
MOEA/D with Uniformly Randomly Adaptive Weights
Lucas R. C. de Farias

Universidade Federal de Pernambuco
Recife, Brazil

lrcf@cin.ufpe.br

Pedro H. M. Braga
Universidade Federal de Pernambuco

Recife, Brazil
phmb4@cin.ufpe.br

Hansenclever F. Bassani
Universidade Federal de Pernambuco

Recife, Brazil
hfb@cin.ufpe.br

Aluizio F. R. Araújo
Universidade Federal de Pernambuco

Recife, Brazil
aluizioa@cin.ufpe.br

ABSTRACT
When working with decomposition-based algorithms, an appropri-
ate set of weights might improve quality of the final solution. A set
of uniformly distributed weights usually leads to well-distributed
solutions on a Pareto front. However, there are two main difficulties
with this approach. Firstly, it may fail depending on the problem
geometry. Secondly, the population size becomes not flexible as
the number of objectives increases. In this paper, we propose the
MOEA/D with Uniformly Randomly Adaptive Weights (MOEA/D-
URAW)which uses the Uniformly Randomlymethod as an approach
to subproblems generation, allowing a flexible population size even
when working with many objective problems. During the evolution-
ary process, MOEA/D-URAW adds and removes subproblems as a
function of the sparsity level of the population. Moreover, instead
of requiring assumptions about the Pareto front shape, our method
adapts its weights to the shape of the problem during the evolution-
ary process. Experimental results using WFG41-48 problem classes,
with different Pareto front shapes, shows that the present method
presents better or equal results in 77.5% of the problems evaluated
from 2 to 6 objectives when compared with state-of-the-art methods
in the literature.
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1 INTRODUCTION
Decomposition-based evolutionary multiobjective optimization
(EMO) algorithms decomposes a multiobjective optimization prob-
lem (MOOP) [2] into a number of single-objective optimization
problems using a set of weight vectors [10]. Each subproblem or
weight vector is associated with a solution in the population, and
the diversity of the evolutionary population is controlled explicitly
by a set of weight vectors [6]. Thus, an appropriate set of weights
can increase the quality of the final solution.

A set of uniformly distributed weights usually leads to well-
distributed solutions on a Pareto front (PF). However, there are two
main difficulties with this approach. Firstly, it may fail depending on
the problem geometry. When dealing with a complex Pareto Front
(e.g., disconnected, degenerate, badly-scaled or inverted simplex-
like), the final solution set can present results do not meet the
expectations [6–8]. Secondly, the population size becomes not flexi-
ble as the objectives number grows, because it behaves non-linearly,
that is, when working with Many-objectives Optimization Problem
(MaOP), the computational cost significantly increases [8].

To handle such limitations, we propose a method calledMOEA/D
with Uniformly Randomly Adaptive Weights (MOEA/D-URAW)
that adapts the subproblems based on the sparsity level of the
population. This approach allows a flexible population size for the
MaOPs. We compared our method with other MOEA/D’s variants
that use fixed weight vectors for a set of test problems with different
PF geometries. Experimental results show that the MOEA/D-URAW
presents better or equal results in 77,5% of the problems evaluated
from 2 to 6 objectives.

The rest of this paper is organized as follows: Section 2 discusses
the background knowledge used in this work. Section 3 introduces
the proposed method MOEA/D-URAW. Thereafter, Section 4 and
Section 5 present the experimental setup and results analysis re-
spectively. Finally, the conclusions are presented in Section 6.

2 BACKGROUND
This section presents briefly the Tchebycheff (TCH) decomposition
approach and the fixed weights generation methods used in the
experiments of this paper. Such a decomposition is the basis for the
rest of the paper.
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2.1 Tchebycheff Decomposition Approach
In this approach, the scalar optimization problems are defined as:

minimize дTCH (x |λ,z∗) = max1≤j≤m (λj | fj (x) − z∗j |),
subject to x ∈ Ω

(1)

where the utopian objective vector z∗ = (z∗1 ... z∗m )T is the reference
point, i. e. z∗j = min { fj (x)|x ∈ Ω}, for each j = 1, ...,m. The m-
dimensional weight vector is defined as λ = (λ1 ... λm )T ,

∑m
i λi = 1

and λi ≥ 0, for all i ∈ 1, ...,m [10]. By altering weight vectors,
different Pareto-optimal solutions can be obtained by the TCH
approach [9]

2.2 Fixed Weights Generation Methods
Three different methods to generate a set of fixed weight vectors are
described in the following Section 2.2.1, Section 2.2.2 and Section
2.2.3. Section 2.2.4 presents the WS-tranformation used in the three
described methods.

