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Abstract. In this paper, we study Particle Swarm Optimization (PSO)
as a collective search mechanism for individuals (such as aerial micro-
robots) which are supposed to search in environments with unknown
external dynamics. In order to deal with the unknown disturbance, we
present new PSO equations which are evolved using Genetic Program-
ming (GP) with a semantically diverse starting population, seeded by
the Evolutionary Demes Despeciation Algorithm (EDDA), that general-
izes better than standard GP in the presence of unknown dynamics. The
analysis of the evolved equations shows that with only small modifica-
tions in the velocity equation, PSO can achieve collective search behavior
while being unaware of the dynamic external environment, mimicking the
zigzag upwind flights of birds towards the food source.
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Genetic Programming · EDDA

1 Introduction

This paper considers the Vector Field PSO (VF-PSO) algorithm [2], which is
supposed to be used as a collective search mechanism for a swarm of aerial
micro-robots acting under the influence of external unknown dynamics (such
as wind) performed by vector fields. The main challenge is that the external
dynamics of the environment are unknown to the swarm. As a result, due to the
influence of unknown external factors, the velocity vectors of the individuals (e.g.
robots) are constantly influenced by the external dynamics, and therefore the
whole process of the collective search is misled. A previous study [2] suggested
the use of a multi-swarm approach and collection of information about unknown
dynamics by an explorer population, while another swarm, called optimizer, uses
this information to correct their movements during the search process. However,
maintaining explorers in some environments might not be possible, e.g. sensors
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not working under certain conditions, or loss of the connection between explorers
and optimizers, so they can not access the collected information (which is a
realistic assumption for aerial robotic systems).

The goal of this paper is to find out whether it is possible to obtain a reason-
ably good approximation of the global optimal solution using only PSO equa-
tions in complete unawareness of the vector fields structure without explorer
population, and how such velocity equations (further denoted as VFPS) should
be designed in order to show the collective resistance to the unknown external
dynamics. To answer these questions, we refer to previous research [1], which has
only investigated the possibility of evolving such particle swarm equations using
Geometric Semantic Genetic Programming (GSGP) [13]. GSGP has recently
attracted much attention in the GP community due to its operators which in
contrast to the traditional ones tend to be more effective as they induce a uni-
modal error surface for any supervised learning problem [21]. However, in [1] it
was indicated that using pure GSGP for evolving new PSO equations is not as
efficient as using standard Genetic Programming (GP), while the mixture of the
GSGP and GP mutation operators was shown to be beneficial to produce high-
quality individuals in the presence of unknown dynamics. The mixture of the
above mentioned mutation operators in [1] was simulated by the Evolutionary
Demes Despeciation Algorithm (EDDA) [20].

In this work, we use the findings of [1] to generate better VFPS equations,
which are more robust to the unknown external dynamics than the standard
PSO velocity equation. The study performed in this paper differs from [1], as
the key aspect of the current work is the analysis and study of the evolved equa-
tions themselves and not of the evolutionary process of getting these equations.
Besides, for the evolution of the equations, we use standard GP with EDDA on
its top only as initialization technique to seed a better GP run.

So far, several applications of the GP to evolve new search algorithms have
been already studied in the literature. The Extended Particle Swarms (XPSO)
project [5,11,15,16] demonstrated that by using GP it is possible to auto-
matically evolve new PSO algorithms that perform better than standard ones
designed by humans. Besides the framework of the XPSO project, some work
regarding the evolution of PSO structures was also carried out by Dioşan
and Oltean in [6,7]. Several studies have also applied GP to investigate other
population-based metaheuristic optimizations apart from PSO: for instance,
Runka et al. [17] and Taveres et al. [18] applied GP to evolve probabilistic rules
used in Ant Colony optimization [8] to update its pheromone trails, and Di Chio
et al. [4] used GP to evolve particle swarm equations for group-foraging problems
in the simulation of behavioral ecology problems.

