
Expanding variational autoencoders for learning and exploiting
latent representations in search distributions

Unai Garciarena∗
Intelligent Systems Group

University of the Basque Country
Donostia-San Sebastian, Spain

unai.garciarena@ehu.es

Roberto Santana
Intelligent Systems Group

University of the Basque Country
Donostia-San Sebastian, Spain

roberto.santana@ehu.es

Alexander Mendiburu
Intelligent Systems Group

University of the Basque Country
Donostia-San Sebastian, Spain
alexander.mendiburu@ehu.es

ABSTRACT
In the past, evolutionary algorithms (EAs) that use probabilistic
modeling of the best solutions incorporated latent or hidden vari-
ables to the models as a more accurate way to represent the search
distributions. Recently, a number of neural-network models that
compute approximations of posterior (latent variable) distributions
have been introduced. In this paper, we investigate the use of the
variational autoencoder (VAE), a class of neural-network based
generative model, for modeling and sampling search distributions
as part of an estimation of distribution algorithm. We show that
VAE can capture dependencies between decision variables and ob-
jectives. This feature is proven to improve the sampling capacity of
model based EAs. Furthermore, we extend the original VAE model
by adding a new, fitness-approximating network component. We
show that it is possible to adapt the architecture of these models
and we present evidence of how to extend VAEs to better fulfill the
requirements of probabilistic modeling in EAs. While our results
are not yet competitive with state of the art probabilistic-based
optimizers, they represent a promising direction for the application
of generative models within EDAs.

CCS CONCEPTS
• Computing methodologies→ Machine learning; Neural net-
works; • Theory of computation → Continuous optimiza-
tion;

KEYWORDS
machine learning, variational autoencoder, estimation of distribu-
tion algorithm, neural network, generative modeling

ACM Reference Format:
Unai Garciarena, Roberto Santana, and Alexander Mendiburu. 2018. Ex-
panding variational autoencoders for learning and exploiting latent repre-
sentations in search distributions. In GECCO ’18: Genetic and Evolutionary
Computation Conference, July 15–19, 2018, Kyoto, Japan. ACM, New York,
NY, USA, Article 4, 8 pages. https://doi.org/10.1145/3205455.3205645

∗Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
GECCO ’18, July 15–19, 2018, Kyoto, Japan
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5618-3/18/07. . . $15.00
https://doi.org/10.1145/3205455.3205645

1 INTRODUCTION
In addition to their primary goal of finding high-quality solutions
in the decision space, one desideratum of efficient Evolutionary
Algorithms (EAs) when applied to black-box domains is to exhibit
some modeling capacity. In the single-objective scenario, this ca-
pacity is related to the question of capturing and representing the
dependencies between the problem variables in the selected solu-
tions. In multi-objective optimization problems (MOPs), modeling
can also include the relationship between decision variables and
objectives, particularly to accurately model this relationship in the
constrained space of non-dominated solutions.

Information about interactions between decision variables and
objectives can be used to design factorized distribution algorithms
or gray-box optimization methods that exploit the problem struc-
ture [29]. Models can also be useful if they serve to generate so-
lutions similar to the optimal ones, i.e., if they can be applied for
generative modeling. In EAs, modeling of variables and objective
interactions has been mainly applied in estimation of distribution
algorithms (EDAs) [23].

A variational autoencoder (VAE) [17] is a neural network ap-
proach that focuses on learning a generative model of the data. This
approach assumes that the information being treated has a latent
representation. One of the main characteristics of the VAE is that
it learns this latent representation in a process in which samples
similar to the input data are incrementally generated. In this paper
we investigate the suitability of VAEs as a model to capture the
dependencies between variables and objectives in an EA. These
dependencies are later used for generating high-quality solutions.
We also introduce new variants of the VAE models that allow us to
explicitly represent the relationship between the decision variables
and objectives.

The main contributions of this paper are the following: 1) We
apply VAE to learn probability distributions in EAs and use it as
a generative model to produce new samples. 2) We introduce new
types of VAE-related models that, similarly to previous generators,
include encoder and decoder components, but also add a third ap-
proximator component. 3) We show that it is feasible to incorporate
the VAE-extended models to EDAs. We have not found any refer-
ence to previous applications of VAE for modeling in EAs or the
use of neural networks for explicitly capturing and modeling the
dependencies between decision variables and objectives.

https://doi.org/10.1145/3205455.3205645
https://doi.org/10.1145/3205455.3205645

GECCO ’18, July 15–19, 2018, Kyoto, Japan Unai Garciarena, Roberto Santana, and Alexander Mendiburu

2 PROBABILISTIC MODELING OF SEARCH
DISTRIBUTIONS

Let X = (X1, . . . ,Xn) be an n-dimensional vector of continuous
variables. We will use x = (x1, . . . ,xn) to denote an assignment
to the variables. S will denote a set of indices in {1, . . . ,n}, and
XS (respectively xS) a subset of the variables of X (respectively x)
determined by the indices in S .

The idea behind EDAs and other model-based EAs is to define
search distributions that associate a probability p (x) to the points
of the search space. Points with higher fitness will have a higher
probability. Two crucial steps for EDAs are to learn a compact
representation of the search distribution (learning step) and use
this representation to sample new solutions (sampling step).

Let us consider a set X = {xi }Ni=1 consisting of N solutions. We
assume that there exists some unknown distribution p (x) (optimal
search distribution) that causes - and therefore, perfectly fits - X .
However, this distribution is unknown, and can only be approxi-
mated with the data in X , pd (x). We are interested in generating
new samples that are similar to those inX . This can be approached
as a generative modeling problem in which we would first approxi-
mate the search distribution p (x) and then generate new samples
from our approximation.

