problem by using a simple

point vector to represent a DM’s desires or aspirations for each

objective[2, 8, 17].

The reference point model[13, 14] has proven useful in multi-

objective optimisation and involves the DM supplying a reference

point comprising a value for each objective. The use of a reference

point at the start of the optimisation process (a priori), focuses

the initial search effort to the region of interest and significantly

reduces computation. However this assumes that the DM has prior

knowledge of the problem and knows where to start the search for

their preferred solution. Where such knowledge is lacking, an inter-

active approach where the DM can adjust reference points during

optimisation, allows the DM to explore the search space and learn

about the problem and the inter-dependencies between objectives

[21]. The increased involvement of the DM in the optimisation pro-

cess can also encourage greater ownership and satisfaction of final

solutions[10] and make selection of single solutions more effective.

2.3 Interactivity
Progressive incorporation of preferences has a number of advan-

tages over a priori and a posteriori techniques[22, 34]. An interactive

optimisation approach comprises a series of iterations whereby the

DM specifies preferences progressively during optimisation, di-

recting the search for desired solutions. Using this method only

a part of the Pareto front needs to be explored and evaluated as

the directed search focuses on the DM’s preferred region. While

reducing computation is beneficial, the key advantage of interac-

tivity is that the DM can learn from the process by exploring the

search space, refining their preferences and honing-in on preferred

solutions. This alsomeans that the DMdoes not require prior knowl-

edge nor have any global preference structure before searching[22].

The DM’s preferences can be changed during the search, reducing

mis-direction by human error, and allowing greater search control

[3, 33].

2.4 Performance metrics for preference based
MOEAs

For preference based MOEAs which generate a sub-set of pareto

optimal solutions, the use of standard performance metrics that are

based on the complete Pareto front are not suitable. The problem lies

with the need to define a preferred region of interest independent

of the Pareto front. Mohammadi et al. proposes constructing a

composite front from merged solution sets of compared MOEAs. A
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preferred region of interest is defined on this front and existing

MOEA performance metrics are applied to assess performance [23].

Nguyen et al. [29] suggest a similar approach defining a User

based Front generated from a preferred region which then uses

Generational Distance (GD) and Inverse Generational Distance

(IGD) to measure performance [29]. More recently Li and Deb [17]

have proposed a systematic method named R-metric which uses an

approach of pre-processing the preferred optimal set and measuring

performance using adapted Inverted Generational Distance (IGD)

and Hypervolume (HV) unary metrics [17]. The advantage of the

HV measure is its ability to both identify set dominance and reward

solution diversity. However calculating HV can be computationally

expensive especially when many solutions need to be evaluated[1].

The use of reference points and interactive preference based

MOEAs is a relatively new field of investigation. Consequently,

metrics to measure performance of these techniques are currently

under-developed.

3 ACCUMULATED HYPERVOLUME
The new metric AHv is proposed here, based on the hypervolume

indicator[35] but calculated using solutions contained in a region

of interest rather than the whole Pareto Front. This use of a reduced

set of solutions minimises computational complexity and allows

HV to be determined and aggregated in a reasonable timeframe

during optimisation.

At each generation of a run comprising two or more algorithms,

a region of interest (or preferred region), is defined using non-

dominated solutions from all algorithms. This composite front of

solutions is then used to calculate a nadir point representing the

worst objective values of the set. The hypervolume of an individual

algorithm can then be calculated using this nadir point and the

algorithm’s non-dominated solutions that fall within the preferred

region. Figure 1 illustrates this process by identifying a set of non-

dominated solutions, located within a preferred region defined

around a mid point solution closest to the reference point. The

hypervolume of these solutions is determined by the sum of the

areas constructed with reference to the nadir point.

Given a run with T generations in total, at each generation t
(where t = 1, 2, ...,T ), a new preferred region Prt is determined

and the hypervolume HV of contained solutions is calculated. On

completion of a full run, the individual hypervolume values for

each generation are summed into an accumulated hypervolume

metric (AHv):

AHv =

T∑
t=1

HVt (Rt ,ndt ) (3)

where for each generation t we have a set Rt comprising non-

dominated solutions located within the preferred region Prt , and
a nadir point ndt . The hypervolume HVt is the union of the areas

defined by the solutions in Rt and the nadir point ndt , such that

HVt = volume(⋃ |Rt |i=1 vi ), where i is a solution in Rt and vi is a
hypercube defined with reference to ndt [20].