The paper is organized as follows. We describe the background about EDDA
and VF-PSO in Sect. 2. In Sect. 3, we replicate and provide more detailed descrip-
tions of the semantics introduced in [1] that allows us to use EDDA for the
evolution of VFPS equations. Section 4 presents the experimental settings and
Sect. 5 along with Sect. 6 discusses the obtained VFPS equations. The paper is
concluded in Sect. 7.
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2 Background

Evolutionary Demes Despeciation Algorithm. EDDA [20] is developed as
a biologically inspired semantics-based initialization technique for GSGP to cre-
ate not only a syntactically but also a semantically diverse starting population.
According to EDDA, the initial population is seeded with good quality individ-
uals that have been previously evolved for few generations in other populations
(called demes). For instance, a population of N individuals will be composed
of the best individuals found by N different demes, which are evolved indepen-
dently by using different operators. In [20] EDDA was applied to seed GSGP
runs, which generated solutions with comparable or even better generalization
ability and of significantly smaller size compared to traditional GSGP, where part
of the demes was evolved using operators of standard GP, while the another using
GSGP. However, according to [21], with only Geometric Semantic mutation (fur-
ther denoted as GSM) it is already possible to obtain the same performance as
using GSGP with both crossover and mutation operators and in some cases even
outperform it. Thus, in this paper we use EDDA to seed standard GP, where
the GSGP part of EDDA demes is evolved using only GSM in order to keep the
individuals of reasonable size. A definition of the term semantics used in this
paper is described in Sect. 3, taking into account the fact that we are developing
an application aimed at evolving search algorithms.

Vector Field PSO. VF-PSO is a collective search mechanism based on the
movement of a population of particles, motivated by the real case scenario of
aerial micro-robots, acting in an n-dimensional search space S under the influ-
ence of unknown dynamic conditions (e.g. wind influence). It performs a varia-
tion of the standard PSO algorithm [10], which is based on two simple rules for
updating the particles i velocity vi(t) and its corresponding position xi(t) ∈ S
at time step t:

xi(t + 1) = xi(t) + vi(t + 1) +
K∑

k=0

V F (gk) (1)

vi(t + 1) = wvi(t) + c1φ1(xpbest
i (t) − xi(t)) + c2φ2(xg(t) − xi(t)) (2)

The only difference from standard PSO is the additional term in Eq. 1, which
incorporates vector fields V F to induce the unknown external conditions in the
search space S. According to the definition, a vector field is a function that takes
any point in the space x ∈ S and assigns a vector V F (x) to it: x �→ V F (x). In
a discrete setting, a vector field is defined on the grid of cells {gk}Mk=1 ∈ G ⊂ S,
where for each cell gk, k ∈ {1..M} an associated vector exists as a piecewise
constant field V F (gk). Following this, the sum of vectors at K << M cells,
which particle i intersects along the movement from its previous position xi(t)
to the next xi(t + 1), is added to the current position of the particle to simulate
the drift in Eq. 1, where xi(t) ∈ g0 and xi(t + 1) ∈ gK . More description on the
other terms used in the equations described above is provided in the first part
of the following Sect. 3.
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3 Semantics for VFPS Evolution in EDDA

As for the evolution of VFPS equations in this work we use standard GP, but
with EDDA for the initialization, we have to take into consideration that EDDA
uses in the evolution part of the demes which is evolved by GSM. Thus, we
have to introduce corresponding semantics. In order to do this, in this section
we extend and provide more detailed description of the semantics for VFPS
evolution, which was first introduced in [1].

Referring to Pawlak et al. [14], in GP semantics is typically contextualized
within a specific programming task that is to be solved in a given program set P .
Thus, in order to introduce the definition of semantics used in this paper, we
have to define what the program set P and the programming task are in our
case.

Program Set. In our case, we consider GP individuals as acceleration vectors ai

of the Eq. 2, where ai(t) = vi(t + 1) − wvi(t). To define the program set P , we
must specify the set of terminal symbols T and the set of primitive functions F
used to code this type of individual, i.e. ai.

According to Eq. 2, an acceleration function ai can be considered as a com-
position of three atomic elements: the current positions of the particles xi, the
local best positions of the particles xpbest

i and the global best of the swarm xg.
These three elements are part of the terminal set T . Furthermore, we are also
interested in the “old” velocity vector of the particle, i.e. vi(t), in the sense of
frictional force and its possible combinations with constants, like in air drag or
fluid friction. According to Long et al. [12], for small particles air resistance is
approximately proportional to their velocities vi and can be expressed in the
form: F drag = −bvi or F drag = −bv2

i , where b is a constant that depends on the
properties of the particular type of air or fluid. Additionally, we also consider
the center of the swarm xc and its diversity σx in the terminal set, as in [15],
along with the limited set of permissible constants C ∈ {−0.5, 0.5}, as well as
a set of random vectors R(0, 1), each of which contains uniformly distributed
numbers different for each dimension, within the range [0, 1]. So, our terminal
set is: T = {xi,vi,x