In some modeling problems, it is convenient to assume the ex-
istence of an unobserved (latent) continuous random variable Z
that influences the generation process. For instance, the generation
process could consist of a first step where a value z is generated
from some distribution pz (z) (the prior distribution), and a second
step where some conditional distribution p (x|z) (decoding distribu-
tion) is used to generate x. In search distributions, this generation
process may not have been part of the search strategy, however, ad-
dressing the modeling problem using the latent variable formalism
can lead to good approximations of p (x) and effective methods for
generating samples that resemble those in X .

2.1 Related work
There are a number of strategies applied in EDAs that implicitly
assume or model hidden variables. The most extensively applied
model of this type are the mixtures of distributions [5, 8]. A lim-
itation of the mixtures models is that, in most cases, the number
of components have to be fixed in advance. Also, mixture-learning
algorithms such as expectation-maximization (EM) can be compu-
tationally very costly.

A number of works have proposed the use of latent representa-
tions as a more accurate way to model dependencies. In Boltzmann
Machines [2] and Restricted Boltzmann Machines (RBMs) [32], la-
tent variables are added to the model to capture a higher order
representation of the patterns in the data. Recent deep neural net-
work models such as deep belief nets [28] and deep Boltzmann
machines also incorporate several layers of hidden variables to
improve representation.

Nevertheless, latent models exhibit a number of drawbacks. They
can be very difficult to learn, and, for certain models, exact inference
is intractable. In EDAs, inference is mainly involved as a step in
the generation of new solutions. For complex models with latent
variables, Markov chain Monte Carlo (MCMC) algorithms would
be required to generate new solutions [30, 31]. In this paper, we

Figure 1: VAE architecture.

propose the use of the VAE, for which learning is simpler, and
MCMC methods are not required. RBMs have been also applied to
model binary problems in single-objective [26] and multi-objective
EDAs [34]. In comparison to RBMs, VAEs are easier to train and
the sampling process is much faster.

Generative adversarial nets (GANs) [11] and denoising autoen-
coders [6, 24] are exemplars of the few neural-based models used
in EDAs. GAN-EDA was introduced in [25] and applied to single
objective problems. However, the algorithm did not produce results
competitive to other simpler approaches, neither in the number
of fitness evaluations nor in the computational time [25]. Also in
[3], DNNs with 5 and 10 layers are used as neural models, it is
acknowledged that the learning process can be time consuming.
While the Deep-Opt-GA is evaluated across a set of diverse arti-
ficial and real-world problems, it is not possible to determine the
gain of the algorithm over EDAs since it is compared to a fast local
optimizer and a GA.

In the area of deep neural networks, some recent works pro-
pose modifications and extensions to multi-network generative
models. Although we have not found previous examples of VAE
variants with three or more models, there are such multi-network
models developed from GANs. In [16], an example of a GAN with
two discriminators (ordinary GAN has a single discriminator) and
one generator is proposed. The so-called DiscoGAN model was
designed to discover relations between two unpaired, unlabeled
datasets. Furthermore, recent work has developed the integration
or combination of different classes of generative models in more
flexible models, comprising heterogenous neural networks [21]

3 VARIATIONAL AUTOENCODERS (VAES)
VAE [17] is a generative model that explicitly represents a latent
variable z. A variational autoencoder can be split into two compo-
nents: an Encoder and a Decoder. The general goal of the model is
to approximate the probability distribution:

p (x) =
∫
z
p (x|z;θ)p (z)dz (1)

where θ comprises all the decoder parameters.
The key idea behind the variational autoencoder is to attempt

to sample values of z that are likely to have produced x. For that
purpose, it learns an encoding function q(z|x) that serves as an
approximation of the prior distribution p (z).

VAE is considered a generative model since it can be used to
generate new samples that resemble those used for training it. Both

Expanding variational autoencoders for learning and exploiting
latent representations in search distributions GECCO ’18, July 15–19, 2018, Kyoto, Japan

the encoder (E) and the decoder (D) are implemented as neural
networks, more specifically as multi-layer perceptrons (MPLs).

The encoder receives a vector x from the dataset as input and
produces a vector z, which is interpreted as a mean µ and a standard
deviation σ coding. These µ and σ are then used to parametrize a
normal distribution, before it is sampled, N (µ,σ).

Latent variable z is assumed to follow a multivariate normal
distribution with mean 0 and diagonal covariance matrix I ,N (0, I).

The samples obtained fromN (µ,σ) are fed to the decoder, which
is asked to reproduce, from each of the samples, the same image that
was inputted to the encoder. Namely, x̃ according to x̃ ∼ pd (x|z;θ).

Training a VAE pursues two goals: 1) Optimize E to obtain an
accurate approximation of the latent variable distribution z. 2) Op-
timize D to obtain an accurate reconstruction during the decoding
phase. An example of the VAE architecture is shown in Figure 1.

As in other neural networkmodels, VAE uses the back-propagation
algorithm, assisted by a gradient descent optimizer, to optimize the
parameters of the network (weights and biases). The optimizer at-
tempts to find the minimum of the loss function. VAE minimizes
the following upper-bound on the negative log-likelihood of z:

Ex∼pdata (x)[Ez∼pz (z)[−loд(p (x|z))] + KL(q(z|x) | |p (z))] (2)

where Ex∼pdata (x) and Ez∼pz (z) respectively represent the expecta-
tions with respect to the original data distribution pdata and the
latent variable distribution pz (z). The KL function stands for the
Kullback-divergence metric [18] .

The first term of the equation represents the goal of maximizing
the quality of the reconstruction of the original data given the latent
variable. The second encodes the goal of accurately approximating
the prior distribution p (z).

The general question of learning the optimal VAE architecture
for a given problem (i.e., the number of layers, activation functions,
etc.) is open. Usually, the architecture is set by hand.