The premise is that solutions found using a reference point based

MOEA will converge to the DM’s region of interest and maximise

its hypervolume indicator. If the reference point is changed during

the optimisation process (after convergence), the hypervolume of

the next generation will be minimal. As subsequent solutions are

Figure 1: Preference Region hypervolume for a single gener-
ation

generated closer to the new reference point the hypervolume value

will increase.AHv is at a minimum a binary metric requiring at least

two algorithm solution sets as parameters. Following a reference

point change, an algorithm that finds closer solutions faster will

have a higher AHv than other algorithms run at the same time.

To identify a preferred region for a given generation of solutions

we have used the metric developed by Mohammadi et al. [23] called

the user-preference metric based on a composite front (UPCF). This

metric is designed specifically for reference based MOEAs and

creates a preferred region using a replacement Pareto Front called

the composite front. The preferred region is centered on the closest

solution in the composite front to the reference point, and defined

by a radius determined by a user-specified parameter r . At the
completion of each generation for all algorithms, the preferred

region is determined using the following steps:

(1) Combine solutions from all algorithms into a single front

(Composite front),

(2) Remove dominated solutions from the composite front,

(3) Find the solution in the Composite front that is closest to

the reference point (ie. the mid point),

(4) Construct a preferred region centered on the mid point using

a supplied radius.

3.1 Calculating AHv using the preferred region
Algorithm 1 provides an outline of inputs and the steps involved

to implement to define the preferred region and calculate the AHv

metric. At each generation of the algorithms’ execution, a new pre-

ferred region is defined based on composite front of non-dominated

solutions. This region is then used to calculate the hypervolume

for each individual algorithm’s results. The stages involved include

the following:

(1) Assign a reference point and initialise all algorithms.

(2) For each algorithm, at the end of each generation calculate

the composite front and preferred region.

(3) Calculate a Nadir point by finding the worst objective values

of the composite front solutions contained in the preferred

region.

(4) Determine which solutions from each algorithm fall within

the region of interest.
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(5) Calculate the hypervolume of solutions in the ROI for each

algorithm individually using the generation’s Nadir point.

(6) After termination or the required number of generations,

sum the hypervolume values across all generations to pro-

duce an accumulated hypervolume for each algorithm.

Algorithm 1 AHv - Calculation of the accumulated hypervolume

using multiple reference point changes

Inputs:
A: a set of reference point based MOEAs where |A | ≥ 2;

R : a sequence of reference point vectors;
I : a set of generation counts indicating when to interact where |I | = |R | − 1 (as
the first reference point in the sequence is used as the initial reference point).

max : the maximum number of generations before termination.

1: function calculateAHv(A,R ,I ,max )
2: for each algorithm a ∈ A do
3: initialize a
4: ar ef ← Rf ir st ▷ set the initial reference point

5: end for
6: initialise t
7: t← 1

8: while t ≤ max do ▷ begin evolving generations

9: for each algorithm a ∈ A do
10: ar esult ← Evaluate and evolve population of a
11: end for
12: allResults ← { for all ar esults in A }

13: cf ← buildCompositeFront(allResults ) ▷ also removes dominated

solutions

14: pr ← findPreferredRegion(cf )
15: nd ← findNadirPoint(cf ∈ pr )
16: for each algorithm a ∈ A do
17: prs ← ar esults ∈ pr
18: ahv ← HyperVolume(prs , nd )
19: aahv ← aahv + ahv ▷ accumulate each algorithm’s hypervolume

20: end for
21: t++
22: end while
23: return aahv for all a ∈ A
24: end function

The larger an algorithm’s accumulated hypervolume, the better

the method is at focusing on the reference point. Similarly, when

the reference point is changed during an algorithm’s run, a better

responding algorithm will have a larger accumulated hypervol-

ume as well. When the reference point location is changed it is

expected that the hypervolume for the next generation should be

lower than that before the change. The longer a reference point

remains in the same spot the greater the convergence of solutions,

therefore when the reference point is moved there should be few

(if any) solutions close to the changed point and the hypervolume

should decrease. Fast responding algorithms will be able to gain

hypervolume quicker than slow responding methods.

