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Abstract. Surrogate models are employed in evolutionary algorithms
to replace expensive objective function evaluations with cheaper though
usually inaccurate estimates based on information gained in past itera-
tions. Implications of the trade-off between computational savings on the
one hand and potentially poor steps due to the inaccurate assessment of
candidate solutions on the other are generally not well understood. We
study the trade-off in the context of a surrogate model assisted (1 + 1)-
ES by considering a simple model for single steps. Based on the insights
gained, we propose a step size adaptation mechanism for the strategy
and experimentally evaluate it using several test functions.

1 Introduction

Surrogate models have been proposed as an approach for evolutionary algo-
rithms (EAs) to deal with optimization problems where each evaluation of the
objective function requires a considerable amount of time or incurs a significant
cost. Surrogate models are built using information on candidate solutions that
have been evaluated previously using the true objective function. Evaluating a
new candidate solution using a surrogate model yields a potentially inaccurate
estimate of its true objective function value at a much lower cost than would
be incurred in the exact evaluation. Surrogate modelling is useful if the benefit
of reduced cost outweighs the potentially poorer steps made due to the inexact
evaluation of candidate solutions.

Numerous approaches for incorporating surrogate models in EAs exist and
have been comprehensively surveyed by Jin [8] and Loshchilov [11]. Algorithms
usually are heuristic in nature, and potential consequences of design decisions are
not always well understood. Most recent work on surrogate model assisted EAs
considers relatively sophisticated algorithms. Strategies usually are evaluated
by comparing the approach that uses surrogate modelling techniques with a
corresponding algorithm that does not. A potential pitfall in such comparisons
arises in connection with the use of large populations: if an algorithm for a
given optimization problem uses a larger than optimal population size, then
efficiency can be gained simply by using a trivial surrogate modelling approach
that classifies a fraction of candidate solutions as poor, at no computational cost.
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Clearly, the computational savings in this case are due to the effective reduction
of the population size rather than to surrogate modelling.

We contend that it is desirable to develop an improved understanding of the
potential implications of the use of surrogate modelling techniques, and that such
an understanding can be gained by analyzing the behaviour of surrogate model
assisted EAs using simple test functions that allow comparing the performance of
the algorithms against a well established baseline. The contributions of this paper
are as follows: after briefly reviewing related work in Sect. 2, in Sect. 3 we propose
a simple model for surrogate model assisted EAs and use it to study the single-
step behaviour of a surrogate model assisted (1 + 1)-ES1 on quadratic sphere
functions. We then use the insights gained to propose a step size adaptation
mechanism for that algorithm in Sect. 4, and we evaluate its performance using
several test functions. Section 5 concludes with a brief discussion and future
work.

2 Related Work

The use of surrogate models in EAs can be traced back to the 1980s. Both Jin
[8] and Loshchilov [11] present comprehensive surveys of the development of the
field. Notable strategies include, though are not limited to, the Gaussian Process
Optimization Procedure (GPOP) by Büche et al. [4] and the Local Meta-Model
Covariance Matrix Adaptation Evolution Strategy (lmm-CMA-ES) by Kern
et al. [9]. GPOP iterates the optimization of a Gaussian process based model of
the objective using CMA-ES [7] and the subsequent evaluation and addition of
the solution obtained to the training set. With computational cost determined by
the number of (exact) objective function evaluations required to reach the opti-
mal solution to within some target accuracy, Büche et al. [4] report a speed-up by
a factor between four and five compared to CMA-ES on quadratic sphere func-
tions and on Schwefel’s function, and smaller speed-ups on Rosenbrock’s func-
tion. lmm-CMA-ES use locally weighted regression models in connection with an
approximate ranking procedure within the CMA-ES. With full quadratic models,
Kern et al. [9] report a speed-up by a factor between two and eight compared to
CMA-ES on unimodal functions, including the quadratic sphere, Schwefel’s func-
tion, and Rosenbrock’s function. More recent surrogate model assisted CMA-ES
variants include the Surrogate-Assisted Covariance Matrix Adaptation Evolu-
tion Strategy (s∗ACM-ES) by Loshchilov et al. [13] as well as several further
algorithms surveyed and compared by Pitra et al. [14].