4 VAES FOR MODEL-BASED OPTIMIZATION
In this section, we introduce the models that are later tested in the
experiment section. The models proposed can serve several pur-
poses - such as image generation, or data augmentation -, however,
our interest lies in optimization. Therefore, the development of this
work is addressed from this perspective. When considered in the
context of search distributions, we expect an “ideal" VAE model to
simultaneously satisfy the following conditions:

(1) It can accurately learn a (latent) model from the best solu-
tions. This is, the model should assign more sampling proba-
bility to those solutions that are used in the training phase.

(2) It can be efficiently used as a generator of solutions that
resemble those in the original data.

(3) It learns a mapping between decision variables and the ob-
jective variable(s):

(a) The values of the decision variables can be predicted using
the values of the objective variables (Fitness-conditioned
sampling).

(b) The values of the objectives can be predicted from the
values of the decision variables (Fitness-estimation).

Properties 1 and 2 are those usually required by any probabilistic
model used in EDAs, and met by regular VAEs. These models are
implicitly biased towards sampling solutions with high fitness val-
ues, since only this kind of solutions are used for training. Property
3a) would serve to explicitly bias the sampling of solutions to try
to obtain variable configurations that produce a given fitness value.
This property can be particularly useful for sampling specific areas
of the Pareto front in MOPs [15, 22]. Property 3b) can be useful
when the model is applied as a surrogate, or to evaluate only those
solutions that are predicted by the model to be of high fitness [4].

4.1 Extending the VAE model
The original VAE model does not exhibit all the ideal mentioned
properties. Therefore, we propose two extensions of the model.
These extensions correspond in fact to new generative models that
incorporate an additional neural network component and modi-
fied loss functions. However, the general principles of VAEs are
maintained.

4.1.1 Extended VAE. The E-VAE is a variation of the regular
VAE which consists of the common encoder-decoder combination
network, plus a third one, the predictor. This third component be-
haves as another decoder that tries to predict the fitness value f (x)
associated to a solution x . The input to this second decoder is the
same z that the encoder produces. We assume that if z has suffi-
cient information to reconstruct the original solution, it can also be
used to approximate f (x). The two decoders are expected to learn
different parameters since they solve different decoding tasks.

The E-VAE structure is trained simultaneously by minimizing an
expansion of the loss function described by Equation (2), to which
a new term that specifies the optimality goal for the third network
is added. This term is the mean squared error (MSE) between the
fitness values predicted by the network f̂ (x), and f (x).

We expect that the inclusion of a second decoder will also work
as an indirect regularizer for the latent representation that z en-
codes since now it has to be informative enough to accomplish two
different tasks. The third network additionally provides another
asset to the model. In cases in which the evaluation function being
optimized by the EDA is excessively costly to compute, it can be
used by the algorithm as a fitness surrogate. This application would
discard solutions predicted to have poor fitness values and avoid
evaluating them, saving computational time.

A diagram of E-VAE is shown in Figure 2b. It can be compared
to the regular VAE shown in Figure 2a. Note, in the diagram, the
characteristic feature of E-VAE, the same z samples are used to
produce a new solution, and an approximation of the fitness value
corresponding to that solution.

4.1.2 Conditioned, Extended VAE. TheCE-VAE pursues the same
goal as E-VAE, to sample solutions using the information known
about the fitness of the solutions. However, in this model, this infor-
mation is exploited explicitly, again, to bias the sampling process
towards the highest quality solutions.

The overall structure is the same as the one for the E-VAE. Nev-
ertheless, the input of the original decoder is a concatenation of the
z samples and f (x). Figure 2c illustrates the differences between

GECCO ’18, July 15–19, 2018, Kyoto, Japan Unai Garciarena, Roberto Santana, and Alexander Mendiburu

x

E

z

D

x ′

(a) Regular VAE

x

E

z

D

x ′

P

f ′

(b) E-VAE

x

E

z

f

[z f]

D

x ′

P

f ′

(c) CE-VAE

Figure 2: Diagrams of the three models tested in this work,
regular VAE and its two variants. f corresponds to the
value(s) the samples are biased towards.

E-VAE and CE-VAE. Notice in the figure that these differences are
located in the right branches of the two models.

The random component in the procedure of sampling from z
leaves a margin to the decoder to produce, given a single z, various
solutions. This structure aims at exploiting this characteristic, as
the introduction of explicit fitness values that belong in the higher
section of that margin would likely improve the input it has been
given. Ideally, the introduction of these fitness values would affect
the solution generation procedure, producing an improved outcome.
Additionally, note that the third predictor network from the E-
VAE structure is transferred to this one. This way, the advantages
mentioned in the previous model, such as the possibility of using a
surrogate fitness evaluation, are maintained.

We designed a set of Python classes that implement the differ-
ent VAE models. The network architectures are defined using the
tensorflow library [1]. The VAEs used in this work are extensions
of the VAE implementation1.

5 EXPERIMENTS
To test the validity of the proposed models to drive an EDA, two
key issues need to be addressed. The first one, addressed as a pre-
liminary step, is to evaluate the capacity of the models to fulfill
two key tasks necessary to succeed when placed in an evolution-
ary framework: sampling both accurate and diverse points similar
to the input data. This evaluation is conducted isolated from the
EDA optimization context and therefore is valuable to assess the
quality of the introduced models in other applications where it is
possible to classify the variables in two classes: a set of independent
variables (our decision variables in the optimization scenario) and
dependent variables (the objective variables in the optimization sce-
nario). After completing the assessment of the models, we evaluate
their use within the context of EDAs.