2.2.1 Das and Dennis (DD). Most decomposition-based EMO
algorithms use the method proposed by Das and Dennis [1] to
systematically generate a set of fixed weight vectors uniformly
distributed over a unit simplex. Let H be the number of divisions
of each axis, totally N =

(H+m−1
m−1

)
weight vectors can be generated

using this approach. SinceH should be no smaller thanm to prevent
intermediate points being created. The number of generated weight
vectors can be very high for more than three objectives.

2.2.2 Uniform Randomly (UR). A set of N weight vectorsW are
generated as follows. Firstly, 5000 weight vectors are uniformly
random generated for forming the setW1. W is initialized as the
set containing all the weight vector (1 0 ... 0 0), (0 1 ... 0 0), ... , (0
0 ... 0 1). Secondly, find the weight vector inW1 with the largest
distance toW, add it toW, and remove it fromW1. Then, if the size
ofW is N, stop and returnW. Otherwise, go to the second item and
repeat the process [11].

2.2.3 TCH Scalarizing Function (TSF). Given a reference point,
z∗, the optimal weight vector to a solution with respect to Tcheby-
cheff scalarizing function can be easily generated. This is a frequent
approach in the weight vector adaptation [3, 6, 7]. Formally, let z∗
= (z∗1 ... z∗m )T be the reference point andw = (λ1 λ2 ... λm )T be the
optimal weight vector to a solution q. Then Eq. 2 holds:

f1(q) − z∗1
λ1

=
f2(q) − z∗2

λ2
= · · · = fm (q) − z∗m

λm
(2)

Since λ1 + λ2 + ... + λm = 1, we have Eq. 3.

w = (λ1, · · ·, λm ) = (
f1(q) − z∗1∑m
i=1 fi (q) − z∗i

, · · ·, fm (q) − z∗m∑m
i=1 fi (q) − z∗i

) (3)

2.2.4 WS-Transformation. It maps the weight vector of a scalar
subproblem to its solution mapping vector [7]. If λ is a weight
vector, λ = (λ1 ... λm )T ∈ Rm , satisfying

∑m
i=1 λi = 1, λi ≥ 0, i = 1,

..., m. Then the WS-transformation, giving rise to λ′, on λ can be
defined as:

λ′ =WS(λ) = (
1
λ1∑m

i=1
1
λi

, · · ·,
1
λm∑m
i=1

1
λi

) (4)

3 PROPOSED METHOD
This section presents in details the proposed method for adapting
weights during the evolutionary process called MOEA/D-URAW.

3.1 Weights Generation
MOEA/D-URAW uses the Uniformly Randomly method presented
in Section 2.2.2 for generating weight vectors. In this approach, the
population size is flexible, that is, it independs on the number of
objectives. However, maintain a fixed set of weights throughout
the evolutionary process means assuming that the PF follows a
given geometry. This is a problem because the use of a fixed set of
weights does not guarantee to find well-distributed solutions for
all PF shapes. Adapting weights helps to deal with this problem
[6, 7, 9]. An adaptation method is presented in Section 3.2.

3.2 Weights Adaptation
The method proposed in this paper is based on the methodol-
ogy presented in the MOEA/D with Adaptive Weight Adjustment
(MOEA/D-AWA)[7] that uses the sparsity level among individuals
of the population to indicate which subproblem should be removed
and which is apt to be added.

The sparsity level is based on the vicinity distance [4]. This ap-

proach is defined in Equation (5), where LNN j
i

2 is the j-th individual
euclidean distance, ind j , along with its i-th nearest neighbor of the
population, pop. Them closest euclidean distances are used, where
m is the number of objectives [7].