pbest
i ,xg,xc , σx, C,R(0, 1)}, where xi is the current position

of the particle i, vi is its “old” velocity, xpbest
i is the best location previously

visited by particle i, xg is the best location visited by the entire swarm and σx

is the average distance of each particle xi to the center of mass xc .
It is worth pointing out that Eq. 2 contains two different random vectors φ1

and φ2, which are reflected in the terminal set T by the set of random vec-
tors R(0, 1). The role of φ1 and φ2 in PSO is to diversify the particles, keeping
them from moving exactly towards the global xg and personal best xpbest

i posi-
tions. On the other hand, previous studies [3,9,22] showed that the iterated
multiplication of random factors φ1 and φ2 can also lead to delay in conver-
gence and attraction to inappropriate directions, dissimilar direction changes in
different vectors and, as the result, to a limitation in the particle movements.

Moreover, among all the evolved acceleration equations reported by Poli et
al. [5,15,16], only one has three different random vectors – R1,R2,R3. This
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equation is: R1(xg − xi) − 0.75R2R1xix
2
g − 0.25R3R2R1xixg. All the other

provided individuals have mostly none or only one random vector R. Considering
that the probability of more frequent usage of random vectors in constructing
VFPS equations by means of GSM is increased due to the larger size of the
evolved individuals, we limit the number of different random vectors in the ter-
minal set up to three: {R1,R2,R3} ∈ R(0, 1).

Function set is introduced as: F = {+,−, ∗, sin�, cos�, 〈·, ·〉,×, LF}, where,
given vectors e1 = (e11, e

2
1) and e2 = (e12, e

2
2), ∗ is the element-by-element mul-

tiplication of two vectors, i.e. as the result we get another vector e1 ∗ e2 =
(e11 ∗ e12, e

2
1 ∗ e22); 〈·, ·〉 is the dot product of two vectors, i.e. the result is a scalar

equal to 〈e1,e2〉 = e11 ∗ e12 + e21 ∗ e22; × is the cross product of two vectors, i.e. the
result is a scalar equal to e1 × e2 = ||e1|| ∗ ||e2|| ∗ sin�(e1,e2), where ||e1|| =√

(e11)2 + (e21)2 is the magnitude of the corresponding vector; cos� is a cosine
of the angle between two vectors calculated as cos�(e1,e2) = e1·e2

||e1||∗||e2|| , so

sin�(e1,e2) =
√

1 − cos�(e1,e2)2; and, finally, LF performs a logistic function
applied to each component of the vector e, i.e. LF (e) = ( 1

1+exp(−e1) ,
1

1+exp(−e2) ).

Programming Task. According to the definition in [14], the programming
task, usually denoted as (FC, f), is defined by a set of fitness cases FC ⊆ X ×O
and a fitness function f : S → R≥0. A fitness case FC is a pair consisting in
a program input in ∈ X and a corresponding output out ∈ O. In this sense,
FC represents the training set of the programming task. Figure 1 describes the
programming task used in this paper. In our case, fitness case FC represents

Fig. 1. Semantics sp of the individual p on a problem class FC represented as a vector
of average outputs calculated for each of the problem instances {cj}dj=1 := FC within
r runs, where Swarml denotes the fixed initial population within the corresponding
run for all problem instances. Fitness function f p of individual p is performed as the
average of the elements in its semantics vector sp.
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a certain optimization function h(x − c) : Rn → R, where c is a corresponding
optimum solution. As an input for the program pi, we consider a d-dimensional
vector {cj}dj=1 ∈ R

n, cj 
= ci 
= 0 of different global optimal solutions, repre-
senting a class of shifted functions FC := {h(x − cj)}dj=1. So, an output is the
vector of respective function values at the global best position xg

j found using
pi : cj �→ h(xg

j − cj),∀j ∈ {1, .., d}. Evaluation of pi inside VF-PSO lasts for r

runs on each element of the input vector {cj}dj=1. The average of the outputs

within runs avgj =
r∑
1

pi(cj),∀j ∈ {1, .., d} defines the elements of the vector spi
,

which represents a point in the semantic space S and the semantics of an indi-
vidual pi on a problem class FC. Without loss of generality, in this paper we
considered problem classes, whose function values at the global optimum are
equal to zero (see Sect. 4). Thus, as the target is a zero vector t ∈ R

d, the fitness
for individual pi in our case is the average of the elements of its semantics spi

:
fpi

= 1
d

∑d
k=1[spi

(k) − t(k)] = 1
d

∑d
k=1 spi

(k).