It is interesting to note that when considering unimodal test functions and
comparing with relatively sophisticated black box optimization algorithms such
as CMA-ES, the speed-ups reported as a result of using surrogate models appear
to be a small factor (usually less than eight, frequently no larger than four), irre-
spective of the dimension of the problem. While larger speed-ups can be achieved
when using surrogate models that perfectly fit the functions being optimized
(e.g., quadratic models for optimizing quadratic functions), this observation is
1 See Hansen et al. [6] for evolution strategy terminology.
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not altogether unexpected in light of the performance bounds for black box
optimization algorithms derived by Teytaud and Gelly [17].

A further interesting observation is that surrogate model assisted EAs tend to
be relatively complicated and combine multiple heuristics for good performance.
Notably, no surrogate model assisted version of the (1+1)-ES can be found in the
literature. A seeming exception proposed by Chen and Zou [5] is not invariant
to translations of the coordinate system — a property considered crucial for
solving general unconstrained optimization problems — and does not include a
mechanism for the adaptation of its step size. The Model Assisted Steady-State
Evolution Strategy (MASS-ES) by Ulmer et al. [18] is a (μ + λ)-ES that can in
principle be run with μ = λ = 1, but was not designed with those settings in mind
and it is unclear whether its step size adaptation approach is effective under those
conditions. Given the relative efficiency of the (1+1)-ES for unimodal black box
problems and the relatively large body of knowledge regarding its convergence
properties on convex functions, we argue that it is natural to ask to what degree
the algorithm can be accelerated through the use of surrogate models, and how
its step size can be adapted successfully.

3 Analysis

In order to gain a better understanding of potential implications of the use of
surrogate models in EAs, in this section, we employ a simple model for the use of
surrogate models. Specifically, we propose that an EA have the options of either
evaluating a candidate solution accurately, at the cost of one objective function
call, or of obtaining an inaccurate estimate of the solution’s objective function
value at vanishing cost. For simplicity, we assume that the inaccurate objective
function value is a Gaussian random variable with a mean that coincides with
the candidate solution’s exact objective function value and some variance that
models the accuracy of the surrogate model. As a result, techniques previously
employed for the analysis of the behaviour of evolution strategies in the presence
of Gaussian noise become applicable (see [1] and references therein). It would be
straightforward to extend the analysis to biased surrogate models (i.e., models
where the distribution mean differs from the exact objective function value).
Models with a skew distribution of estimation errors could likely be considered
based on analyses of the effects of non-Gaussian noise on the performance of
evolution strategies (see [2]). Also not directly addressed in the present work
are comparison based surrogate models. Loshchilov et al. [12] persuasively argue
for such models in order to preserve invariance properties of comparison based
optimization algorithms. We expect that an analysis analogous to what follows
can be performed for such models.

We consider minimization of the quadratic sphere function f : Rn → R with
f(x) = xTx using a surrogate model assisted (1 + 1)-ES, where throughout
this section the simple model described above substitutes for a “true” surrogate
model. We initially consider a single iteration of the strategy and defer the
discussion of step size adaptation until Sect. 4. The algorithm in each iteration
generates single offspring candidate solution y = x + σz, where x ∈ R

n is
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the best candidate solution obtained so far and is referred to as the parent,
z ∈ R

n is a standard normally distributed random vector, and σ > 0 is a step
size parameter the adaptation of which is to be discussed below. The strategy
uses the surrogate model to obtain an estimate fε(y) of the objective function
value that according to the above assumptions is a random variable with mean
f(y) and some standard deviation σε > 0. Better surrogate models result in
smaller values of σε. If fε(y) > f(x) (i.e., if the surrogate model suggests that
the offspring candidate solution is inferior to the parent), then y is discarded
and the strategy proceeds to the next iteration; otherwise it computes f(y)
at the cost of one objective function call and replaces x with y if and only if
f(y) < f(x) (i.e., if the offspring candidate solution truly is superior to the
parent). In the terminology of Loshchilov [11] this procedure can be considered
a natural implementation of preselection in the (1 + 1)-ES.