4 EVALUATION
4.1 Reference point based multi-objective

algorithms
Four reference point based MOEAs have been selected to evaluate

this new metric. The first of these, R-NSGA-II is the earliest ap-

proach and the most popular having been successfully used in real-

world scenarios[26] and large scale industrial systems simulation[32].

It is based upon the well known NSGA-II algorithm[9] and uses two

fitness functions to select solutions, pareto optimality and crowding

distance. The primary criteria is pareto optimality, however where

dominance between solutions cannot be determined the crowding

distance is used to ensure the selected set of solutions remains

diverse [28]. The second (g-NSGA-II) and third (r-NSGA-II) are

also based upon NSGA-II while the fourth (R-MEAD) extends the

decomposition method MOEA/D[36]:

(1) Preference distance (R-NSGA-II)

R-NSGA-II replaces the crowding distance function of NSGA-

II with a preference distance function which prefers solutions

closer to the DM-supplied reference point[11]. Using the

preference distance as a secondary criteria (while maintain-

ing pareto optimality as the first), guides the algorithm to

find pareto optimal solutions close to the reference point.

(2) g-dominance (g-NSGA-II)

This approach combines the notion of pareto efficiency with

a reference point (representing DM aspiration levels), and

finds solutions in a region of interest defined by that point[27].

The region of interest is determined by splitting the objective

space into two regions and preferring solutions in the region

that satisfy all, or none of the aspiration levels over those

that satisfy only some levels[17, 18].

(3) r-dominance (r-NSGA-II)

Reference solution-based dominance (r-dominance) adapts

the primary dominance relation of the NSGA-II to prefer so-

lutions close to a DM-provided reference point while main-

taining the order induced by pareto dominance[31]. The

weighted Euclidean distance is used to determine the prox-

imity of solutions to the reference point which is used to

differentiate non-dominated solutions.

(4) Reference point based decomposition (R-MEAD)

In the base algorithmMOEA/D, weight vectors are generated

to cover the entire pareto front; R-MEAD instead generates

a smaller set of weights to find solutions in the region of

interest. It achieves this by evolving an initial sub-optimal

weight vector until a solution is found as close as possible

to the reference point and Pareto Front. At each generation,

neighbourhood weight vectors that are not close to the ref-

erence point are updated by moving them toward the region

of interest[25].

While the first three are built on NSGA-II, they each replace or add

to the method’s dominance functions with their own dominance

relation based on location relative to a reference point. r-NSGA-II

and R-NSGA-II are very similar algorithms but differ in how they

incorporate their distance-based fitness functions. R-NSGA-II can

also use multiple reference points but this feature is not relevant

in this work. R-MEAD[25] is an adaption of MOEA/D whereby

subproblem weights are generated around the region of interest.

Consequently we have two algorithm classes, domination-based

and decomposition-based.

4.2 Experimental setup
Using the MOEA Java Framework[16] the base algorithms NSGA-II

and MOEA/D were modified into the four reference point based

algorithms. Each algorithm was adapted to allow the reference

point to be changed interactively during execution.

To assess responsiveness, we provide a case study using a series

of four reference points created for each problem in the ZDT suite
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Table 1: Experimental setup - base parameters

Setting Value(s)

Algorithms (4) R-NSGA-II, g-NSGA-II, r-NSGA-II, R-MEAD

Problems (5) ZDT1, ZDT2, ZDT3, ZDT4, ZDT6

Number of runs 30

Generations 600

Population size 100

Radius of pref. region 0.1

Reference Points

ZDT1 0.9, 0.1 0.3, 0.7 0.77, 0.06 0.4, 0.2

ZDT2 0.1, 0.9 0.75, 0.3 0.1, 1.1 0.8, 0.5

ZDT3 0.0, 0.8 0.4, -0.1 0.5, -0.25 0.8, -0.25

ZDT4 0.05, 0.75 0.8, 0.2 0.8, 0.0 0.4, 0.6

ZDT6 1.0, 0.4 0.7, 0.6 0.9, 0.1 0.8, 0.5

Interactions (3) at 150, 300, and 450 generations

Table 2: Algorithm parameters used for evaluations

R-NSGA-II, g-NSGA-II, and r-NSGA-II R-MEAD

Parameter Value Parameter Value

SBX rate 1.0 Crossover rate 0.1

SBX dist. index 15.0 Step size 0.5

PM rate 0.03 Neighbourhood size 10

PM dist. index 20 delta 0.9

eta 0.01

(see Table 1). The first point is used as the initial point, and during

an optimisation run the reference point is changed three times. The

set of reference points represent a mix of feasible and infeasible

locations and care was taken that sequences were not too close

together so as to highlight responsive ability.

