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ABSTRACT
The Team Formation Problem in Social Networks (TFP-SN) consists
of finding a team of experts, from a social network, that better
undertake a given task. It is mandatory for the team to meet the
skill set required by the task and it is desired that the teammembers
communicate effectively to achieve their goal. This problem was
proven to be NP-hard for the optimization of different variants of
a communication cost function. Even though, real-life instances
of this problem involve the simultaneous optimization of two or
more conflicting objectives, the studies of the TFP-SN under the
multi-objective model has been rather scarce. In this work, we in-
troduce the TFP-SN as a multi-objective optimization problem for
the maximization of two conflicting objectives, the collaborative
density and the team’s ratio of expertise. We tackle this problem
employing the NSGA-II framework, for which a proper represen-
tation and variation operators are proposed. Experimental results
show that the proposed approach generates competitive solutions
when compared with well-known heuristics for this problem. Ad-
ditionally, as a response to the lack of benchmarks and to setup a
baseline for future comparisons, we provide a detailed description
of the generated instances.
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1 INTRODUCTION
Within organizations, team formation is a most important process
when the success of a task or project relies on the selection of
adequate team members. An appropriate selection of members
should provide with the required skill set, critical to complete a
particular task, and allow an effective communication between
members.

The team formation problem in social networks (TFP-SN) is typ-
ically modeled as a social graph. With the candidates being the
nodes and the relationships among pairs of candidates being the
edges. Additionally, each node is associated with a set of skills,
which the candidate possesses. Also, each edge has a weight repre-
senting the affinity of its endpoints to work cohesively. Thus, given
a social graph and a required set of skills, the TFP-SN concerns with
finding a subset of nodes (candidates) from the social graph, such
that it meets the required skills and whose communication cost is
minimum. The TFP-SN is derived from the Team Formation Prob-
lem (TFP) originally introduced in the field of Operations Research
[25]. In the TFP, the objective is to assemble a team of minimum
cost whose members are associated to undertake a particular task;
there is an inherent cost to each possible person-task association.
Both problems seem, in principle, very similar. However, the con-
sideration of the relations among candidates modeled in a social
network graph entails a different challenge. For example, based on
the assumptions made, the TFP may be seen as the classic task as-
signment problem [7], which is known to be solvable in polynomial
time [16]. In contrast, the TFP-SN considering the minimization of
the communication cost was proven to be NP-hard by reduction
from the Multiple Choice Cover problem [17].

This problem attracted the attention of researchers [6, 10–12, 14,
15, 18–24] since its proposal by Lappas et al. in 2009 [17]. Partly
because of the challenge that implies to solve it at optimality. Be-
sides, intuitively, teams of skilled people whose communication
cost is minimum may deliver their assignments more efficiently.
Furthermore, it is of general interest to develop a model that can
predict, to some extent, the performance of a team. Additionally,
the proliferation of experts’ social network websites such as DBLP,
IMDB, Bibsonomy, or StackOverflow, for which datasets could be
obtained, have brought appreciation to the problem.

The criteria to evaluate the performance of a team, in this con-
text, has widened over time [21]. The first works considered the
minimization of the cost of the minimum spanning tree and the
diameter of the team [17, 18]. Next, the total sum of the weight
of the edges between team members was considered [14]. Later,
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the density of the team graph was studied [11, 20]. Limitations of
some of these criteria have been reported. Although, there is not
yet a consensus on which criteria a team should be evaluated [21].
Moreover, the study of the multi-criteria version for this problem
has been somewhat scarce.

In this work, we present a multi-objective formulation for the
TFP-SN which we solve with the well-known NSGA-II framework,
for the simultaneous optimization of the collaborative graph den-
sity and the team’s ratio of expertise. An appropriate individual
representation and two variation operators are also introduced. A
set of benchmark instances are generated to set a baseline for future
comparison with other approaches.

The rest of the paper is organized as follows. Section 2 states
the problem and describes the related work. Section 3 describes the
algorithm we propose to solve the problem. Section 4 presents the
experimental setup and the corresponding results. Finally, Section
5 exposes the conclusions and some ideas for future research.

2 PROBLEM DEFINITION
Let X = {1, 2, · · · ,n} be a pool (set) of indices representing n
candidates and A = {a1,a2, · · · ,am } denote the universe of m
skills. Also, letXi ⊆ A denote the set of skills candidate i possesses.
In other words, if say candidate i can provide the skill aj , then
aj ∈ Xi . Additionally, let us define the support set S(aj ) ⊆ X of an
arbitrary skill aj ∈ A as S(aj ) = {i ∈ X|aj ∈ Xi }, i.e., the subset of
candidates that satisfy aj .

Under the basic task team formation context, a task T ⊆ A is
simply defined as the subset of skills required for its completion.
However, we address the generalized version of this problem by
defining a task T = {(aj ,kaj )} as a set of pairs (aj ,kaj ), where
aj ∈ A and kaj ∈ N. That is, a task T demands at least kaj people
skilled in aj , for each (aj ,kaj ) ∈ T . Furthermore, let A(T ) ⊆ A
denote the set of skills in a task T .