1https://jmetzen.github.io

5.1 Preliminary experiments
Evaluating the quality of generative models is hard since the gen-
erated data should be similar but not identical to the inputs. This
evaluation can be difficult to implement automatically for certain
problems. For example, it is not trivial to design scores that accu-
rately evaluate the quality of generated images since there is an
important perceptual and subjective component involved.

In this paper we test the generative models in the task of generat-
ing solutions from the Pareto set (PS) of a bi-objective function. We
expect that good generators will produce solutions well spread in
the PS, and we will measure the quality of these solutions using the
images of those points, i.e., the Pareto front (PF) approximations of
the model-generated points. The suitability of this task to evaluate
generative models is tudied in more detail in [9].

As bi-objective problems, we use a number of instances originally
introduced in [20] to investigate the difficulty of MOPs with com-
plex PSs. More specifically, we select functions {F1, . . . , F9} \ F6
from those introduced in [20]. F6 is excluded because it is a tri-
objective function.

The experiment consists of:
(1) Generate 1000 points in the Pareto set of a given function

f ∈ {F1, . . . F9} \ F6. The fitness values of the points are
computed.

(2) Generate a triple of models (VAE, E-VAE, CE-VAE) whose
encoder and decoder have the same architectures. To do
this, the number of layers, neurons in layers, and activation
functions in the encoder and decoder networks are chosen
randomly, and replicated for all three models. Analogously,
the architecture configuration of the predictor in E-VAE and
CE-VAE match too.

(3) The generated models are trained with the 1000 solutions
sampled from the PS of one of the functions. E-VAE and
CE-VAE are provided the fitness values corresponding to
these solutions too.

(4) Each of the trained models is used to sample another set of
1000 solutions.

(5) The similarity between the points in the true PS and in the
approximated PSs corresponding to the samples generated
by each model are computed using the inverted generational
distance (IGD) [7].

The IGD metric measures the smallest distance between two sets
of solutions. One of the sets is the one containing the points known
to be in the Pareto set (R), while the other is composed of the points
sampled from the modelA. IGD measures the diversity ofA, as well
as its closeness to R. It is computed as:

IGD =
1
|R |

*
,

∑
r ∈R

mina∈Ad (r ,a)
p+
-

1
p

, d (r ,a) = *.
,

m∑
k=1

(rk − ak)
+/
-

1
2

(3)
This experiment was performed 500 times for each function-

model combination. The architectures of the networks in themodels
could have between one and ten hidden layers, with a maximum
of 50 neurons in each layer. The other parameters that could be
chosen in the random generation of the networks are:
• Latent variable distribution: uniform, normal.

https://jmetzen.github.io

Expanding variational autoencoders for learning and exploiting
latent representations in search distributions GECCO ’18, July 15–19, 2018, Kyoto, Japan

• Activation function: None, relu, elu, softplus, softsign,
sigmoid, tahn.
• Loss function: MSE, Gaussian Divergence.
• Weights initialization: xavier [10], random, uniform .

5.2 EDA scenario
The goal of this experiment is to investigate the behavior of the VAE
and CE-VAE models when used as an EDA component. In this case
we address a simplified protein-folding single-objective problem.
We use three instances of this problem and compare the quality
of the results obtained by the EDAs that use VAE, E-VAE, and CE-
VAE as models to the Continuous Univariate Marginal Distribution
Algorithm (UMDAc) [19] - an algorithm that does not consider
interactions between variables - and a random search.

5.2.1 Off-lattice protein model.
Off-lattice models are simplified protein models that do not fol-

low a given lattice topology. The 2D or 3D coordinates in the real
axis define the positions of the protein residues. Among the off-
lattice models with known lowest energy states is the AB model
[33], where A stands for hydrophobic and B for polar residues. The
distances between consecutive residues along the chain are held
fixed to b = 1, while non-consecutive residues interact through a
modified Lennard-Jones potential. There is an additional energy
contribution from each angle θi between successive bonds. The
energy function for a chain of n residues, which is to be minimized,
is shown in equation (4).

E =
n−1∑
i=2

E1 (θi) +
n−2∑
i=1

n∑
j=i+2

E2 (ri j , ζi , ζj), (4)

where

E1 (θi) =
1
4
(1 − cosθi) (5)

and

E2 (ri j , ζi , ζj) = 4(r−12i j −C (ζi , ζj)r
−6
i j) (6)

Here, ri j is the distance between residues i and j (with i < j).
Each ζi is either A or B, andC (ζi , ζj) is +1, + 1

2 , and −
1
2 respectively,

forAA, BB, andAB pairs, giving strong attraction betweenAA pairs,
weak attraction between BB pairs, and weak repulsion between A
and B [13].

We consider Fibonacci sequences defined recursively by

S0 = A, S1 = B, Si+1 = Si−1 ∗ Si (7)

where ∗ is the concatenation operator.
A 2D off-lattice solution of the AB model can be represented as

a set of n − 2 angles. Angles are represented as continuous values
in [0, 2π]. The first two residues can be fixed at positions (0, 0)
and (1, 0). The other n − 2 residues are located from the angles
with respect to the previous bond. We look for the set of angles
that defines the optimal off-lattice configuration. As instances, we
consider Fibbonacci sequences for numbers (6, 7, 8). The respective
sizes of these sequences, in the same order, are n ∈ (8, 13, 21).

The EDAs driven by both VAE and CE-VAE are used to minimize
the energy function, shown in Equation (4).