The expected step of the strategy can be studied by using a decomposition
of z first proposed by Rechenberg [15]. Vector z is written as the sum of two
components: one in direction of the negative gradient direction −∇f(x) and the
other orthogonal to that. Due to symmetry, the length of the former component
is standard normally distributed; the squared length of the latter is governed by
a χ2-distribution with n − 1 degrees of freedom. The mean of that distribution
is n − 1 and its coefficient of variation tends to zero as n increases. Referring to
δ = n(f(x) − f(y))/(2R2), where R = ‖x‖, as the normalized fitness advantage
of y over its parent, and introducing normalized step size σ∗ = nσ/R, it follows

δ =
n

2R2

(
xTx − (x + σz)T(x + σz)

)
=

n

2R2

(−2σxT z − σ2‖z‖2)

n→∞= σ∗z1 − σ∗2

2
, (1)

where z1 = −xTz/R is a standard normally distributed random variable repre-
senting the length of the component of z in the direction of −∇f(x) and n→∞=
denotes convergence in distribution. Moreover, introducing σ∗

ε = nσε/(2R2), the
estimated normalized fitness advantage (i.e., the normalized fitness advantage
estimated by using the surrogate model to evaluate y) is δε = δ + σ∗

ε zε, where
zε is standard normally distributed.

From the above, the estimated normalized fitness advantage is normally dis-
tributed with mean −σ∗2/2 and variance σ∗2 + σ∗2

ε and thus has probability
density

pδε
(y) =

1
√

2π(σ∗2 + σ∗2
ε )

exp

(

−1
2

(
y + σ∗2/2

)2

σ∗2 + σ∗2
ε

)

. (2)

Moreover, the probability density of z1 conditional on the estimated normalized
fitness advantage δε can be obtained as2

pz1|δε
(z | y) =

√
σ∗2 + σ∗2

ε√
2πσ∗

ε

exp

(

−1
2

(
(σ∗2 + σ∗2

ε )z − σ∗(y + σ∗2/2)
)2

(σ∗2 + σ∗2
ε )σ∗2

ε

)

. (3)

2 Detailed derivations of Eqs. (3), (4), (5), and (6) can be found in a separate document
at web.cs.dal.ca/~dirk/PPSN2018addendum.pdf.
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As y is evaluated using the objective function if and only if it appears superior
to the parent based on the surrogate model, we write peval = Prob[δε > 0] for
the probability of making a call to the objective function. From Eq. (2),

peval = Prob [δε > 0] =
∫ ∞

0

pδε
(y) dy

= Φ

(
−σ∗2/2

√
σ∗2 + σ∗2

ε

)

, (4)

where Φ(·) denotes the cumulative distribution function of the standard normal
distribution. Due to the accounting for computational costs, peval represents the
expected cost per iteration of the algorithm. Similarly, as y replaces x if and only
if δε > 0 and δ > 0, we write pstep = Prob[δε > 0 ∧ δ > 0] for the probability of
the offspring replacing the parent. From Eqs. (2) and (3),

pstep = Prob [δε > 0 ∧ δ > 0] =
∫ ∞

0

pδε
(y)

∫ ∞

σ∗/2

pz1|δε
(z | y) dz dy

=
1√
2π

∫ ∞

σ∗/2

e−z2/2 Φ

(
σ∗z − σ∗2/2

σ∗
ε

)
dz (5)

as δ > 0 is equivalent to z1 > σ∗/2. Finally, the expected value of the normalized
change in objective function value

Δ =

{
δ if δε > 0 and δ > 0
0 otherwise

from one iteration to the next can be computed as

E [Δ] =
∫ ∞

0

pδε
(y)

∫ ∞

σ∗/2

(
σ∗z − σ∗2

2

)
pz1|δε

(z | y) dz dy

=
1√
2π

∫ ∞

σ∗/2

(
σ∗z − σ∗2

2

)
e−z2/2 Φ

(
σ∗z − σ∗2/2

σ∗
ε

)
dz . (6)

Equations (4), (5), and (6) describe the behaviour of the algorithm for n → ∞
and can serve as approximations for finite but not too small n.

If a step size adaptation mechanism and surrogate modelling approach are in
place such that the distributions of σ∗ and σ∗

ε are independent of the iteration
number, then the algorithm converges in expectation linearly with dimension-
normalized rate of convergence

c = −n

2
E

[
log

(
f(xt+1)
f(xt)

)]
= −n

2
E

[
log

(
1 − 2Δ

n

)]
, (7)

where subscripts denote iteration number. However, the rate of convergence does
not account for computational cost as costs are incurred only in those iterations
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Fig. 1. Expected single step behaviour of the surrogate model assisted (1+1)-ES with
unbiased Gaussian surrogate error. The solid lines represent results obtained analyti-
cally in the limit n → ∞. The dots show values observed experimentally for n = 10
(crosses) and n = 100 (circles). The dotted line in the left hand plot illustrates the
corresponding relationship for the (1 + 1)-ES without surrogate model assistance.

where a call to the objective function is made. We thus use η = c/peval (nor-
malized rate of convergence per objective function call) as performance measure
and refer to it as the expected fitness gain. For n → ∞ the logarithm in Eq. (7)
can be linearized and the expected fitness gain is simply η = E[Δ]/peval.