For any given task T = {(a1,ka1 ), (a2,ka2 ), · · · , (am ,kam )}, a
team is defined as X′ ⊆ X such that |X′ ∩ S(aj )| ≥ kaj for
each j ∈ {1, 2, · · · ,m}. Note that the size of a team X′ is |X′ | ≤∑
j ∈{1, · · · ,m } kaj , bounded by the total sum of required experts. It

may be the case that a candidate is skilled in more than one of the
required skills by T .

Let G = (X,E) be a undirected weighted social graph, where
X is the pool of indices of candidates and E represents the set of
weighted edges among pairs of candidates. For a given graphG and
a team X′ ⊆ X, the induced subgraph G[X′] is the graph whose
vertex set is strictly X′ and whose edge set consists of all of those
edges e = (i, i ′) in E whose nodes i, i ′ are in X′.

In the next subsections we introduce the optimization criteria
we are going to use in our formulation of the problem.

2.1 Objective 1: Density
Depending on the context, the weightw(e) of an edge e in E may
represent communication cost or gain. In the particular context of
this work, an edge e = (i, i ′) exists to denote collaboration between
any pair of candidates i and i ′, hence the weightw(e) ∈ N is a gain.
The higher (lower) the weight of an edge, the higher (lower) the
cohesion of its endpoints.

In this study, we are interested in those teams that translate into
high collaborative density. Given a graph G and a team X′ ⊆ X,
the collaborative density is simply the weighted density of G[X′],
defined by the following equation

D(X′) =
∑

e ∈EG [X′]

2 ·w(e)
|X′ | · (|X′ | − 1) , (1)

where EG[X′] is the set of edges of the induced subgraph G[X′].
This objective for the TSP-SN is different from the one previously
introduced in [11]. The difference is explained in Subsection 4.5.

2.2 Objective 2: Expertise
Besides the density objective, it is of a particular interest in this
study to assembly a team whose members are most experienced
for the required skills of a task T . It is arguably more convenient
to pick candidates who are more experienced than the rest, on the
skill set of interest.

Let the level of expertise of a candidate i ∈ X over a particular
skill aj ∈ Xi be denoted as zi (aj ). Given a task T , a graph G and a
team X′ ⊆ X, the total level of expertise of the team is defined as:

Z (X′) =
∑
i ∈X′

∑
aj ∈(Xi∩A(T ))

zi (aj )
|X′ | . (2)

Note that the total level of expertise Z (X′) is scaled by 1
|X′ | , that

is to avoid any team to grow indiscriminately. To the best of our
knowledge, this is the first time this objective is considered in the
TFP-SN context.

2.3 Multi-objective TFP-SN
In the multi-objective optimization paradigm, every conflicting
objective is equally relevant to the problem. There is no single
"best" solution, in a strict sense, rather than a set of multiple trade-
off solutions. Trade-off solutions may favor one or more objectives
with retribution to the other objective(s), but none of these solutions
excel in all objectives at once [3, 4, 8].

In this spirit, we have defined two conflicting objectives to con-
sider when forming a team: the density objective and the expertise
objective. It is intuitive to strive for the assembly of a team con-
sisting of the most collaborative and the most experienced team
possible. However, we make no distinction between the most col-
laborative team that happens to be the most inexperienced, and the
most experienced team that cannot work together as a unit. Both
are, in a sense, equally as good (or perhaps equally as bad).

The multi-objective team formation problem in social networks
is formally defined in the following. Given a social graph G =
(X,E), with X = {1, 2, · · · ,n} a set of n candidates, and a task
T = {(a1,ka1 ), (a2,ka2 ), · · · , (am ,kam )} requiringm skills,

maximize
X′∈X

(D(X′),Z (X′)),

subject to |X′ ∩ S(aj )| ≥ kaj ,

∀aj ∈ A(T ).
(3)

2.4 Related work
2.4.1 Single criterion. Lappas et al. [17] were the first to address

the Team Formation Problem in the presence of social network
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graphs (TFP-SN). The team to be formed is required to meet the
skills of the task at hand. They measured the effectiveness of a
team using two different communication-cost functions, the cost
of the minimum spanning tree and the diameter of the subgraph
induced by the team. This problem was proven to be NP-hard. In
an attempt to solve this problem, they proposed two algorithms,
the RarestFirst algorithm for the diameter-based objective, and the
EnhancedSteiner algorithm for the MST-based objective.

Li and Shan [18] took the TFP-SN one step further by gener-
alizing the problem, in which a minimum number of persons are
required for each skill in a task. They presented an adaptation of
the EnhancedSteiner algorithm to tackle the generalization of the
problem. This adaptation, however complete, was mentioned to be
computationally costly regarding the number of skills required or
in the size of the graph. Consequently, they proposed a grouping
method that narrows the search for candidates within groups, for
the generalized EnhancedSteiner algorithm.

Kargar and An [14] pointed out the problem of using the MST
and diameter as metrics of cost for the teams. The criticism is that a
minor change in the input graph may result in a radically different
solution.