The parameter settings presented in Table 2 reflect the default

values used in the MOEA Framework taken from best practices in

relevant literature[15]. In addition to these settings, r-NSGA-II has

a parameter δ (set to 0.5) to control the spread of solutions in the

region of interest, and R-NSGA-II has the parameter ϵ − clearinд
which controls the extent of solutions found (set to 0.008). No

archive populations were used, nor were any algorithms allowed

to re-start during a run.

5 RESULTS
5.1 Response to preference changes
Using hypervolume calculated at each generation we can explore

the differing abilities of algorithms to respond when reference

points change. Algorithms were run for 600 generations with refer-

ence point changes at 150, 300, and 450 generations. This number

of generations is large but necessary to allow all methods enough

time to converge to a region of interest. Convergence is impor-

tant before a reference point change occurs as dispersed solutions

may be serendipitously located close to the new reference point

providing an unfair advantage to a unresponsive algorithm.

Following 30 runs of each algorithm, the hypervolume for each

generation is averaged, plotted and compared. Figure 2a displays

results from runs using the ZDT1 problem with the four interac-

tive reference point algorithms. An initial reference point is set at

generation zero, and changes made at intervals of 150 generations

until termination at 600. It is clear that dramatic changes to each

algorithm’s hypervolume occurred when the reference point was

changed.

The first thing to note in Figure 2a is the similarity in genera-

tional hypervolumes of the r-NSGA-II and R-NSGA-II algorithms.

Both of these algorithms obtained large hypervolumes when they

converged, and experienced a very steep drop-off at each reference

point change. They also managed to re-converge at new regions of

interest within a reasonable number of generations. The solutions

sets found by R-MEAD were generally less stable than the other

algorithms and this is reflected in its lower hypervolume values.

Nonetheless, R-MEAD appears to respond to change faster than

the other methods, picking up hypervolume in fewer generations

after reference point changes.

The behaviour of g-NSGA-II differed from the other algorithms

on the ZDT1 problem where the method appears to converge to-

ward the initial reference point, but does not respond to the first

reference point change at generation 150. g-NSGA-II did not gener-

ate any solutions within the preferred region after this change and

did not regain hypervolume until the next change when previous

solutions became relevant again. It is not until the final change that

the algorithm appears to respond and then it is very slow compared

to the other methods. Further investigation reveals g-NSGA-II is

much slower to respond to change and appears to become ‘stuck’

for many generations even on simple problems such as ZDT1.

When run using the ZDT2 problem (see Figure 2b), results were

very similar to ZDT1 with R-NSGA-II and r-NSGA-II performing

similarly well and R-MEAD responding quickly to reference point

changes. However on the ZDT3 problem with a discontinuous

Pareto Front, R-MEAD responded poorly. Figure 2c shows how R-

MEAD failed to find solutions close to the initial reference point, and

failed to respond after the final change at generation 450. Again both

r-NSGA-II and R-NSGA-II responded to all changes but with weaker

performance with the last two changes. This problem presents

obvious difficulties for our algorithms, responding and changing

focus once converged is more difficult, due to the discontinuous

nature of the Pareto Front and the lack of diversity within the

solution set.

The ZDT4 problem (see figure 2d) contains many local Pareto

fronts and is considered a difficult problem with algorithms easily

becoming stuck by sub-optimal fronts. While g-NSGA-II performed

well with the initial and last reference points, it failed to respond

to the three changes in between. r-NSGA-II clearly outperformed

the other methods including the state-of-the-art, yet similar to

R-NSGA-II. Unlike R-NSGA-II, r-NSGA-II retains the crowding dis-

tance function to help maintain diverse solutions. This feature

appears to allow r-NSGA-II to look beyond the many local fronts

and find solutions closer to the Pareto front. ZDT6 (see figure 2e)

is also considered a difficult problem with R-NSGA-II, r-NSGA-II

and g-NSGA-II all performing similarly. The main point of note

however was R-MEAD’s ability to rapidly gain hypervolume and

find solutions in the preferred region in the initial stages of the

runs. This quick response to change was R-MEAD’s strength across

most tests even though its overall convergence was weaker than

the other methods.