SL(ind j ,pop) =
m∏
i=1

L
NN j

i
2 (5)

The individual with the lowest level of sparsity or overcrowded
is removed. That is, the sparsity level of each of the individuals
in the population is calculated among the population itself using
Equation (5). If 5% of the sub-problems (nus) have not been removed
yet of the population, then, repeat the process of calculating the
sparsity levels and remove the most overcrowded subproblem [7].
An important observation is that the MOEA/D-URAW does not
update the current evolutionary population by checking which
individual is best suited to which weight vector as the MOEA/D-
AWA does.

In addition to the evolutionary population, the MOEA/D frame-
work has an external population (EP) that is used to store non-
dominated solutions found during the search. The procedure to
create new subproblems consists of calculating the sparsity level
of each individual in an EP with respect to the population itself,
using Equation (5). Then, it generates a new subproblem using the
individual indsp = (xsp FV sp ) which has the highest sparsity level.
The weight vector λsp of the new constructed subproblem can be
calculated as follows, in which FV sp = (f sp1 ... f spm ),
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λsp = (
1

f sp1 −z∗1∑m
k=1

1
f spk −z

∗
k

, · · ·,
1

f spm −z∗m∑m
k=1

1
f spk −z

∗
k

),
m∏
j=1
(f spj − z

∗
j ) , 0.

(6)

At last, the solution of the new constructed subproblem as indsp
is set and added to the current population. The process is repeated
until nus subproblems are added to the population.

There is no consensus in the literature about the best moment for
adaptation [6, 7, 9]. In a preliminary evaluation theMOEA/D-URAW
performed better when the weight update operation is conducted
every 5% of the total generations/evaluations. We followed it, and
MOEA/D-URAW does not change the weight vectors during the
last 10% generations/evaluations.

3.3 Algorithm Framework
Alg. 1 presents the main procedure of MOEA/D-URAW. As can
be seen, it has the same framework as MOEA/D version in [5].
However, it employs the weight vector update using sparsity level
(line 26-37), initialization of weights using uniformly randomly
method (line 2) and the limitation of the size of EP (line 24-25).

4 EXPERIMENTAL SETUP
4.1 Test Problems
In the experimental study, we used eight modified WFG4 test prob-
lems, i.e., WFG41 to WFG48 [8], from 2 to 6 objectives. They have
different PF characteristics, namely continuous and discontinuous,
convex, concave, strong convex, strong concave and mixed PFs
with different shapes. Each WFG problem had 100 executions. The
number of decision variables is defined as n = k + l , andm deter-
mines the number of objectives. The others settings are described
in Table 1. Note that, the population size was thus defined, in order
to have a fair comparison between the test algorithms, since Das
and Dennis method does not provide a flexible value when treating
many-objectives.

4.2 Test Algorithms
To assess the performance of MOEA/D-URAW, the Wilcoxon’s rank
sum test is used with the significant level of 5%. Three ways of ini-
tializing unadjusted weights in the MOEA/D framework presented
in section Section 3.3 is considered for comparison: Das and Dennis
[1], Uniformly Randomly [11] and TCH Scalarizing Function [3, 6].
These algorithms used the same general settings as shown in Table
2.

4.3 Performance Metric
For WFG41 to WFG48 test problems, we use the Hypervolume
metric (HV), since the PFs are unknown. Given a reference point zr
= (zr1 , ... , z

r
n )T dominated by all Pareto-optimal solutions, the HV

of a solution set P is defined as the volume of the objective space
dominated by all solutions in P, bounded by zr :

HV (P) = VOL(
⋃
z∈P
[z1, z

r
1 ] × ... × [zm , z

r
m ]), (7)

Algorithm 1:MOEA/D-URAW
1 EP← ∅;
2 Initialize the population P and a set of weight vectorsW ;
3 Apply the WS-transformation on the weight vectorsW ;
4 Determine the neighbors of each weight vector ofW ;
5 Calculate the reference point according to P ;
6 Gen← 0;
7 while Gen < Genmax do
8 for each i ∈ {1, ...,N } do
9 if uni f orm(0, 1) < δ then