Gajewar and Sarma [11] addressed this issue by measuring a
team’s compatibility in terms of the density subgraph metric. Then,
the goal is to find a team that maximizes the subgraph density such
that the requirements of the task are covered. This formulation is
also proven to be NP-hard. In this sense, they proposed a density-
based algorithm named m-DensityAlk. However, the downside of
this algorithm is that there is no guarantee to find a connected
solution if any, as opposed to the distance-based methods. Ranga-
puram et al. [20] also proposed an utterly different density-based
algorithm, although the same inconvenience is present.

2.4.2 Multiple criteria. Regarding multiple criteria for the TFP-
SN, the literature is not abundant. Additionally, a considerable
amount of theseworks [6, 10, 13, 15] are based on the linearweighted
sum method for optimization, which will miss nonsupported solu-
tions for nonconvex problems [8] like the one we study here.

Niveditha et al. [19] proposed a genetic algorithm for the TFP-
SN with three objectives. This work involves the simultaneous
minimization of a communication cost objective, a personnel cost
objective, and a team size objective. The NSGA-II framework is also
used for this study. Unfortunately, their results are not detailed or
available for comparison.

2.4.3 Others. Some works have introduced variations, or ex-
tensions, for the TFP-SN such as time [22, 23], leader [14], social
influence [24], or geographical location [12], to name a few. These
variants are out of the scope of this study.

3 MULTI-OBJECTIVE GENETIC ALGORITHM
To solve the multi-objective TFP-SN problem defined in the section
above, we employ the well-known NSGA-II framework. It is a multi-
objective genetic algorithm that, through the years, has empirically
proven itself useful for solving a wide variety of multi-objective
problems. Notice that the MO method could also be any of other
more recent MOEA approaches, however, for the sake of having

Figure 1: Example of social network graph.

a first glance at the trade-off solutions we selected this successful
and well-known technique.

The NSGA-II features three key aspects. First, a fast non-dom-
inated sorting routine, which partitions efficiently the pool into
non-dominated fronts under the Pareto’s concept of non-dominance.
Second, elitism, as the best individuals are carried out from one gen-
eration to the other; this is a necessary condition for convergence to
the Pareto front. Third, a diversity preservation mechanism, which
favors solutions that are more isolated than other solutions in the
same non-dominated front. For further details of the algorithm, the
reader is referred to the original work [5].

In general, genetic algorithms are highly customizable, the out-
line of the algorithms are merely a backbone with placeholders for
the operators. The components of a typical genetic algorithm are
mostly inherent to the problem. The representation of the individu-
als, initialization procedure, recombination and mutation operators
that we propose for the TFP-SN, are described throughout this sec-
tion. The selection method is crowded-based binary tournament,
and the replacement is also native to the NSGA-II.

3.1 Representation of the solution
For the multi-objective TSP-SN, we represent any feasible solution
or individual I straightforward as the definition of a team presented
in Section 2. Given a graph G = (X,E) and a task T , a feasible
solution I is a subset of X such that |I ∩ S(aj )| ≥ kaj , for each
aj ∈ A(T ).

3.1.1 Example. Suppose there is a necessity to form a team with
the skill set defined by T = {(s1, 1), (s2, 3), (s3, 1)} in an organiza-
tion. Also, suppose a set of available candidatesX = {a,b, c,d, e, f }
whose social network graph G is depicted in Figure 1. Finally, sup-
pose that the skill set of each candidate is as followsXa = Xd = {s2},
Xb = Xc = {s1}, Xe = {s1, s2}, Xf = {s2, s3}. Then, each of the
following subsets I1 = {a, e, f }, I2 = {a,d, e, f }, I3 = {a,b,d, f }
are feasible individuals. Note that, the induced subgraphs of the
solutions are not necessarily connected, as it is the case of G[I1].

3.1.2 Fitness of solutions. The fitness of any solution I is given
by the pair (D(I),Z (I)) whose elements are defined by equations
(1) and (2), respectively; and the objective function is given by
equation (3).

To illustrate this, let us recycle the example from above. The
respective level of expertise Z ({i}) = ∑

aj ∈(Xi∩A(T )) zi (aj ), of each
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candidate i , is highlighted with a boldface number next to its corre-
sponding node. Similarly, for each edge e , the weightw(e) is high-
lighted with an italics number next to its corresponding edge. Both
Ω and ω are arbitrary large constants. Then, the fitness of individu-
als I1, I2, and I3 are (ω3 ,Ω), (

ω+1
3 ,

3Ω+1
4 ), (

ω+3
6 ,

Ω+1
2 ), respectively.

Solutions I1 and I2 are non-dominated, and I3 is dominated by the
formers.

3.2 Initialization of the pool
In the context of genetic algorithms, it is desired an initialization
routine to generate individuals randomly [9]. Even better, if those
individuals also belong to the feasible search space.

Algorithm 1 shows the heuristics used to generate N random
and feasible individuals. The ReservoirSampling(S,k) function,
in Line 5, returns a randomly sampled subset of size k from a given
set S . Thus, in lines 4 to 6, we ensure that every generated individual
meets the requirements of having at least kaj team members for
each aj ∈ A(T ).