We define noise-to-signal ratio ϑ = σ∗
ε /σ∗ as a measure for the quality of

the surrogate model relative to the step size of the algorithm and in Fig. 1 plot
the evaluation rate peval, the false positive rate pfalse = 1 − pstep/peval (i.e.,
the probability of a candidate solution that is deemed superior by the surro-
gate model to be inferior to the parent according to the true objective func-
tion), and the expected fitness gain against the normalized step size. The lines
show results obtained from Eqs. (4), (5), and (6). The dots show correspond-
ing values observed in experiments with unbiased Gaussian surrogate error for
n ∈ {10, 100} that have been obtained by averaging over 107 iterations. Devia-
tions of the experimental measurements from values obtained in the limit n → ∞
are considerable primarily for large normalized step size and small noise-to-signal
ratio.

It can be seen from Fig. 1 that for given noise-to-signal ratio, the evaluation
rate of the algorithm decreases with increasing step size. For very small steps, one
out of every two steps is deemed successful by the surrogate model; with larger
steps, the algorithm becomes more “selective” when deciding whether to obtain
an exact objective function value for a candidate solution. At the same time,
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Fig. 2. Optimal normalized step size and resulting expected fitness gain of the surrogate
model assisted (1 + 1)-ES plotted against the noise-to-signal ratio. The solid lines
represent results obtained analytically in the limit n → ∞. The dots show values
observed experimentally for n = 10 (crosses) and n = 100 (circles). The dotted lines
represent the optimal values for the (1 + 1)-ES without surrogate model assistance.

except for the case of zero noise-to-signal ratio, the false positive rate increases
with increasing step size. The effect on the expected fitness gain (that accounts
for computational costs) is such that for ϑ > 0 the gain peaks at a finite value
of σ∗. With increasing noise-to-signal ratio, the expected fitness gain decreases.
For ϑ → ∞ the surrogate model becomes useless and the corresponding rela-
tionship for the (1 + 1)-ES without surrogate model assistance first derived by
Rechenberg [15] is recovered (dotted line in the left hand plot in Fig. 1). That
strategy achieves a maximal expected fitness gain of 0.202 at a normalized step
size of σ∗ = 1.224. For moderate values of ϑ, the surrogate model assisted algo-
rithm is capable of achieving much larger expected fitness gain values at larger
step sizes (e.g., for ϑ = 1.0, the maximal achievable expected fitness gain is 0.548
and is achieved at a normalized step size of σ∗ = 1.905). For ϑ = 0 (i.e., a per-
fect surrogate model), both the optimal normalized step size and the expected
fitness gain with increasing step size tend to infinity. However, it is important
to keep in mind that the analytical results have been derived in the limit of
n → ∞ and merely are approximations in the finite-dimensional case. Figure 2
illustrates the dependence of the optimal normalized step size on the noise-to-
signal ratio derived in the limit n → ∞ and shows values of the expected fitness
gain achieved with that step size, both derived analytically for n → ∞ and
measured experimentally for n ∈ {10, 100}. In the finite-dimensional cases the
speed-up achieved through surrogate model assistance for small noise-to-signal
ratios appears to top out between four and five for n = 10 and between six and
seven for n = 100. Notice that these values are roughly in line with speed-ups
reported for surrogate model assisted CMA-ES variants mentioned in Sect. 2.

4 Step Size Adaptation and Experiments

In this section we propose a step size adaptation mechanism for the surro-
gate model assisted (1 + 1)-ES. We then evaluate the algorithm by using a
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Fig. 3. Single iteration of the surrogate model assisted (1 + 1)-ES.

Gaussian Process surrogate model in place of the simple model for surrogate
models employed in Sect. 3 and applying it to several test functions.