10 E ← B(i);
11 else
12 E ← {1, ...,N };
13 Randomly select mating solutions from E to generate

an offspring x̄, Evaluate F(x̄);
14 update ← 0;
15 while update < nr and E , ∅ do
16 j ← Randomly select an index from E;
17 E ← E \ j;
18 if дTCH (x̄|w j ,z∗) ≤ дTCH (x j |w j ,z∗) then
19 xj ← x̄;
20 update ← update + 1;

21 if �q ∈ EP, q ≺ x̄ then
22 EP ← EP ∪ x̄;
23 EP ← EP \ {q ∈ EP | x̄ ≺ q};

24 if |EP| > 2|P| then
25 Remove from EP the individual with the highest

sparsity level;
26 if Gen = Genmax × 5% and < Genmax × 90% then
27 adjust ← 0
28 while adjust < nus do
29 Calculate the sparsity level of each individual in

population P among P by Equation (5);
30 Remove the individual with the minimum sparsity

level;
31 adjust ← adjust + 1;
32 while adjust > 0 do
33 Calculate the sparsity level of each individual in

EP among the population P by Equation (5);
34 Generate a new subproblem using the individual

which has the largest sparsity level by Equation
(6);

35 Add the newly constructed subproblem associated
with the individual which has the largest sparsity
level to the current population P ;

36 adjust ← adjust − 1;
37 Update the neighbors of each weight vector ofW ;
38 Gen ← Gen + 1;
39 return P ;
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Table 1: Settings used for WFG41 to WFG48.

Parameters Values

runs 100
maxGen 400

N (2-4 objectives) 120
N (5 and 6 objectives) 126

T 24
nus (0.05N) 6

k (2 objectives) 2
k (otherwise) m-1

l 10

Table 2: General Parameters.

Parameters Values

Crossover Simulated Binary
Pc 1.00
ηc 20

Mutation Polynomial
Pm 1/n
ηm 20
δ 0.9
nr 2

where VOL indicates the Lebesgue measure. The objective vectors
of the final solution set are normalized according to min-max nor-
malization concerning all experiments before calculating the HV
with zr = (1.2, ... , 1.2)T .

5 EXPERIMENTAL RESULTS
As shown in Section 4, the Wilcoxon’s rank sum test is used to indi-
cate the MOEA/D-URAW performance when compared to the DD,
UR and TSF approaches in MOOP and MaOP. According to Table 3
and Table 5, MOEA/D-URAW presents results with a significance
level of 5%, better in 72.5% of cases, draws at 5% and not so good
at 22.5%. Therefore, the proposed method was better or equal to
in 77.5% of the problems. The results in the context of MOOP and
MaOP are detailed below.

Firstly, Table 3 and Table 4 shows the HV results for 2 and 3
objectives. In this context of MOOP, the MOEA/D-URAW performs
the best on most of the test instances except for WFG47 for 2
objectives, andWFG43 for 3 objectives. For these cases, Tchebycheff
Scalarizing Function, and Das and Dennis obtained the best HV
results, respectively.

The final solution set with the median HV metric values for
2 objectives is shown in Figures 1 and 2. It can be seen that the
PFs of MOEA/D-URAW are mostly more evenly distributed. The

adaptation of the weight vectors in the UR initialization method
allows that it happens.

Secondly, Table 5 and Table 6 shows the HV results for MaOPs
with 4, 5, and 6 objectives. Here, MOEA/D-URAW continues to
present better result in most of the test instances. The problem
with WFG43 persists for all the cases, where Das and Dennis, and
Uniformly Randomly outperforms it.

Moreover, for 5 and 6 objectives, WFG44 appears as a problem
for MOEA/D-URAW. For the WFG47, the MOEA/D-URAW is not
the best in the 4 and 5 objectives, in these cases, its version without
adaptation of weights, UR, presented better performance.

These problems presented by MOEA/D-URAW to the WFG43
and WFG44 are interesting to analyze. The fact is that both of them
have strong shapes, concave and convex, respectively. It may impact
the effectiveness of MOEA/D-URAW. The WFG47 result problems
for 2 objectives was unexpected, and it is a key point of future
investigation.

6 CONCLUSIONS
This work introduces the MOEA/D-URAW, a model that uses UR
initialization method combined with weights adaptation in order to
obtain both flexible population size and better adapted final solution
sets. Its performance was evaluated using MOOPs and MaOPs with
different PF shapes.