5.2.2 Parameters of the algorithms.
The pseudocode of the EDA is shown in Algorithm 1. It makes

use of the following functions:
• create_model(pop[, fitnesses]): Given a set of solutions, this
function returns a VAE, CE-VAE, or a set of means and vari-
ances (for the UMDAc) trained with those solutions. In the
case of the CE-VAE, the fitness values associated to the solu-
tions are also inputs of the function.
• sample_model(model[, fitnesses]): Given the VAE, CE-VAE,
or the set of means and variances, this function generates
samples (new solutions) from it. Equivalently, arbitrary fit-
ness values are provided when CE-VAE is the model chosen.
• best(pop, fitnesses): Given a population, and their respective
fitness values, this function returns the best individuals using
tournament selection, where the tournament size is st = 10.

pop = generate_population();
while halting condition is not met do

fitness = evaluate_population(pop);
selected_pop, selected_fit = select_solutions(pop, fitness);
model = create_model(selected_pop, selected_fit);
offs = sample_model(model);
pop = offs + best(pop, fitnesses)

end
Algorithm 1: Pseudo-code for a generic EDA.

The structures chosen for this experimental phase are fixed to a
reasonable number of hidden layers (hl = 3), and neurons in each
of these layers (hn = 50). The population of the algorithm (number
of solutions being evaluated in each iteration) is set to N = 50, 100,
200, and 300 points. The stop condition is a maximum number of
nдen = 300 generations.

Algorithm 1 is run 30 times, and the energy value of the best
solution found in each run is used to evaluate the performance of
the algorithm.

It is worth mentioning that we have added different shifts to
the evaluation function, which ensures that there is no bias in
the results. This transformation is performed to avoid any kind
of positive correlation between any algorithm and the original
problem that could lead to an overestimation of the optimization
capacity of said algorithm.

5.3 Results for the comparison of the models
To evaluate the results of the first experiments, we will determine
the rank of the three models in terms of the IGD values computed
from the PS approximations they generate.

For each of the 8 functions, and each of the 500 executions of
related models (with identical encoder and decoder structures), we
proceed as follows: Each time the IGD generated by one model
was better (lower) than the other, the winner algorithm is awarded
one point. This results in a table similar to Table 1, which contains
the summary of the comparison for the 500 trials for function F9.
When read by rows, the table shows in how many pairings the
model in the row has obtained a better IGD than the model in that
column. For example, it can be seen in Table 1 that CE-VAE obtained
a better score than VAE in 294 occasions, and performed worse in

GECCO ’18, July 15–19, 2018, Kyoto, Japan Unai Garciarena, Roberto Santana, and Alexander Mendiburu

206. The tables for all functions have been summarized in Table 2,
by adding the individual tables by rows. Following the example,
it can be observed in the summary table the way the cell value
corresponding to CE-VAE F9 is computed as 294 + 304 = 598.

Additionally, in order to evaluate the margins by which a model
outperforms another, we have created a similar table, in which,
instead of adding points, a performance index is computed, as
− log

(
IGDi
IGD j

)
(where i, j are the model index) is added in cell (i, j).

An example for F9 can be seen in Table 3, and its summarized
version in Table 4. Again, the larger the number, the better the
performance.

Judging by the results shown in Table 2, we can see some regular-
ities. With the exception of F8, CE-VAE has better IGDs overall. In
some cases, such as F1, F4, and F7, the most complex model has the
upper hand in 160-260 more occasions that its peers. For functions
F2, F3, F5, and F9, this difference is lowered to 100-150. Finally, F8
seems to be an outlier, as it shows very close results between all
models, awarding a narrow edge to the E-VAE. The comparisons
between E-VAE and VAE do not display as much margin as the CE-
VAE showed. In some cases, as in F1, F3, F8 and F9, the differences
where not superior to 20, while in the rest, they did not exceed 65.

From this comparison, we can extract that the sole addition of
the approximator does not improve the sampling capability of the
model. However, the explicit addition of arbitrary (in this case,
chosen from the Pareto front) fitness values seems to be key to
obtain better samples, as in all but one function CE-VAE obtained
clearly better results.

Regarding Table 4, it can be seen how the superiority of the
CE-VAE is maintained regularly across all comparisons. The largely
unbalanced values in this table denote that, not only was CE-VAE
better in most cases, but when its IGD was worse, it was similar
to the superior one. However, a contradiction between the two
tables is found when comparing the results achieved for F8. When
comparing the instances in which one model produced better re-
sults than the other, F8 showed abnormally balanced results. When
comparing the quality of all the solutions, however, this balance is
broken, and results more similar to those generated from the rest
of the functions were found.

The combination of the results in both tables for F8 shows that,
even though the scoring was paired, when VAE or E-VAE beat CE-
VAE the results were close. However, when it was CE-VAE that
produced better results, the difference was much larger. This means
that the top solutions produced by the CE-VAE are much better
than those generated by VAE.

To back up these conclusions, we have subjected these results to
a statistical test. The selected test was the Wilcoxon signed rank
test [35], and was applied pairwise. The results back up what is
seen in the tables, as the test shows p-values near 10−7, when
comparing the CE-VAE with the other models, and only shows
statistical difference for F1 between the VAE and E-VAE.

F8 seems to be the most complicated function to be optimized,
as the IGD values range from fractional numbers up to numbers
larger than 10. The rest of the functions rarely obtained IGD values
above 4, and none above 5. This can be clearly seen in Figure 3.
This figure shows the density function of the whole set of IGDs
generated in the experiments. It is apparent that F2, F7 and F9 have

F1 VAE
E-VAE
CE-VAE

F2

F3

F4

F5

F7

F8

0 1 2 3 4
IGD values

F9

Histograms of the IGD values for each function

Figure 3: Density function of all the 500 IGDs generated for
each function, by each variation of the VAE. For F8, a re-
duced number of configurations that produced an IGD value
near 100were generated. These have been omitted in the rep-
resentation for a more detailed perception.