Algorithm 1: Initialization
input :a set of n candidates X, a task T ofm skills, and an

integer N
output :a set P of |P | = N (feasible) individuals

1 P ← ∅;
2 while |P | < N do
3 I ← ∅;
4 for aj ∈ A(T ) do
5 I ← I∪ ReservoirSampling(S(aj ),kaj );
6 end
7 P ← P ∪ {I};
8 end
9 return P ;

3.3 Operators
We introduce two variation operators for the TFP-SN, one cor-
responding to the recombination and one to the mutation. Both
operators ensure that the resulting individuals are within the feasi-
ble search space.

3.3.1 Recombination. Algorithm 2 ensures that the resulting
offsprings are always valid. Iteratively, for each skill aj ∈ A(T ),
with a probability p = 0.5, the support set SP1 (aj ) for the skill aj
of parent P1 is combined with the child O1 and SP2 (aj ) of P2 is
combined withO2. In the same iteration, with a probability of 1−p
the opposite combination is made, that is, SP1 (aj ) is combined with
O2 and SP2 (aj ) is combined with O1. Where SPi (aj ) is the support
set of skill aj from parent Pi , i ∈ {1, 2}.

For instance, consider the parents P1 = I1 and P2 = I3 and the
task T , from Subsection 3.1.1, as input for Algorithm 2. Suppose
that for each skill {s1, s2, s3} in A(T ), we got Head, Tail, and Head,
respectively, from the CoinFlip(). Then, the resulting offspring
O1 is SP1 (s1)∪SP2 (s2)∪SP1 (s3) = {e}∪{a,d, f }∪{ f } = {a,d, e, f }.
Consequently, the mirroring offspring is given by O2 = SP2 (s1) ∪

SP1 (s2) ∪ SP2 (s3) = {a,b, e, f }. Note that both individuals are feasi-
ble, as all the skill positions required by T are covered.

However, there is an inconvenient with this method. If m =
|A(T )| is relatively small, say less than 4, the probabilities of getting
an offspring identical to the parents is high, but decreases exponen-
tially with respect tom. Suppose an input of a taskT ofm skills, and
two parents P1 and P2 such that P1 , P2 and SP1 (aj ) , SP2 (aj ), for
each aj ∈ A(T ). The chances of the CoinFlip() of getting either
consecutive Heads or Tailsm times is 2

2m (if fair). That means that
there is at least a probability of 1

2m−1 that the resulting offspring
from Algorithm 2 is identical to the parents.

Algorithm 2: Recombination
input : two individuals, P1 and P2, and a task T
output : two individuals, O1 and O2

1 O1 ← ∅;
2 O2 ← ∅;
3 for aj ∈ A(T ) do
4 if CoinFlip() = Heads then
5 O1 ← O1 ∪ SP1 (aj );
6 O2 ← O2 ∪ SP2 (aj );
7 else
8 O1 ← O1 ∪ SP2 (aj );
9 O2 ← O2 ∪ SP1 (aj );

10 end
11 end
12 return O1,O2;

3.3.2 Mutation. Algorithm 3 also ensures that the resulting
individual is feasible. First, from a copy of the input individual, a
random team member is removed. Then, if there is no deficit on
the number of required people in each skill, the new individual
is returned. Else, one random person is added to the new team
(individual) out of the support set of any of the skills (also selected
at random) where there is a deficit. This last operation is repeated
until no deficit to cover remains.

For instance, let us consider once again the example from Section
3.1.1. Suppose the individual I = {a,d, e, f } along with T are the
input to Algorithm 3. Suppose also that the team member d was
selected and deleted from a copy I ′ of I, from the Line 1 of the
Algorithm 3. The resulting individual is I ′ = {a, e, f }. Since, T =
{(s1, 1), (s2, 3), (s3, 1)}, and Xa = {s2}, Xe = {s1, s2}, Xf = {s2, s3},
then the deficit is D = ∅ and I ′ is returned.

4 EXPERIMENTS
In this section, we evaluate the solutions produced by the MOGA-
TFP-SN using the DBLP dataset to model the social network graph
over some randomly generated tasks as the benchmark. We present
non-dominated fronts and examples of the diversity of solutions.We
also show that the solutions returned by our method disputes just
fine over criteria other than the evolved, when compared to other
algorithms. Finally, we discuss the differences between the graph
density and the subgraph density objectives, and the advantages of
the first over the second when evolving solutions.
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Algorithm 3:Mutation
input :one individual I and a task T
output :one individual I ′

1 I ′ ← I\ ReservoirSampling(I, 1);
2 D ←SkillDeficit (I ′,T );
3 while |D | > 0 do
4 aj ← random skill from D;
5 I ′ ← I ′∪ ReservoirSampling(S(aj ), 1);
6 D ←SkillDeficit (I ′,T );
7 end
8 return I ′;