The step size of the (1+1)-ES is commonly adapted using the 1/5th rule pro-
posed by Rechenberg [15]. That rule stipulates that the step size of the strategy
can be adapted based on the “success rate” (i.e., the probability of the par-
ent being replaced by the offspring candidate solution). If this rate exceeds one
fifth then the step size is increased; if it is below one fifth then the step size is
decreased. An ingenious implementation of that rule has been proposed by Kern
et al. [10]: rather than approximating the success rate by counting successes over
a number of iterations, increase the step size by multiplication with e0.8/D in
each iteration where the offspring is successful; decrease it by multiplication with
e−0.2/D whenever the parent prevails. Constant D controls the magnitude of the
step size updates and according to Hansen et al. [6] can be set to

√
1 + n. If

one out of every five offspring generated is successful, then the step size updates
cancel each other out on average and the logarithm of the step size remains
unchanged. If the success rate exceeds one fifth, then increasing updates occur
more frequently and the step size will systematically increase and vice versa.

The one-fifth rule is not suitable for the adaptation of the step size of the
surrogate model assisted (1+1)-ES. From Fig. 1, there is no single value of either
the evaluation rate or the false positive rate (both of which are observable) such
that optimal values of the expected fitness gain are obtained near those rates,
for all values of the noise-to-signal ratio that the strategy may operate under.
However, we suggest that the step size can be adapted by considering a combi-
nation of those rates and propose the algorithm shown in Fig. 3. Nonnegative
constants c1, c2, and c3 remain to be determined below. The algorithm decreases
the step size (potentially by differing rates) if the offspring candidate solution is
rejected either based on the objective function value estimate provided by the
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Fig. 4. False positive rate of the surrogate model assisted (1+1)-ES plotted against the
evaluation rate. The solid line represents the optimally performing strategy under the
conditions from Sect. 3, the dotted line the solution of Eq. (8) for c1 = 0.05, c2 = 0.2,
c3 = 0.6.

surrogate model or on the exact value returned by the objective function; it is
increased if the offspring candidate solution is successful.

To choose values for the constants in the algorithm in Fig. 3, consider Fig. 4.
The solid line in that plot has been obtained by using Eq. (6) to numerically
determine the optimal normalized step size for values of the noise-to-signal ratio
that vary from the very small to the very large. Corresponding values of the eval-
uation rate and the false positive rate were then obtained from Eqs. (4) and (5)
and plotted against each other to obtain the solid curve in the plot. Considering
the algorithm in Fig. 3, the step size will be unchanged in expectation if

− (1 − peval)c1 − pevalpfalsec2 + peval(1 − pfalse)c3 = 0. (8)

The solution of Eq. (8) defines a branch of a hyperbola that is shown with a
dotted line in Fig. 4 for the case that c1 = 0.05, c2 = 0.2, and c3 = 0.6. If the
combination of evaluation rate and false positive rate falls above the dotted line,
then the logarithm of the step size will decrease in expectation; if it falls below,
then the step size will increase. One could attempt to tune parameters c1, c2, and
c3 to better match the solid curve in the figure. However, the likely inaccuracy
of the simple model for surrogate models employed in Sect. 3 may render such
efforts futile. For example, biased surrogate models would result in a shift of the
solid curve either to the left or to the right.

In order to test the step size adaptation mechanism thus proposed, we use a
set of five ten-dimensional test problems: sphere functions f(x) = (xTx)α/2 for
α ∈ {1, 2, 3} that we refer to as linear, quadratic, and cubic spheres, Schwefel’s
Problem 1.2 with f(x) =

∑n
i=1(

∑i
j=1 xj)2 (a convex quadratic function with

condition number of the Hessian approximately equal to 175.1; see [16]), and
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Table 1. Median test results.

Median number of objective function calls Speed-up

Without model assistance With model assistance

Linear sphere 1270 503 2.5

Quadratic sphere 673 214 3.1

Cubic sphere 472 198 2.4

Schwefel’s function 2367 1503 1.6

Quartic function 4335 1236 3.5

f(x) =
∑n−1

i=1 [β(xi+1 −x2
i )

2 +(1−xi)2] (see [3]). For β = 100 the latter function
is the Rosenbrock function, the condition number of the Hessian of which at
the optimizer exceeds 3,500, making it tedious to solve without adaptation of
the shape of the mutation distribution. We use β = 1 instead, resulting in the
condition number of the Hessian at the optimizer being 49.0, and we refer to
it as the quartic function. The optimal function value for all problems is zero.
We conduct 101 runs for each problem, both for the surrogate model assisted
(1+1)-ES and for the strategy that does not use model assistance. For surrogate
models, as Büche et al. [4], we employ Gaussian processes. We use a squared
exponential kernel and for simplicity set the length scale parameter of that kernel
to 8σ

√
n, where σ is the step size parameter of the evolution strategy. The

training set consists of the 40 most recently evaluated candidate solutions. The
surrogate model assisted algorithm does not start to use surrogate models until
after iteration 40. All runs are initialized by sampling the starting point from
a Gaussian distribution with zero mean and unit covariance matrix and setting
the initial step size to σ = 1. Runs are terminated when a solution with objective
function value below 10−8 has been found.