Structure VAE E-VAE CE-VAE
VAE 0 247 206

E-VAE 253 0 196
CE-VAE 294 304 0

Table 1: Example of score computation in the comparison
of the three models for function F9. Each time a IGD gener-
ated by a model x is lower than any of those generated by
any of its counters y, 1 is added in cell (x ,y). A large positive
number denotes better performance.

similar difficulties, as well as F1, F3, F4 and F5. F8 however clearly
poses another kind of difficulty for the algorithm. In any case, it can
be seen how the line representing the CE-VAE has sampled more
solutions in the section where the top points are found. Meanwhile,
the lines representing the sampling by VAE and E-VAE, stay close to
each other. It can also be observed how CE-VAE has sampled more
poor solutions in F8 compared to its competitors, which resulted
in the abnormal behavior displayed in previous tables.

As a summary, we can state that CE-VAE produces better results
than VAE regularly, and its top results are much better than the best
ones produced by the VAE. Taking into consideration these results,
we would expect that the CE-VAE would have a good performance
when being used as a model running an EDA.

5.4 Results in the optimization scenario
We now present and discuss the results for the second experiment.
Firstly, we have empirically set the number of iterations used to
learn the VAE models to 5. Table 5 presents the results of the algo-
rithms. It shows the mean of the best solutions for a subset of the

Expanding variational autoencoders for learning and exploiting
latent representations in search distributions GECCO ’18, July 15–19, 2018, Kyoto, Japan

Str. F1 F2 F3 F4 F5 F7 F8 F9
VAE 403 502 461 462 480 449 488 453

E-VAE 413 437 465 414 427 411 508 449
CE-VAE 678 560 568 621 589 635 499 598

Table 2: Scores for all functions. These scoreswere computed
by adding all the scores in each row of the score matrix for
each function. See an example of these matrices in Table 1.
These numbers were rounded to integers. A larger value de-
notes a better performance.

Structure VAE E-VAE CE-VAE
VAE 0 45.2308 -89.7701

E-VAE -45.2308 0 -135.001
CE-VAE 89.7701 135.001 0

Table 3: Performance index example for F9. The lower the
number, the better the performance by the model

Str. F1 F2 F3 F4 F5 F7 F8 F9
VAE -274 43 25 14 54 -272 -129 -44

E-VAE -648 -231 -169 -272 -224 -378 -324 -180
CE-VAE 923 187 143 257 169 651 453 224

Table 4: Performance index for all functions. These scores
were computed by adding all the indices in each row of the
index matrix for each function. See an example of these ma-
trices in Table 3. These numbers were rounded to integers.
A larger value denotes a better performance.

30 runs. Results are organized by problem dimension and search
algorithm in the columns, and population sizes in the rows. Runs
were filtered to remove those that, very early in the optimization,
got stuck in local optima whose fitness was very distant from the
optimal values. We discarded all runs for which the fitness of the
best solution has value above 30. Table 6 displays the number of
rejected runs.

From this table, we can firstly see the effects of the applied
threshold, since some algorithms could not overcome that threshold
for the problem with dimension 34, with low population size.

Focusing only on the smallest variable dimension, 13, it can be
seen how a reduced population size clearly harms the performance
of the UMDAc, as the random search and all the VAE-based models
obtained much better results. As the number of individuals in each
generation is increased, the UMDAc keeps gaining relative to the
other searches, to the point of obtaining the best results of all
searches, even though closely followed by the VAE-based EDAs.
The random search, however, fails to scale from 100 individuals per
population onward. This shows how difficult this problem is.

Going on with the next variable dimension, the UMDAc starts
with a clear advantage over the other searches, but fails to improve
as the population size is increased. Again, the random search of-
fers a relatively competitive performance with few evaluations per
generation, but is unsuccessful when scaling. The VAE and CE-
VAE based EDAs follow a similar regular progression, even though

shifted in favor of the VAE-EDA. It is the E-VAE based search, how-
ever, the one producing top results with the exception of the case
in which the population size is 50.

Finally, for the largest variable size, 34, results are poor in general.
Only for the larges population size (300) the number of runs over
the threshold is significant, which excludes other configurations
from producing valid conclusions. The VAE and CE-VAE guided
searches offer the best performances.

Table 6 shows the number of runs that could not perform better
than the threshold for dimensions 21 and 34. For dimension 13, all
but 4 UMDAc runs performed better than the threshold. This table
reflects the difficulty of the problem being treated, as the UMDAc,
in a large number of runs for dimension 21, was unable to produce
competitive results. Judging by the number of rejected runs with
the larges variable dimension, it is safe to assert that larger variable
sizes require larger population sizes.

6 CONCLUSIONS
This paper has investigated the convenience of using VAEs as mod-
els to drive EDAs. More specifically, two variations of the common
VAE are proposed in this work, and all three of them are evaluated
in a two-step analysis to prove its effectiveness. The two proposed
models, E-VAE (implicitly) and CE-VAE (explicitly), exploit extra in-
formation about the fitness function when sampling new solutions.

The first preliminary evaluation determined that the presented
model that explicitly uses the extra information was able to produce
more distributed samples in the set of top performing solutions,
compared to the regular VAE. This is a key feature that is necessary
in any model intended to be used in an evolutionary algorithm.

The results provided by the models when placed in an evolution-
ary framework showed that can improve the outcome of an basic
evolutionary algorithm that assumes no interaction between the
variables of the problem. However, the stability of the proposed
techniques is yet to be achieved, since reduced searches tend to get
stuck in local optima very far away from the real optimum value.

6.1 Future work
While we have focused on problems with continuous representa-
tions, there are some proposals that extend the application of VAEs
to discrete problems [27]. Similarly, variants of VAE, such as the
one that adds noise to the original data could be investigated [14].