4.1 The DBLP dataset
The DBLP is an online bibliographic information system on com-
puter science publications and authors. The data is openly available
through webpage1 or XML file2. We used the DBLP XML data from
a snapshot taken on March 02, 2015, to produce the input social
network graph. To derive experts, skills, and relationships from
the dataset to the graph, we adopted most of the methodology de-
scribed in [11, 17]. The papers published in 16 selected conferences
are categorized in the domains of Artificial Intelligence (AI), Data-
base (DB), Data Mining (DM), and Theory (T) as follows: AI = {ICML,
ECML, COLT, UAI}, DB = {SIGMOD, VLDB, ICDE, ICDT}, DM = {WWW,
KDD, SDM, PKDD}, and T = {SODA, FOCS, STOC, STACS}. The set of
candidates X contains the authors with at least three publications
within at least one of the defined domains, independently. In other
words, if the candidate i has three or more publications in, say AI,
then i ∈ S(AI) and AI ∈ Xi . Moreover, there is an edge e = (i, j)
in E, i, j ∈ X, if candidates i and j are coauthors in at least two
publications. Then, the weight of any edge isw(e) ≥ 2, determined
by the number of publications whose endpoints coauthored. The
level of expertise zi (aj ) of a candidate i ∈ X over a particular skill
aj ∈ A is given by the total number of publications within the
skill domain aj . For example, zi (AI) is determined by the number
of papers in which the candidate i appears as author, within the
conferences ICML, ECML, COLT, and UAI.

4.2 Test instances
Due to the lack of bechmark instances, we have randomly gener-
ated five tasks for each size of k = {4, 8, 12}, 15 tasks in total, as
benchmark for experimentation. Let us recall that a taskT is defined
as a set ofm pairs {(aj ,kaj )}, j ∈ {1, 2, · · · ,m}, where kaj specifies
the minimum required number of experts in a team to cover the
skill aj , and its size is given by k =

∑
j kaj . Each taskT is generated

by choosing k skills with replacement from the universe of skills
A = {AI ,DM,DB,T }. The test instances (tasks) are presented in
Table 1.

Unlike other works [11, 20], we limit k to smaller values. Since
any size efficient team X′ on T is bounded by maxaj ∈A(T ) kaj ≤
|X′ | ≤ k , other than tomeasure scalability of themethod, there is no
practical reason to solve for larger teams. Furthermore, in practice,

1http://dblp.uni-trier.de/
2http://dblp.uni-trier.de/xml/

Tasks k AI DM DB T

Test 1 4 1 1 0 2
Test 2 4 1 1 2 0
Test 3 4 2 0 0 2
Test 4 4 0 3 1 0
Test 5 4 2 1 1 0

Test 6 8 3 2 3 0
Test 7 8 1 2 4 1
Test 8 8 2 2 2 2
Test 9 8 2 3 2 1
Test 10 8 2 3 2 1

Test 11 12 4 2 3 3
Test 12 12 3 3 3 3
Test 13 12 2 3 5 2
Test 14 12 4 0 6 2
Test 15 12 1 5 4 2

Table 1: Randomly generated benchmark set of test in-
stances where each row represents a task.

team performance will drop to a significant degree concerning the
size of the team [1, 2].

4.3 Experimental setup and results
The MOGA-TFP-SN algorithm and the variation operators were im-
plemented in Java (1.8) and the corresponding tests were performed
on a Dell Precision T3610, Intel Xeon CPU (64 bits), Windows 10
machine with 16 GB of memory.

The running parameters for the NSGA-II are set to the following
values, population size = 100, tournament size = 2, generations =
200, recombination probability = 0.95, mutation probability = 0.08.
No special effort is spent in optimizing the input parameter values.
The input network social graph is generated as explained earlier in
Subsection 4.1 and the input tasks are given by Table 1. We run the
MOGA-TFP-SN 10 times, for each test (task).

In each run, the MOGA-TFP-SN outputs the non-dominated
set of solutions of the last population. The non-dominated sets
resulting from each independent run are stored by test case. Then,
the consolidated non-dominated front is computed for each case.
Figure 2 shows the consolidated non-dominated fronts for the test
instances 1, 3, 8, 9, 11, and 13. From this figure, it is clear that there
is an improvement in the solutions generated initially, wherein a
significant gap separates both consolidated, initial and resulting,
non-dominated fronts. The same pattern is observed in the non-
dominated fronts of the other test cases (not shown here). The
average number of non-dominated solutions in the consolidated
fronts is 8.6̄. The smallest populated front corresponds to Test 2
with two solutions, while the most populated corresponds to Test 6
with 14 solutions.

Regarding solutions, it is worth noting that the resulting solu-
tions exhibit a broader diversity than that inherent in their values
of density (D(X′)) and expertise (Z (X′)). Particularly in the sense
of the topology of the induced subgraph of the solution. These
subgraphs may be connected or disconnected (in two or more com-
ponents). In other words, within non-dominated fronts, solutions’
induced subgraphs may be found in the form of cliques, diamond
graphs, bipartite graphs, isolated vertices, or a combination of them.
Figure 3 shows the consolidated non-dominated solutions found for
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(a) Test 1 (b) Test 3

(c) Test 8 (d) Test 9

(e) Test 11 (f) Test 13

Figure 2: Consolidated initial (◦) and resulting (×) non-
dominated fronts from multiple test instances.

Test 12, wherein the induced subgraph of four different solutions is
displayed. This is an example of how solutions that differ in team
size and topology also reside in the same front. Apart from the
objective function values, the decision maker may benefit from the
populational nature of this method which generates a diverse set
of teams.

Figure 3: Consolidated non-dominated front of Test 12 and
the topology of some of its solutions.