Histograms showing the numbers of objective function calls used to solve
the test problems to within the required accuracy are shown in the top row
of Fig. 5, with median values represented in Table 1. The speed-up reported in
the table is the median number of function evaluations used by the algorithm
without surrogate model assistance divided by the corresponding number used by
the surrogate model assisted (1+1)-ES. Speed-ups observed are between 1.6 for
Schwefel’s function and 3.5 for the quartic function. Despite the simplicity of the
surrogate models, the speed-up of 3.1 observed for the quadratic sphere function
is not far below the maximal speed-up between four and five expected from
Fig. 2. Speed-ups observed for the linear and cubic sphere functions are below
that observed for the quadratic sphere, suggesting that the Gaussian process
based models are more accurate for the latter than for the former. Encouragingly,
the simple step size adaptation mechanism proved successful in all runs.

Convergence graphs for the median runs are shown in the middle row of Fig. 5.
Eventually linear convergence appears to be achieved in all runs. The bottom row
of the figure shows values of the relative model error |f(y)−fε(y)|/|f(y)−f(x)|,
where x and y are parent and offspring candidate solutions, respectively,



26 A. Kayhani and D. V. Arnold

Fig. 5. Top row: Histograms showing the numbers of objective function calls used to
solve the five test problems. Middle row: Convergence graphs for the median runs.
Bottom row: Relative model error measured in the median runs.

observed in the median runs. The bold line in the centre of the plots represents
the relative model error smoothed logarithmically by computing its convolution
with a Gaussian kernel with a width of 40. We interpret the constancy of the
smoothed curves as evidence that the algorithm operates under a relatively con-
stant noise-to-signal ratio. Logarithmically averaging the relative model error
across the median runs yields values between 0.786 and 0.989 for four of the five
test problems, and a value of 1.292 for Schwefel’s function.

5 Conclusions

To conclude, we have proposed unbiased Gaussian distributed noise as a model
for surrogate modelling approaches. Using the model, we have presented an anal-
ysis of the behaviour of a surrogate model assisted (1+1)-ES on quadratic sphere
functions. Based on that model we have proposed a step size adaptation mech-
anism for the surrogate model assisted (1 + 1)-ES and numerically evaluated it
using a set of test functions. The mechanism successfully adapted the step size
in all runs generated.

In future work, we will employ more sophisticated and possibly comparison
based surrogate modelling approaches. Further goals include the development of
adaptive approaches for setting the parameters c1, c2, and c3 of the step size
adaptation mechanism and the evaluation of the approach in the context of a
(1 + 1)-ES with covariance matrix adaptation.



Design of a Surrogate Model Assisted (1 + 1)-ES 27

Acknowledgements. This research was supported by the Natural Sciences and Engi-
neering Research Council of Canada (NSERC).

References

1. Arnold, D.V.: Noisy Optimization with Evolution Strategies. Kluwer, Dordrecht
(2002)

2. Arnold, D.V., Beyer, H.-G.: A general noise model and its effects on evolution
strategy performance. IEEE Trans. Evol. Comput. 10(4), 380–391 (2006)

3. Auger, A., Hansen, N., Perez Zerpa, J.M., Ros, R., Schoenauer, M.: Experimental
comparisons of derivative free optimization algorithms. In: Vahrenhold, J. (ed.)
SEA 2009. LNCS, vol. 5526, pp. 3–15. Springer, Heidelberg (2009). https://doi.
org/10.1007/978-3-642-02011-7 3
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Learning probability distributions in continuous evolutionary algorithms – a com-
parative review. Nat. Comput. 3(1), 77–112 (2004)

11. Loshchilov, I.: Surrogate-Assisted Evolutionary Algorithms. PhD thesis, Université
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