More work investigating the training technique of the VAE mod-
els in evolutionary framework needs to be carried out. The results
in the preliminary section suggest that these models have the ca-
pacity to perform well in evolutionary methods, and therefore, the
issues that caused their poor performance in determined scenarios
are worth investigating. Additionally, the VAEs generated at each
generation were randomly initialized. Running a search algorithm
to optimize the structures of the neural networks within the VAEs
would help the sampling quality. Simple local searches could be the
best option, as over-complicating the optimization with a costly
internal search at each generation would make the EDA infeasible.

Finally, the covariance matrix adaptation [12] is another evolu-
tionary approach in which the validity of the VAEs in optimization
problems could be tested.

GECCO ’18, July 15–19, 2018, Kyoto, Japan Unai Garciarena, Roberto Santana, and Alexander Mendiburu

Dimension 13 21 34
Pop. size Rnd UMDAc VAE E-VAE CE-VAE Rnd UMDAc VAE E-VAE CE-VAE Rnd UMDAc VAE E-VAE CE-VAE

50 0.201 1.381 0.207 0.237 0.246 4.614 2.027 4.143 5.632 3.510 - - 10.453 8.418 -
100 0.014 0.503 0.033 0.073 0.019 2.891 2.587 1.530 1.672 2.727 - 11.713 12.114 17.319 -
200 -0.068 -0.181 -0.203 -0.149 -0.206 1.491 4.073 0.368 0.293 0.436 23.942 1.537 5.788 8.214 -
300 -0.108 -0.423 -0.408 -0.420 -0.396 1.135 2.003 -0.261 -0.399 -0.074 23.942 4.623 1.522 2.748 1.353

Table 5: Overall mean results for the 5 search algorithms, for 3 problem dimensions, with 3 different population sizes.

Dim. 21 34
Pop. Rnd Uc V E-V CE-V Rnd Uc V E-V CE-V
50 1 22 1 2 18 30 30 29 29 30
100 0 18 0 0 2 30 27 28 29 30
200 0 14 0 0 0 28 27 6 14 30
300 0 9 0 0 0 28 25 0 2 1

Table 6: Number of runs that did not pass the threshold for
dimensions 21 and 34.

ACKNOWLEDGMENTS
U. Garciarena acknowledges a predoctoral grant from UPV/EHU
(ref. PIF16/238). This work has received support from the IT-609-13
(Basque Government) and TIN2016-78365-R (Spanish Ministry of
Economy, Industry and Competitiveness) programs. We acknowl-
edge the support of NVIDIA Corporation with the donation of a
Titan X Pascal GPU also used for this work.

REFERENCES
[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig

Citro, Greg S Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, and others.
2016. Tensorflow: Large-scale machine learning on heterogeneous distributed
systems. CoRR abs/1603.04467 (2016). http://arxiv.org/abs/1603.04467

[2] David H Ackley, Geoffrey E Hinton, and Terrence J Sejnowski. 1987. A learning
algorithm for Boltzmann machines. In Readings in Computer Vision. Elsevier,
522–533.

[3] Shumeet Baluja. 2017. Deep Learning for Explicitly Modeling Optimization
Landscapes. CoRR abs/1703.07394 (2017). http://arxiv.org/abs/1703.07394

[4] A. E. I. Brownlee, J. A. McCall, and S. K. Shakya. 2012. The Markov Network
Fitness Model. In Markov Networks in Evolutionary Computation, S. Shakya and
R. Santana (Eds.). Springer, 125–140.

[5] D. Cho and B. Zhang. 2004. Evolutionary Continuous Optimization by Distribu-
tion Estimation with Variational Bayesian Independent Component Analyzers
Mixture Model. In Parallel Problem Solving from Nature (PPSN VIII), Vol. 3242.
Springer, 212–221.

[6] Alexander W Churchill, Siddharth Sigtia, and Chrisantha Fernando. 2014. A
denoising autoencoder that guides stochastic search. CoRR abs/1404.1614 (2014).
http://arxiv.org/abs/1404.1614

[7] C.A.C. Coello, G.B. Lamont, and D.A. Van Veldhuizen. 2007. Evolutionary Algo-
rithms for Solving Multi-objective Problems. Springer-Verlag New York Inc.

[8] Marcus Gallagher,Marcus Frean, and TomDowns. 1999. Real-valued Evolutionary
Optimization using a Flexible Probability Density Estimator. In Proceedings of the
Genetic and Evolutionary Computation Conference GECCO-1999, Vol. I. Morgan
Kaufmann Publishers, San Francisco, CA, Orlando, FL, 840–846.

[9] Unai Garciarena, Roberto Santana, and Alexander Mendiburu. 2018. Evolved
GANs for generating Pareto set approximations. In Proceedings of the 2018 on
Genetic and Evolutionary Computation Conference Companion. ACM. Accepted
for publication.

[10] Xavier Glorot and Yoshua Bengio. 2010. Understanding the difficulty of training
deep feedforward neural networks. In Proceedings of the Thirteenth International
Conference on Artificial Intelligence and Statistics. 249–256.

[11] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative adversarial
nets. In Advances in neural information processing systems. 2672–2680.

[12] Nikolaus Hansen. 2006. The CMA evolution strategy: a comparing review. In
Towards a new evolutionary computation. Springer, 75–102.

[13] Hsiao-Ping Hsu, Vishal Mehra, and Peter Grassberger. 2003. Structure optimiza-
tion in an off-lattice protein model. Physical Review E 68, 2 (2003), 4 pages. article
number 037703.

[14] Daniel Jiwoong Im, Sungjin Ahn, Roland Memisevic, Yoshua Bengio, and others.
2017. Denoising Criterion for Variational Auto-Encoding Framework. In Proceed-
ings of 31st National Conference on Artificial Intelligence AAAI-2017. 2059–2065.