4 Experimental Study

The objective of the experimental study is to evolve and to analyze new VFPS
equations which are able to find the approximate global optimum solution
in total unawareness of the external dynamics. Before discussing the experi-
mental results, let us briefly present the experimental settings.

Experimental VF-PSO Settings. Following [2,5,15,16], in our experiments
we consider the following problem classes: FC1−Sphere, FC2−Rosenbrock and
FC3 − Ackley. As in [2], the vector fields are considered in the two-dimensional
search space S : [−15.0, 15.0] × [−15.0, 15.0] and their function descriptions can
be found in Table 1. Every problem instance was considered in combination with
each of the five vector fields (VF). Additionally, we also consider the case without
vector field (denoted further as VF0). Given that the influence of the considered
vector fields is weaker near the origin of the Cartesian system (see the vector
fields descriptions in Table 1), we shifted the global optimum for each of the
problem instances to the left upper corner of the search space S, namely to the
region Ω : [−11.0,−9.0] × [9.0, 11.0]. We define d = 10 problem instances in
each problem class FCi : {hi(x − cj)}dj=1, where cj is a random vector from

Table 1. Function descriptions of the vector fields

“Cross” V F 1(x1, x2) = (x2, x1)

“Rotation” V F 2(x1, x2) = (−x2, x1)

“Sheared” V F 3(x1, x2) = (x1 + x2, x2)

“Wave” V F 4(x1, x2) = (− sin(x2), cos(x1 · x2 − x2
1))

“Tornado” V F 5(x1, x2) = (−x1 − x2, x1)
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the given interval Ω and hi(x) is the objective function of the corresponding
problem class FCi. In the training set, we use VF-PSO with 10 particles, whose
initial positions are chosen uniformly at random in the whole search space S.
Initial velocity is set to 0. The components of the velocity vector are constrained
within v ∈ [−2.0,+2.0]. The inertia weight w is equal to 0.6. Acceleration coef-
ficients are C1, C2 = 1. Each VFPS has been run for Nmax = 30 iterations on
each problem instance for r = 5 times. In the testing phase, the number of runs
was increased up to r = 100 with Nmax = 50 each. The population was enlarged
up to 20 particles and the global optimal solution was fixed at c = (−10.0, 10.0)
for all problem classes. The results of the testing phase are reported in Sect. 6
and compared in terms of the best function values obtained during the all iter-
ations, and the success rate, which indicates the percentage of runs, where this
fitness is smaller than a certain threshold ε by the end of the search process. We
used ε = 0.1.

Experimental EDDA and GP Settings. For EDDA we used 100 demes,
each of which containing 100 individuals. The individuals in each deme were
themselves initialized by means of the ramped half-and-half method, with max-
imum initial depth equal to 3. After initialization, each deme was left to evolve
for 5 generations using a given set of genetic operators. In EDDA, m% of demes
use GSM (GSGP demes), while the remaining (100 − m%) use standard genetic
operators (GP demes). In our experiments, we test m ∈ {25, 50, 75}. A maximum
depth limit of 5 is imposed only during the evolution of the GP demes, while
in the main evolutionary process (MEP) this limit was enlarged to 11. After 5
generations, the best individual is selected and copied into the population that
constitutes the MEP. The mutation step ms of GSM in the GSGP demes was
randomly generated with uniform probability in [0,1] at each mutation event,
following [19]. The codomain of the possible outputs of the randomly generated
trees in GSM was bounded in [0, 1] by wrapping them inside a logistic function,
as in [19]. To select parents for variation, tournaments of 5% of the population
size were used and survival was elitist, as it always copied the best individual
into the next population. While evolving VFPS in the GP demes and in MEP,
the probability of applying crossover and mutation was set to 0.9 and 0.1 respec-
tively.

5 Evolved VFPS

In this section, we present and discuss the best 5 force VFPS equations, that we
were able to evolve, in terms of the performance on the training set. All these
equations were obtained using EDDA-50% as an initialization technique, and
standard GP in the main evolutionary process.