Despite the advantages of the density-based objective over the
distance-based objective discussed in [11, 20]. The algorithms for
the former [11, 20] do not guarantee connectivity of the solution if
any, as opposed to the algorithms for the later [14, 15, 17, 18]. Our
method, however density-based, was able to find at least one con-
nected solution in 14 out the 15 test cases. It should be noted that
there is no particular mechanism implemented, not a restriction or
objective, for driving that to happen. The aforementioned suggests
a natural affinity for this method to find connected solutions. How-
ever, more experiments are required to have substantial evidence
of this result.

Finally, not a single solution was found to have more than k
experts, i.e., all solutions within the consolidated non-dominated
fronts are size efficient teams. Moreover, the average size of a team
per size of k = {4, 8, 12} are 3.57, 5.06, and 7.7, respectively. This is
mainly attributed to two things, the initialization procedure gener-
ates solutions of size at most k , and the mutation operator decreases
the size of the team if a team member with redundant skill to the
task is selected randomly.

4.4 Other algorithms and objectives
Any given solution X′ can be evaluated through multiple crite-
ria, such as diameter, density, cardinality, to name a few. In this
subsection, we will compare MOGA-TFP-SN solutions with those
obtained by other algorithms, over multiple criteria.

The criteria to be compared are presented below:
D(X′) Density of the graph G[X′] (Eq. 1).
Z(X′) Level of expertise (ratio) of team members in X′ (Eq. 2).
sD(X′) Subgraph density of the graph G[X′].
Cc-mst(X′) Cost of the minimum spanning tree of G[X′].
Cc-R(X′) The diameter cost of G[X′].
κ̄(X′) The number of disconnected components in G[X′].
|X′ | The size of the team X′.

As defined earlier, the weightw(e) of an edge e represents collabo-
ration between candidates. Thus, we defined the distance cost c(e)
of an edge e to be c(e) = |w(e) − maxe ′∈E w(e ′)|, which is used
for Cc-mst(X′) and Cc-R(X′) criteria. Also, please be advised that
the graph density, although closely related, is different from the
subgraph density. This difference is addressed and discussed in the
next subsection.

Two well-known heuristics were implemented for the TFP-SN,
a generalization of Lappas et al.’s RarestFirst algorithm [17], and
Gajewar and Sarma’s m-DensestAlk algorithm [11]. The RarestFirst
algorithm objective is to find a teamX′ that minimizes the diameter
(Cc-R(X′)) of the induced subgraphG[X′], in addition to the skill set
constraint imposed by the taskT . A generalization of this algorithm
is presented in [11]. The m-DensestAlk algorithm objective is to
find a team X′ that maximizes the subgraph density (sD(X′)) of
G[X′].

The generalized Rarestfirst and the m-DensestAlk algorithms
were run for each test instance. For comparison, up to three of
the consolidated resulting non-dominated solutions were chosen
from the previous experiment of the MOGA-TFP-SN, from each
test instance. These three solutions include, an arbitrary solution,
the one with the lowest diameter cost, and the one with the highest
subgraph density.
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Tables 2, 3, and 4, show a comparison of the values of the so-
lutions from each algorithm, evaluated on multiple criteria. The
column names identify the criterion function along with a mark ↑ if
the criterion is to be maximized, or ↓ if minimized. The MOGA-TFP-
SN was able to find at least one solution whose value is equal to or
better than that of both RarestFirst and m-DensestAlk algorithms
in the 100% of the tests instances for the criteria D(X′), 100% for
Z (X′), 20% for sD(X′), 93.3% for Cc-mst(X′), 66.6% for Cc-R(X′),
93.3% for κ̄(X′), 100% for |X′ |. It was expected for our method to
excel in both D(X′) and Z (X′) objectives. However, our method
was able to outperform Rarestfirst algorithm in 10 out of 15 tests,
and m-DensestAlk algorithm in 3 out of 15 tests, when compared
to their corresponding optimization criteria Cc-R(X′) and sD(X′),
respectively. Additionally, our method shows either superior or
competitive results in Cc-mst(X′), κ̄(X′), and |X′ | criteria.

Criteria
Algorithm D(X′) ↑ Z (X′) ↑ sD(X′) ↑ Cc-mst(X′) ↓ Cc-R(X′) ↓ κ̄(X′) ↓ |X′ | ↓

Test1: k = 4, T = (AI:1, DM:1, DB:0, T:2)
RarestFirst 5.0 24.428 5.0 57.0 57.0 0.0 3.0
DensestAlk 5.75 37.368 20.125 n/a n/a 2.0 8.0

MOGA-TFP-SN
3.5 53.333 5.25 n/a n/a 2.0 4.0
6.5 48.599 9.75 n/a n/a 1.0 4.0

11.333 20.75 11.333 41.0 33.0 0.0 3.0

Test2: k = 4, T = (AI:1, DM:1, DB:2, T:0)
RarestFirst 5.666 33.0 8.5 76.0 58.0 0.0 4.0
DensestAlk 14.333 46.857 14.333 30.0 30.0 0.0 3.0