[15] H. Karshenas, R. Santana, C. Bielza, and P. Larrañaga. 2014. Multiobjective
Estimation of Distribution Algorithm Based on Joint Modeling of Objectives and
Variables. IEEE Transactions on Evolutionary Computation 18, 4 (2014), 519–542.

[16] Taeksoo Kim, Moonsu Cha, Hyunsoo Kim, Jungkwon Lee, and Jiwon Kim. 2017.
Learning to discover cross-domain relations with generative adversarial networks.
CoRR abs/1703.0519 (2017). http://arxiv.org/abs/1703.05192

[17] Diederik P Kingma and Max Welling. 2013. Auto-encoding variational Bayes.
CoRR abs/1312.6114 (2013). http://arxiv.org/abs/1312.6114

[18] Solomon Kullback and Richard A Leibler. 1951. On information and sufficiency.
The annals of mathematical statistics 22, 1 (1951), 79–86.

[19] P. Larrañaga and J. A. Lozano (Eds.). 2002. Estimation of Distribution Algorithms.
A New Tool for Evolutionary Computation. Kluwer Academic Publishers.

[20] H. Li and Q. Zhang. 2008. Multiobjective Optimization Problems with Compli-
cated Pareto Sets, MOEA/D and NSGA-II. IEEE Transactions on Evolutionary
Computation 13, 2 (2008), 284–302.

[21] Alireza Makhzani, Jonathon Shlens, Navdeep Jaitly, Ian Goodfellow, and Brendan
Frey. 2015. Adversarial autoencoders. CoRR abs/1511.05644 (2015). http://arxiv.
org/abs/1511.05644

[22] Marcella SRMartins, Mohamed El Yafrani, Myriam RBS Delgado, MarkusWagner,
Belaïd Ahiod, and Ricardo Lüders. 2017. HSEDA: a heuristic selection approach
based on estimation of distribution algorithm for the travelling thief problem.
In Proceedings of the Genetic and Evolutionary Computation Conference. ACM,
361–368.

[23] H. Mühlenbein and G. Paaß. 1996. From recombination of genes to the estimation
of distributions I. Binary parameters. In Parallel Problem Solving from Nature -
PPSN IV (Lectures Notes in Computer Science), Vol. 1141. Springer, Berlin, 178–187.

[24] Malte Probst. 2015. Denoising autoencoders for fast combinatorial black box
optimization. In Proceedings of the Companion Publication of the 2015 Annual
Conference on Genetic and Evolutionary Computation. ACM, 1459–1460.

[25] Malte Probst. 2015. Generative Adversarial Networks in Estimation of Distribu-
tion Algorithms for Combinatorial Optimization. CoRR abs/1509.09235 (2015).
http://arxiv.org/abs/1509.09235

[26] Malte Probst, Franz Rothlauf, and Jörn Grahl. 2017. Scalability of using Re-
stricted Boltzmann Machines for combinatorial optimization. European Journal
of Operational Research 256, 2 (2017), 368–383.

[27] Jason Tyler Rolfe. 2016. Discrete variational autoencoders. CoRR abs/1609.02200
(2016). http://arxiv.org/abs/1609.02200

[28] Ruslan R Salakhutdinov and Geoffrey E Hinton. 2008. Using deep belief nets to
learn covariance kernels for Gaussian processes. InAdvances in neural information
processing systems. 1249–1256.

[29] Roberto Santana. 2017. Gray-box optimization and factorized distribution
algorithms: where two worlds collide. CoRR abs/1707.03093 (2017). https:
//arxiv.org/abs/1707.03093

[30] S. Shakya and R. Santana (Eds.). 2012. Markov Networks in Evolutionary Compu-
tation. Springer.

[31] S. K. Shakya, A. E. I. Brownlee, J. McCall, W. Fournier, and G. Owusu. 2009. A fully
multivariate DEUM algorithm. In Proceedings of the 2009 Congress on Evolutionary
Computation CEC-2009. IEEE Press, Norway, 479–486.

[32] Paul Smolensky. 1986. Information processing in dynamical systems: Foundations
of harmony theory. Technical Report CU-CS-321-86. Colorado University at
Boulder. Dept. of Computer Science.

[33] F.H. Stillinger, T. Head-Gordon, and C. Hirshfeld. 1993. Toy Model for Protein
Folding. Physical Review E 48 (1993), 1469–1477.

[34] H. Tang, V.A. Shim, K.C. Tan, and J.Y. Chia. 2010. Restricted Boltzmann machine
based algorithm for multi-objective optimization. In Evolutionary Computation
(CEC), 2010 IEEE Congress on. IEEE, 1–8.

[35] Frank Wilcoxon. 1945. Individual comparisons by ranking methods. Biometrics
bulletin 1, 6 (1945), 80–83.

http://arxiv.org/abs/1603.04467
http://arxiv.org/abs/1703.07394
http://arxiv.org/abs/1404.1614
http://arxiv.org/abs/1703.05192
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1511.05644
http://arxiv.org/abs/1511.05644
http://arxiv.org/abs/1509.09235
http://arxiv.org/abs/1609.02200
https://arxiv.org/abs/1707.03093
https://arxiv.org/abs/1707.03093

	Abstract
	1 Introduction
	2 Probabilistic modeling of search distributions
	2.1 Related work

	3 Variational autoencoders (VAEs)
	4 VAEs for model-based optimization
	4.1 Extending the VAE model

	5 Experiments
	5.1 Preliminary experiments
	5.2 EDA scenario
	5.3 Results for the comparison of the models
	5.4 Results in the optimization scenario

	6 Conclusions
	6.1 Future work

	Acknowledgments
	References