The results indicate that the MOEA/D-URAW presents a better
performance, specifically in WFG problems with concave, convex,
mixed, linear, convex and disconnected hyperplane PF shapes. The
proposed model is better than the other methodologies evaluated
in 72.5% of cases, considering all problems and objectives tested.
However, it is important to note that the proposed adaptation did
not significantly improve the results when the PF shape is discon-
nected and convex. In 22.5% of the results, there were statistically
significant differences. In these cases, the PFs have strong concave
or strong convex formats. These results indicate that the use of
sparsity level may not be appropriate to adapt the weights with
these PFs formats. There is still a case in which the TSF approach
performed better than the others, i.e., the WFG47 with 2 objectives.
This case has a PF with disconnected and concave shape, and the
reason why this happens will be investigated in more detail in a
future work.

Another relevant issue is that, in the literature, there is no con-
sensus on the best frequency of weight adaptation. Different fre-
quencies affect the outcome of the approaches that use weight
adaptation. As future work, it is worth investigating the impact of
this parameter in approaches that use weights adaptation.
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(a) WFG45 - DD (b) WFG45 - UR (c) WFG45 - TSF (d) WFG45 - URAW

(e) WFG46 - DD (f) WFG46 - UR (g) WFG46 - TSF (h) WFG46 - URAW

(i) WFG47 - DD (j) WFG47 - UR (k) WFG47 - TSF (l) WFG47 - URAW

(m) WFG48 - DD (n) WFG48 - UR (o) WFG48 - TSF (p) WFG48 - URAW

Figure 2: Final solutions set with the best (blue circle) and median (green cross sign) HV metric values obtained by the algo-
rithms on WFG45 to WFG48.
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Table 3: Average and standard deviation of HV results obtained in 100 independent runs on WFG41 to WFG48 on MOOP. The
highest average is highlighted with gray background. ⋆ indicates whether the MOEA/D-URAW is significantly better than all
other models or which algorithm presented significantly better results than it.

Problems 2 Objectives 3 Objectives

DD UR TSF URAW DD UR TSF URAW

WFG41 0.6622 0.6567 0.6620 0.6669 ⋆ 1.0736 1.0672 0.9665 1.1145 ⋆
1.50E-03 4.80E-03 1.30E-02 1.60E-03 2.70E-03 8.10E-03 2.90E-02 3.30E-03

WFG42 1.2078 1.206 1.1994 1.2095 ⋆ 1.652 1.6829 1.6408 1.6906 ⋆
9.00E-04 1.20E-03 4.00E-03 6.00E-04 6.50E-03 2.70E-03 9.00E-03 1.70E-03

WFG43 0.4806 0.4798 0.4831 0.5015 0.6533 ⋆ 0.6401 0.5088 0.6416
5.10E-03 2.10E-03 5.60E-02 3.70E-03 1.70E-03 4.10E-03 4.70E-02 8.60E-03

WFG44 1.3865 1.3859 1.3802 1.3909 ⋆ 1.7225 1.7243 1.6887 1.7260 ⋆
1.20E-03 8.00E-04 3.70E-03 5.00E-04 3.50E-03 1.20E-03 7.70E-03 1.40E-03

WFG45 0.8091 0.8074 0.8098 0.8109 1.1995 1.2181 1.1167 1.2524 ⋆
1.60E-03 2.90E-03 5.70E-03 1.40E-03 5.20E-03 7.10E-03 2.70E-02 3.50E-03

WFG46 0.9354 0.9278 0.9268 0.9369 ⋆ 1.4210 1.4546 1.3606 1.4866 ⋆
1.60E-03 3.90E-03 1.10E-02 1.20E-03 5.20E-03 6.80E-03 2.00E-02 2.80E-03

WFG47 0.8012 0.8014 0.8474 ⋆ 0.8179 1.2521 1.2648 1.1487 1.2773 ⋆
5.50E-02 5.30E-02 5.30E-02 5.30E-02 1.40E-02 5.70E-03 2.80E-02 3.00E-02

WFG48 0.9317 0.9509 0.9357 0.9526 ⋆ 1.6108 1.6212 1.4753 1.6308 ⋆
9.80E-02 9.50E-02 6.70E-02 9.70E-02 9.00E-03 3.00E-03 4.30E-02 2.20E-03

Table 4: The best andmedian HVmetric results obtained in 100 independent runs onWFG41 toWFG48 onMOOP. The highest
values in the results are highlighted in bold.