5.2 Measuring responsiveness
Given an interactive reference point based MOEA where reference

points are changed during optimisation, the hypervolume from each
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(a) ZDT1 (b) ZDT2 (c) ZDT3

(d) ZDT4 (e) ZDT6

Figure 2: Average hypervolume by generation - 30 runs with problems ZDT1, ZDT2, ZDT3, ZDT4 and ZDT6.

generation during a run is summed as the AHv metric (accumulated

hypervolume). Assuming the algorithm responds to change, the

larger the AHv the more responsive the algorithm is to interaction.

Averaging the AHv over 30 runs on problem ZDT1 reveals R-

NSGA-II as the algorithm with the highest value, although the

difference between it and r-NSGA-II is minor (see Table 3). The box

plot of results from ZDT1 (Figure 3a), reveals the AHv of g-NSGA-II

to be left-skewed with larger variability than the other algorithms.

The distribution of results for r-NSGA-II, R-NSGA-II and R-MEAD

were more compact with considerable overlap between r-NSGA-II

and R-NSGA-II.

The t-test results for AHv when running the ZDT2 problem

show that g-NSGA-II has the only statistically significant difference

when compared with each of the other methods. Figure 3b shows

that the distribution of values returned by g-NSGA-II was also

more dispersed and it had the lowest median. The performance of

R-MEAD increased with this problem compared with ZDT1 with

results similar to both r-NSGA-II and R-NSGA-II.

Running on the ZDT3 problem the R-MEAD algorithm per-

formed consistently poorly with the lowest mean (1.22), while R-

NSGA-II achieved the highest (6.78), although only slightly larger

than g-NSGA-II’s (6.59) (see figure 3c) .

Figure 3d shows the box plot of results for the ZDT4 problem.

The first point of note is that all methods have a minimum AHv of

zero or close to it, indicative of the difficultly in finding solutions

close to the reference point. The AHv results from r-NSGA-II were

significantly different to R-NSGA-II with a p-value of 0.0012. As

with all the algorithms on this problem, r-NSGA-II’s results are

skewed to the right, but with much higher variability and greater

mean.

Table 3: Accumulated Hypervolume over 30 runs - means
and standard deviations

Mean and (standard deviation)

Problem R-NSGA-II g-NSGA-II r-NSGA-II R-MEAD

ZDT1 24.94 (1.416) 19.60 (2.898) 24.83 (1.201) 17.20 (0.957)

ZDT2 8.71 (1.409) 5.86 (2.253) 8.86 (1.277) 8.21 (1.818)

ZDT3 6.78 (0.924) 6.59 (0.766) 5.68 (0.875) 1.22 (0.366)

ZDT4 1.70 (3.687) 2.47 (3.305) 7.61 (8.534) 2.83 (4.883)

ZDT6 18.28 (0.868) 17.30 (0.609) 17.58 (0.467) 17.55 (2.679)

Table 4: Accumulated Hypervolume over 30 runs. The t-test
p-values at the 0.05 significance level for R-NSGA-II com-
pared with other algorithms.

p-values for R-NSGA-II compared to:

Problem g-NSGA-II r-NSGA-II R-MEAD

ZDT1 2.5337E-11 0.7394 6.8989E-27

ZDT2 4.3677E-6 0.6710 0.1126

ZDT3 0.3786 9.1183E-5 4.9503E-37

ZDT4 0.3945 0.0012 0.3131

ZDT6 4.8383E-12 7.3623E-8 0.1592

Results from the final problem in the ZDT series, ZDT6, reveal

high variability of AHv values for R-MEAD and an inter-quartile

range that overlaps that of all comparison algorithms (see figure
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(a) ZDT1 (b) ZDT2 (c) ZDT3

(d) ZDT4 (e) ZDT6

Figure 3: Box plots of accumulated hypervolume (AHv), over 30 runs with problems ZDT2, ZDT3, ZDT4 and ZDT6.

3e) . Consequently, R-MEAD’s results are not significantly different

to the other methods at the 95% confidence level. R-NSGA-II is

however significantly different to both g-NSGA-II and r-NSGA-II.