VFPS1 was evolved on the “Sphere-VF1” (Cross) problem:

ai = R1(x
pbest
i − xi) + σ2

x(xg − xi) (3)
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Interestingly, it has a similar structure to the acceleration of the standard PSO
(i.e. both cognition and social components are present), but with divergence
factor for the deterministic social component. Thus, when the particles are too
sparse in a swarm, the social component has more weight, so the particles are
more attracted by the global best position than by the personal best local ones.
On the other hand, when the particles are denser, the influence of the social
component in the swarm decreases and the particles are more attracted by their
respective local best position, reproducing local search behavior.

VFPS2 was evolved on the “Sphere-VF1” (Cross) problem:

ai = (R1 + (xg − xi))〈xpbest
i + vi,x

pbest
i + vi〉 (4)

It includes a separate independent random component, which is added to the
deterministic social component, while their sum is weighted by the squared
length value of (xpbest

i + vi) vector, obtained as its dot product by itself.
VFPS3 was evolved on the “Sphere-VF3” (Sheared) problem:

ai = σx

(
(xpbest

i − xi) + (vi + σx)(xg − xi)
)

(5)

This equation is interesting, because it is completely deterministic, and both
cognition and social components are present, as in standard PSO. Similarly
to VFPS1, it contains a divergence factor, but contrarily to VFPS1, this factor
influences both the cognition and social components.

VFPS4 was evolved on the “Sphere-VF1” (Cross) problem:

ai = R1(x
pbest
i − xi) + R2(σx + R2)(xg − xi) (6)

It contains two random standard PSO components, along with a divergence
factor for the social component. It is expected to behave similarly to VFPS1, but
with the difference that its behavior should be more like the one of standard PSO
when the swarm has a high density (i.e. small σx values).

VFPS5 was evolved on the “Sphere-VF1” (Cross) problem

ai = 〈xi, 0.5σx〉((xpbest
i − xi) + xc + σxx

g) (7)

Contrarily to the other reported equations, it is completely deterministic and
contains both the center and the spread of the swarm.

6 Analysis and Discussion of the Evolved VFPS

Median values over 100 runs and corresponding standard errors obtained by
these five VFPS equations during the test phase, and the ones obtained by stan-
dard PSO, are reported in Table 2. The Kolmogorov-Smirnov non-parametric
test has been performed to analyze the statistical significance under the alter-
native hypothesis that VFPS and PSO results are drawn from the same distri-
bution, with significance level p = 0.05. The results of the success rate for each
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VFPS are shown in Table 3. As can be seen from Table 2, most of the obtained
median fitness values for the reported evolved equations (denoted in each row of
Table 2 as -PS) under the influence of vector fields (each column from VF1-VF5
of the corresponding objective function) are significantly smaller than those ones
obtained by standard PSO equation (first row of Table 2 for every column from
VF1-VF5). Standard PSO is extremely bad under considered vector fields influ-
ence with medium fitnesses >>1 along with almost everywhere a 0% success rate
in Table 3. While the median fitnesses of the evolved VFPS are mostly <1 with
more than a 50% success rate on Sphere function and a non-zero success rate
on other objective functions under any of the considered VF influence. The only
exception is the results obtained on VF4, where PSO is the best performant for
Ackley problem, and second best in Sphere and Rosenbrock, with a 100% success
rate under VF4 conditions for almost all problems. This particular observation
is due to the vector field characteristic, i.e. the values of VF4 according to its
description in Table 1 are within [−1, 1], which perform rather small disturbances
in comparison to magnitude of other VFs. Tables 2 and 3 reveal that the evolved
VFPS equations can obtain reasonably good approximation of global optimal
solution in contrast to standard PSO velocity rule in total unawareness of the
external disturbance.

Table 2. Median and standard error (in brackets) over 100 runs of fitness values found
by each VFPS (denoted as -PS) in five vector fields (VF1-VF5) on Sphere, Rosenbrock
and Ackley. VF0 indicates the case without vector field. Best results in bold. An asterisk
indicates statistical significance (p < 0.05) between a result obtained by VFPS and PSO
according to non-parametric Kolmogorov-Smirnov test.

The particles behavior of all the VFPS presented above tend to be resis-
tant to the hard disturbances on unimodal objective functions. Such behavior is
obtained since almost all reported VFPS were evolved on the Sphere problem
class under VF “Cross” (see Sect. 5), which is characterized by high intensity
vectors redirecting away from the goal. Considering that, according to the find-
ings of previous studies [2], the other considered VFs are not so challenging
as VF “Cross”, the evolved VFPS are expected to almost always be success-
ful on the Sphere landscape, regardless of the VF type under which they are
considered. The results of Tables 2 and 3 confirm this expectation. Moreover,
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Table 3. Success rate (in %) for 5 evolved VFPS (denoted as -PS) over 100 runs. Best
results on each of the VF within considered objective function are in bold.