Problems 2 Objectives 3 Objectives

DD UR TSF URAW DD UR TSF URAW

WFG41 0.6635 0.6628 0.6768 0.6687 1.0788 1.0811 1.0238 1.1196
0.6625 0.6580 0.6647 0.6675 1.0744 1.0684 0.9676 1.1155

WFG42 1.2088 1.2080 1.2049 1.2102 1.6620 1.6871 1.6653 1.6924
1.2079 1.2061 1.2004 1.2093 1.6530 1.6834 1.6404 1.6908

WFG43 0.4829 0.4828 0.5417 0.5053 0.6561 0.6467 0.6373 0.6508
0.4815 0.4802 0.5096 0.5030 0.6535 0.6410 0.5110 0.6434

WFG44 1.3880 1.3871 1.3870 1.3914 1.7252 1.7264 1.7015 1.7272
1.3866 1.3861 1.3810 1.3912 1.7228 1.7241 1.6907 1.7268

WFG45 0.8104 0.8116 0.8173 0.8126 1.2063 1.2298 1.1732 1.2586
0.8095 0.8081 0.8115 0.8111 1.2006 1.2196 1.1194 1.2529

WFG46 0.9368 0.9317 0.9388 0.9382 1.4308 1.4665 1.4006 1.4908
0.9358 0.9288 0.9302 0.9371 1.4227 1.4559 1.3616 1.4871

WFG47 0.8621 0.8440 0.9104 0.8557 1.2689 1.2759 1.2186 1.2856
0.7511 0.8414 0.8643 0.8545 1.2550 1.2660 1.1515 1.2807

WFG48 1.0320 1.0327 1.0246 1.0337 1.6225 1.6267 1.5558 1.6344
0.8377 1.0290 0.9647 1.0324 1.6137 1.6218 1.4806 1.6314
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Table 5: Average and standard deviation of HV results obtained in 100 independent runs on WFG41 to WFG48 on MaOP. The
highest average is highlighted with gray background. ⋆ indicates whether the MOEA/D-URAW is significantly better than all
other models or which algorithm presented significantly better results than it.

Problems 4 Objectives 5 Objectives 6 Objectives

DD UR TSF URAW DD UR TSF URAW DD UR TSF URAW

WFG41 1.340 1.464 1.145 1.494 ⋆ 1.563 1.840 1.312 1.867 ⋆ 1.812 2.215 1.513 2.261 ⋆
2.6E-02 1.1E-02 4.1E-02 8.4E-03 1.6E-02 1.5E-02 4.6E-02 1.3E-02 4.2E-02 1.9E-02 5.1E-02 2.4E-02

WFG42 2.011 2.046 1.942 2.056 ⋆ 2.451 2.460 2.300 2.471 ⋆ 2.939 2.939 2.701 2.961 ⋆
1.5E-02 5.9E-03 1.5E-02 4.1E-03 5.3E-03 1.1E-02 3.0E-02 7.0E-03 2.1E-02 1.9E-02 5.3E-02 1.3E-02

WFG43 0.821 0.832 ⋆ 0.521 0.819 1.009 1.032 ⋆ 0.537 0.998 1.248 ⋆ 1.242 0.582 1.144
4.9E-03 5.4E-03 5.1E-02 1.7E-02 1.0E-02 8.9E-03 5.1E-02 2.6E-02 1.4E-02 1.9E-02 6.1E-02 5.8E-02

WFG44 2.067 2.060 1.901 2.068 ⋆ 2.481 ⋆ 2.458 2.070 2.472 2.964 ⋆ 2.861 2.165 2.871
5.3E-03 9.8E-03 3.6E-02 5.3E-03 9.2E-03 3.2E-02 1.4E-01 1.4E-02 3.1E-02 1.6E-01 4.8E-01 1.5E-01