Overall r-NSGA-II and R-NSGA-II responded more consistently

across the ZDT problem set. r-NSGA-II had better performance

on ZDT2 and ZDT4 and R-NSGA-II showed strength on ZDT3

and ZDT6, both were very similar on ZDT1. Obviously the type

of problem has a significant effect upon an algorithm’s ability to

respond to preference changes.

5.3 Behaviour analysis
All four algorithms have been shown to respond to preference

changes during optimisation, however their level of responsive-

ness varied. When tested on the ZDT problems the g-dominance

algorithm (g-NSGA-II) converged toward the initial reference point

but responded poorly to subsequent changes. Figure 2a shows how

g-NSGA-II did not increase its hypervolume after the change at 150

generations until the change at 300 generations where its hypervol-

ume rose immediately and stabilised. This behaviour was unique to

g-NSGA-II and experienced to varying degrees with all test prob-

lems (see also Figure 2b), and can be attributed to slow response to

reference point changes and subsequent poor convergence to the

new area of interest. As a result, this algorithm is probably more

suited to a priorimethods of interaction as convergence to an initial

point was consistent.

The superior performance of the other NSGA-II based algorithms,

r-NSGA-II and R-NSGA-II show that the problem with g-NSGA-II is

with its dominance relation and a lack of selection pressure follow-

ing preference changes. Both r-NSGA-II and R-NSGA-II responded

well to change and converged toward new regions of interest rapidly

on both the ZDT1 and ZDT2 problems. On the more difficult ZDT3,

ZDT4 and ZDT6 problems all methods struggled to respond fast

enough and could not converge to new regions before the reference

point was changed again.

R-MEAD did not converge as well as r-NSGA-II and R-NSGA-II

and its approximation sets were less stable between generations

than all other algorithms. R-MEAD was however the quickest to

respond to reference point changes. Figures 2a, 2b and 2e illustrate

this where on each change in reference point (at generations 150,

300, and 450) R-MEAD clearly gains hypervolume faster than the

state-of-the-art R-NSGA-II algorithm. Following a change in refer-

ence point, R-MEAD’s hypervolume drops immediately and in few

generations rises considerably.

Ignoring the quality of solutions, R-MEAD is a fast responder

to change and can rapidly explore a problem’s search space. This

may be attributable to the fact that decomposition-based methods

generally converge faster than dominance-based algorithms like

NSGA-II.

6 CONCLUSIONS
An algorithm that is responsive to preference changes facilitates

exploration and learning while allowing for ’mistakes’ or misdi-

rections to be corrected. In order to compare responsiveness of

interactive algorithms we have developed a new performance met-

ric. This new metric is called AHv and is an aggregation of the

hypervolume calculated for each generation of a MOEA run. Using

AHv we have compared four reference point based MOEAs with

problems from the ZDT series. Not only does the metric allow us

to determine how well an algorithm responds to reference point

changes, but due to the nature of the hypervolume metric a larger

value also indicates better solution quality in terms of convergence

and diversity.

Evaluations reveal how well the selected reference based algo-

rithms perform and their ability to adapt and respond to preference
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changes. As expected, there was variability found amongst all meth-

ods; some such as g-NSGA-II were slower to adapt, while others like

R-MEAD were fast but with poor convergence. The most consistent

performers were r-NSGA-II and the state of the art R-NSGA-II.

A number of characteristics have been identified in the algo-

rithms chosen for testing. The level of responsiveness varied with

g-NSGA-II found to be the slowest responder. It was determined

that the dominance relation was responsible as other NSGA-II based

methods performed much better. In fact, the other two NSGA-II

based algorithms r-NSGA-II and R-NSGA-II consistently performed

the best. The decomposition algorithm R-MEAD responded very

quickly to changes in the reference point but did not converge as

well as r-NSGA-II and R-NSGA-II.

The obvious extension to this work is the evaluation of the four

interactive algorithms with problems of higher dimensionality. It is

expected that the performance metric will scale to more objectives,

however the performance of different algorithms to respond to

change with high dimension problems is unknown. The evaluation

with the new metric of other decomposition based algorithms such

as R-MEAD2[24] and MOEA/D-STM[19] would also help identify

the relative strengths of dominance versus decomposition based

techniques. Open questions remain with regard to optimal interac-

tivity patterns. Little work has been conducted on the frequency

of interactions during optimisation, nor the best times to interrupt

the process to allow the DM to inspect results and update their

preferences.
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