MOGA-TFP-SN 21.0 73.8 10.5 15.0 15.0 0.0 2.0
32.0 56.799 16.0 4.0 4.0 0.0 2.0

Test3: k = 4, T = (AI:2, DM:0, DB:0, T:2)
RarestFirst 3.0 20.777 4.5 90.0 90.0 0.0 4.0
DensestAlk 2.819 33.382 19.7333 n/a n/a 2.0 15.0

MOGA-TFP-SN
0.0 42.555 0.0 n/a n/a 3.0 4.0
3.0 38.099 4.5 n/a n/a 2.0 4.0

7.333 31.583 11.0 n/a n/a 1.0 4.0

Test4: k = 4, T = (AI:0, DM:3, DB:1, T:0)
RarestFirst 4.333 21.428 6.5 84.0 57.0 0.0 4.0
DensestAlk 14.333 46.857 14.333 30.0 30.0 0.0 3.0

MOGA-TFP-SN
8.0 71.285 8.0 48.0 48.0 0.0 3.0

10.333 64.444 15.5 52.0 48.0 0.0 4.0
19.666 64.285 19.666 19.0 19.0 0.0 3.0

Test5: k = 4, T = (AI:2, DM:1, DB:1, T:0)
RarestFirst 4.333 32.25 6.5 85.0 61.0 0.0 4.0
DensestAlk 2.819 33.382 19.733 n/a n/a 2.0 15.0

MOGA-TFP-SN
4.0 62.222 6.0 n/a n/a 1.0 4.0
16.0 42.0 8.0 20.0 20.0 0.0 2.0

16.333 41.625 16.333 24.0 24.0 0.0 3.0

Table 2: Comparison results of solutions obtained for test
instances of size k = 4 and evaluated over multiple criteria.

4.5 Graph-density objective vs.
subgraph-density objective

The subgraph density objective, in the context of TFP-SN was first
introduced in [11]. The definition of the subgraph density is given
by the following equation

sD(X′) =
∑

e ∈EG[X′]

w(e)
|X′ | , (4)

which is similar to the graph density definition (Eq. 1). However,
note that the subgraph density function decreases linearly with
each team member, as opposed to the graph density function which
decreases quadratically with the size of the team. To illustrate
the difference, suppose there are three teams X1, X2, and X3, as

Criteria
Algorithm D(X′) ↑ Z (X′) ↑ sD(X′) ↑ Cc-mst(X′) ↓ Cc-R(X′) ↓ κ̄(X′) ↓ |X′ | ↓

Test6: k = 8, T = (AI:3, DM:2, DB:3, T:0)
RarestFirst 2.952 24.357 8.857 168.0 63.0 0.0 7.0
DensestAlk 2.367 31.421 18.941 n/a n/a 3.0 17.0

MOGA-TFP-SN
2.799 54.636 5.599 n/a n/a 1.0 5.0
5.9 51.454 11.8 n/a n/a 2.0 5.0
9.1 42.583 18.2 70.0 55.0 0.0 5.0

Test7: k = 8, T = (AI:1, DM:2, DB:4, T:1)
RarestFirst 3.799 27.461 9.5 133.0 91.0 0.0 6.0
DensestAlk 9.699 42.0 19.399 n/a n/a 1.0 5.0

MOGA-TFP-SN
6.4 59.363 12.8 86.0 82.0 0.0 5.0
9.833 53.8 14.75 n/a n/a 1.0 4.0
10.0 37.363 15.0 n/a n/a 1.0 4.0

Test8: k = 8, T = (AI:2, DM:2, DB:2, T:2)
RarestFirst 3.0 26.076 7.5 138.0 90.0 0.0 6.0
DensestAlk 2.819 33.382 19.733 n/a n/a 2.0 15.0

MOGA-TFP-SN
4.0 44.6 10.0 124.0 82.0 0.0 6.0
5.266 42.187 13.166 109.0 87.0 0.0 6.0
7.099 38.928 14.199 n/a n/a 1.0 5.0

Test9: k = 8, T = (AI:2, DM:3, DB:2, T:1)
RarestFirst 3.799 27.999 7.599 109.0 61.0 0.0 5.0
DensestAlk 2.819 33.382 19.733 n/a n/a 2.0 15.0

MOGA-TFP-SN
4.599 55.545 9.199 100.0 82.0 0.0 5.0
5.9 53.09 11.8 n/a n/a 2.0 5.0

8.199 47.666 16.399 n/a n/a 1.0 5.0

Test10: k = 8, T = (AI:2, DM:1, DB:5, T:0)
RarestFirst 2.928 25.611 10.25 189.0 89.0 0.0 8.0
DensestAlk 2.819 33.382 19.733 n/a n/a 2.0 15.0

MOGA-TFP-SN
6.4 54.416 12.8 87.0 68.0 0.0 5.0
10.8 45.833 21.6 57.0 33.0 0.0 5.0
12.1 45.25 24.2 48.0 35.0 0.0 5.0

Table 3: Comparison results of solutions obtained for test
instances of size k = 8 and evaluated over multiple criteria.