WFG45 1.428 1.602 1.331 1.628 ⋆ 1.617 1.984 1.553 2.002 ⋆ 1.860 2.375 1.818 2.400 ⋆
2.2E-02 1.1E-02 3.4E-02 8.7E-03 2.7E-02 1.5E-02 3.7E-02 1.2E-02 3.3E-02 2.5E-02 5.0E-02 2.3E-02

WFG46 1.717 1.877 1.598 1.904 ⋆ 2.011 2.30 1.901 2.337 ⋆ 2.378 2.762 2.210 2.820 ⋆
1.7E-02 7.0E-03 3.0E-02 6.5E-03 1.6E-02 1.2E-02 3.6E-02 8.9E-03 4.6E-02 2.3E-02 4.1E-02 1.6E-02

WFG47 1.506 1.650 ⋆ 1.366 1.643 1.646 2.029 ⋆ 1.610 2.025 1.864 2.429 1.874 2.435 ⋆
7.3E-02 8.1E-03 3.9E-02 6.6E-02 1.1E-01 8.9E-02 3.7E-02 6.1E-02 8.0E-02 1.3E-01 5.8E-02 7.5E-02

WFG48 1.977 2.032 1.759 2.036 ⋆ 2.410 2.445 2.091 2.457 ⋆ 2.903 2.925 2.526 2.944 ⋆
1.7E-02 6.4E-03 6.3E-02 8.1E-02 1.3E-02 1.2E-02 1.0E-01 1.2E-02 2.9E-02 2.1E-02 1.1E-01 1.8E-02

Table 6: The best and median HVmetric results obtained in 100 independent runs onWFG41 toWFG48 onMaOP. The highest
values in the results are highlighted in bold.

Problems 4 Objectives 5 Objectives 6 Objectives

DD UR TSF URAW DD UR TSF URAW DD UR TSF URAW

WFG41 1.3632 1.4878 1.2339 1.5110 1.5854 1.8730 1.4196 1.8906 1.8822 2.2670 1.6321 2.3094
1.3480 1.4657 1.1504 1.4948 1.5656 1.8395 1.3206 1.8693 1.8264 2.2158 1.5104 2.2619

WFG42 2.0306 2.0557 1.9716 2.0619 2.4627 2.4717 2.3623 2.4812 2.9570 2.9657 2.7988 2.9769
2.0102 2.0466 1.9441 2.0576 2.4519 2.4621 2.3021 2.4739 2.9451 2.9449 2.7096 2.9668

WFG43 0.8327 0.8405 0.6353 0.8432 1.0303 1.0513 0.6875 1.0383 1.2750 1.2731 0.7043 1.2245
0.8212 0.8326 0.5283 0.8247 1.0105 1.0328 0.5343 1.0006 1.2498 1.2463 0.5926 1.1640

WFG44 2.0731 2.0718 1.9819 2.0734 2.4882 2.4869 2.3018 2.4879 2.9860 2.9833 2.7231 2.9841
2.0678 2.0620 1.9032 2.0685 2.4786 2.4642 2.0749 2.4731 2.9694 2.9079 2.2491 2.9008

WFG45 1.4753 1.6228 1.4270 1.6428 1.6613 2.0136 1.6324 2.0289 1.9064 2.4430 1.9181 2.4475
1.4314 1.6031 1.3342 1.6284 1.6235 1.9857 1.5530 2.0032 1.8678 2.3753 1.8242 2.4010

WFG46 1.7642 1.8910 1.6657 1.9155 2.0698 2.3211 1.9831 2.3536 2.4870 2.8109 2.3071 2.8461
1.7148 1.8784 1.5997 1.9056 2.0135 2.3015 1.9044 2.3377 2.3920 2.7661 2.2160 2.8225

WFG47 1.6036 1.6656 1.4428 1.6698 1.8537 2.0642 1.6999 2.0552 2.0029 2.4939 2.0005 2.4918
1.5072 1.6500 1.3639 1.6535 1.6232 2.0420 1.6145 2.0328 1.8890 2.4536 1.8813 2.4453

WFG48 2.0005 2.0406 1.8416 2.0427 2.4268 2.4640 2.2423 2.4679 2.9349 2.9608 2.6785 2.9668
1.9786 2.0337 1.7771 2.0367 2.4157 2.4489 2.1112 2.4604 2.9120 2.9309 2.5407 2.9518
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