Sphere Rosenbrock Ackley
VF0 VF1 VF2 VF3 VF4 VF5 VF0 VF1 VF2 VF3 VF4 VF5 VF0 VF1 VF2 VF3 VF4 VF5

PSO 100 3 1 3 100 4 99 0 0 0 100 0 100 0 0 0 53 0
-PS1 100 53 53 73 100 52 99 10 7 11 100 3 100 1 1 1 61 0
-PS2 86 77 88 93 82 89 13 24 15 20 24 17 3 0 3 1 2 0
-PS3 100 97 69 82 100 100 98 47 10 17 95 34 99 5 0 0 26 17
-PS4 100 5 9 41 100 11 100 1 0 3 100 4 100 0 0 1 55 1
-PS5 92 94 88 90 94 91 19 13 30 25 18 17 5 0 0 1 2 3

while analyzing the particles trajectories of the evolved VFPS, one can con-
sider that the particles which are initially placed at the lower left corner of the
search space, can now reproduce very “straightforward” movements towards the
goal in contrast to standard PSO (as an example see Fig. 2) on all problems,
despite their landscape structure. That might seem to be beneficial on Ackley,
preventing the particles from getting trapped in multiple local optima and mov-
ing faster towards the region with the globally optimal solution. However, due
to the strong resistance of the evolved VFPS to any appeared disturbance near
the goal, they cannot reach the exact global solution (as supposed on Sphere),
being misled by the inherited resistant behavior to the local optima surrounding
the global one. This is reflected by the high values in Table 3 and the low ones in
Table 2. The only exception might be VFPS3 (evolved on “Sphere-Sheared”),
which performs quite well in case of VF5 in comparison to the other VFPS. And,
according to its results for the Sphere and Rosenbrock problems, VFPS3 seems
to be a good all-rounder. Characterized by small intensity vectors in the region
around the optimal solution, evolution under “Sheared” VF made the structure
of VFPS3 able to seek the particles towards the goal. On Rosenbrock-VFs, in
certain cases VFPS are able to obtain a reasonable approximation of the global
optimal solution. As mostly VFPS are based on the swarm diversity, getting
into the valley region of Rosenbrock, particles start producing more local search
behavior. However, constant redirections by VF prevent them from convergence
to their local best solutions, so that they are more likely to reach the global
optimum.

It is also worth pointing out that, when we observe the trajectories (e.g. in
Fig. 2), the VFPS particles, being able to move against the flow, produce zigzag
movements (i.e. in Fig. 2a and b), i.e. they behave similarly to a sailboat, which
cannot travel directly into the wind but uses a zigzag pattern to move against
it, while usual PSO particles are just blown away by the flow (Fig. 2c). This is
an interesting finding, considering that such behavior is also typical for birds
such as the albatross, which perform a zigzag upwind search in response to odor
cues towards the food source [23]. Such behavior is mostly obtained by VFPS1
(Fig. 2a). As soon as the particles are gathered together, they start to reproduce
oscillating behavior near the best found by them point, moving together back
and forth.
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Fig. 2. Trajectories of the particles (in blue) starting from the same initial positions
on “Ackley-Cross” obtained by VFPS1, VFPS4 and PSO in (a-c). A five-pointed red
snowflake at (−10, 10) indicates the unknown target (global optimum). Red arrows
show the most characteristic general direction of the particles movement at certain
regions. (Color figure online)

7 Conclusions and Future Work

Analysis of the evolved programs has demonstrated that with small modifications
in the velocity rule, PSO can achieve solid collective search behavior in total
unawareness of external dynamics, mimicking trajectories of the zigzag upwind
birds flights towards the food source. These findings deepen our understanding
on the swarm dynamics in the presence of external influence (performed in this
study by vector fields) and may shed light on the underlying mechanism of
information exchange in natural swarms under dynamic unknown stimuli (e.g.
wind), which might find its further applications for outdoor swarm robotics
systems. In the future, we plan to increase the functional and terminal sets of the
GP system and to test it on other (i.e. non-PSO) metaheuristic algorithms. Also,
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we intend to implement our system using a parallel and distributed framework,
in order to improve the speed of the overall calculations.
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