Criteria
Algorithm D(X′) ↑ Z (X′) ↑ sD(X′) ↑ Cc-mst(X′) ↓ Cc-R(X′) ↓ κ̄(X′) ↓ |X′ | ↓

Test11: k = 12, T = (AI:4, DM:2, DB:3, T:3)
RarestFirst 2.311 23.181 10.399 250.0 90.0 0.0 10.0
DensestAlk 2.15 30.424 18.277 n/a n/a 3.0 18.0

MOGA-TFP-SN
2.722 39.428 10.888 208.0 82.0 0.0 9.0
3.277 37.318 13.111 n/a n/a 1.0 9.0
3.688 35.119 16.6 194.0 139.0 0.0 10.0

Test12: k = 12, T = (AI:3, DM:3, DB:3, T:3)
RarestFirst 2.5 24.399 10.0 220.0 90.0 0.0 9.0
DensestAlk 2.367 31.789 18.941 n/a n/a 3.0 17.0

MOGA-TFP-SN
3.355 39.5 15.1 n/a n/a 1.0 10.0
3.928 36.904 13.75 163.0 105.0 0.0 8.0
5.0 29.352 12.5 n/a n/a 1.0 6.0

Test13: k = 12, T = (AI:2, DM:3, DB:5, T:2)
RarestFirst 2.928 25.611 10.25 189.0 89.0 0.0 8.0
DensestAlk 2.819 33.382 19.733 n/a n/a 2.0 15.0

MOGA-TFP-SN
4.38 46.47 13.142 139.0 87.0 0.0 7.0
7.333 39.125 18.333 n/a n/a 1.0 6.0
7.699 32.857 15.399 n/a n/a 1.0 5.0

Test14: k = 12, T = (AI:4, DM:0, DB:6, T:2)
RarestFirst 2.781 21.959 13.909 258.0 90.0 0.0 11.0
DensestAlk 2.117 29.975 18.0 n/a n/a 2.0 18.0

MOGA-TFP-SN
2.833 42.714 11.333 202.0 117.0 0.0 9.0
3.555 39.227 14.222 176.0 117.0 0.0 9.0
4.428 36.4 15.5 142.0 103.0 0.0 8.0

Test15: k = 12, T = (AI:1, DM:5, DB:4, T:2)
RarestFirst 3.904 27.357 11.714 153.0 91.0 0.0 7.0
DensestAlk 5.75 37.368 20.125 n/a n/a 2.0 8.0

MOGA-TFP-SN
3.099 55.0 6.199 115.0 82.0 0.0 5.0
4.599 52.928 11.5 119.0 82.0 0.0 6.0
8.699 44.384 17.399 n/a n/a 1.0 5.0

Table 4: Comparison results of solutions obtained for test
instances of size k = 12 and evaluated over multiple criteria.

shown in Figure 4. Their corresponding subgraph density values
are sD(X1) = 1

2 , sD(X2) = 2
4 , sD(X3) = 3

6 , all the same. In con-
trast, their corresponding graph density values are D(X1) = 2

2 ,
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D(X2) = 4
12 , sD(X3) = 6

30 . The two main advantages of the graph
density over the subgraph density are described in the following.
First, the graph density favors the search over smaller teams. Sec-
ond, disconnected teams are less favored.

(a) Team X1. (b) Team X2. (c) Team X3.

Figure 4: Three teams X1, X2, and X3, with unitary weights
on the edges.

To support this claim, a small experiment was conducted over
test instances 11 and 14, the ones with the largest teams in size
(|X′ |) from the above experiments. The MOGA-TFP-SN was run
ten times, for Test 11 and Test 14, but instead of using graph density
(D(·)) and expertise level ratio (Z (·)) as objective functions, we
evolved for subgraph density (sD(·)) and expertise level ratio (Z (·)).
When comparing the output sets of solutions, the ones evolved for
graph density presented an average team size of 8.481 and 8.603,
while the ones evolved for subgraph density presented an average
team size of 13.582 and 12.026, for Tests 11 and 14, respectively.
Moreover, the number of connected solutions of the ones evolved
for graph density is 446 and 332, while the number of connected
solutions of the ones evolved for subgraph density is 305 and 120,
for Tests 11 and 14, respectively.

5 CONCLUSION AND FUTUREWORK
In this paper, we presented a multi-objective formulation of the
Team Formation Problem in Social Networks that optimize the
collaboration and expertise of the team members. We introduced
two objective functions, the graph density objective, that models the
collaboration among team members, and the expertise level ratio,
that represents the ratio of experience of a team, on the required skill
set, divided by its size.We solved this problem using thewell-known
NSGA-II framework for which an individual representation and two
variation operators were proposed. The experimental evaluation of
our method over different tasks, on a DBLP-derived social network
graph, showed a diverse set of competitive solutions from either
density or expertise, including other implicit traits such as size
and connectivity. An additional experiment suggests that the graph
density objective compared to the subgraph density objective, yields
to finding smaller teams with a larger number of connected experts.
We also generated a set of benchmark instances intended to serve
as a reference for future comparison studies.

Future work is aimed at exploring and comparing the perfor-
mance of alternative cutting-edge evolutionary algorithms (based
on decomposition) as well as specialized operators for the problem.
A more diverse set of test instances and all criteria described in
Subsection 4.4 are planned to be included.
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