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Abstract. Network flow optimisation has many real-world applications.
The minimum cost flow problem (MCFP) is one of the most common net-
work flow problems. Mathematical programming methods often assume
the linearity and convexity of the underlying cost function, which is not
realistic in many real-world situations. Solving large-sized MCFPs with
nonlinear non-convex cost functions poses a much harder problem. In this
paper, we propose a new representation scheme for solving non-convex
MCFPs using genetic algorithms (GAs). The most common represen-
tation scheme for solving the MCFP in the literature using a GA is
priority-based encoding, but it has some serious limitations including
restricting the search space to a small part of the feasible set. We intro-
duce a probabilistic tree-based representation scheme (PTbR) that is far
superior compared to the priority-based encoding. Our extensive exper-
imental investigations show the advantage of our encoding compared to
previous methods for a variety of cost functions.

Keywords: Representation scheme · Genetic algorithm
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1 Introduction

Network flow problems have numerous applications in electrical and power net-
works, telecommunication, road and rail networks, and airline services [2]. Dif-
ferent types of network flow problems exist, e.g., the shortest path problem, the
maximum flow problem, the assignment problem, the transportation problem,
and the minimum cost flow problem (MCFP), among which MCFP is one of
the most general cases with applications such as distribution problems, optimal
loading of a Hopping aeroplane and the racial balancing of schools [2].

MCFPs can be formulated and solved by Linear Programming (LP) tech-
niques, when the underlying cost function is linear or can be approximated by a
linear function [17]. However, many real-world MCFPs are nonlinear and require
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formulation using a nonlinear cost function, instead of a linear approximation.
For example, in a transportation problem, the nonlinearity of a cost function is
due to the economy of scale phenomenon, which occurs when cost per unit of
the transportation flow decreases with an increasing amount of the total flow [7].
Many studies suggest the appropriateness of employing nonlinear cost functions
in the network design problems [4,15].

Some attempts have been made in using genetic algorithms (GAs) to solve the
network flow problems [1,7,13]. Among these works, the representation scheme
plays a critical role in their success. Several representation schemes exist for
the network flow problems such as variable-length encoding [19], fixed-length
encoding [3], and priority-based representation (PbR) [16]. The most common
representation scheme for solving MCFPs is PbR [8]. PbR scheme has been
used to solve the shortest path problems, the transportation problems, as well
as the network design problems [8,13,16]. Although PbR is widely used for
solving network flow problems, it has some serious drawbacks (when dealing with
MCFP), most noticeably its restriction on any search algorithm from reaching
some parts of the feasible search space (see Sect. 2 for details).

To counteract the above limitations, in this paper we propose a probabilis-
tic tree-based representation (PTbR) for solving nonlinear non-convex MCFP
instances using the GA. The PTbR allows all possible feasible solutions to be
generated, instead of being restricted to a small part of the feasible region (e.g.,
PbR scheme). This paper first examines the capabilities of PTbR and compare
it with that of the PbR scheme. Then a comparative study is carried out on the
performance of the GA employing these two different representation schemes on
a set of 35 benchmark instances. This paper has the following contributions:
(1) proposing a novel representation scheme (PTbR) to deal with MCFP; (2)
providing a close examination between PTbR and PbR to find out which one
is more effective for handling MCFPs; (3) conducting extensive experiments to
compare the performance of the PTbR-based GA (PtGA) variants with the PbR-
based GA (PrGA) for solving non-convex MCFP instances. We also compare our
results with those of the mathematical solver packages.

The rest of the paper is structured as follows: Sect. 2 gives the preliminaries
and Sect. 3 describes our proposed probabilistic tree-based representation and
the GA employing PTbR scheme for solving MCFPs. The experimental studies
are presented in Sects. 4 and 5 provides the conclusion.

2 Preliminaries

This section describes the problem definition, the PbR, and finally discusses the
drawbacks of PbR. Let G(N,A) be a network consisting of a set N of n nodes
and a set A of m directed arcs. The maximum and minimum amount of flow on
each arc (i, j) are equal to uij and 0, respectively. b(i) denotes the amount of sup-
ply or demand for source or sink node. b(i) > 0 denotes that node i is a supply
node and b(i) < 0 shows that node i is a demand node with a demand of −b(i)
and b(i) = 0 denotes the transshipment node i. Figure 1 shows an example of the
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Fig. 1. An example of the MCFP (n = 5, m = 7).

MCFP with n = 5 nodes and m = 7 arcs, which has one supplier node (b(1) = 10)
and one demand node (b(5) = −10). In this example, we aim to satisfy the demand
by sending all supplies through the network while minimising the total cost. The
integer flow on an arc (i,j ) is represented by xij and the associated cost for the
flow (xij) is denoted by fij(xij). The formulation of the MCFP is as follows [2]:

Minimise : z(x) =
∑

(i,j)∈A

fij(xij), (1)

s.t.
∑

{j:(i,j)∈A}
xij −

∑

{j:(j,i)∈A}
xji = b(i) ∀ i ∈ N, (2)

0 ≤ xij ≤ uij ∀ (i, j) ∈ A, (3)

xij ∈ Z ∀ (i, j) ∈ A, (4)

where Eq. 1 minimises the total cost through the network. Equation 2 is a flow bal-
ance constraint which states the difference between the total outflow (first term)
and the total inflow (second term). The flow on each arc should be between an
upper bound and zero (Eq. 3), and finally all the flow values are integer numbers
(Eq. 4). In this paper we consider the following assumptions for the MCFP: (1)
the network is directed; (2) there are no two or more arcs with the same tail and
head in the network; (3) the single-source single-sink MCFP is considered; (4) the
total demands and supplies in the network are equal, i.e.,

∑n
i=1 b(i) = 0.

2.1 Priority-Based Representation

Priority-based representation (PbR) is the most commonly-used representation
method for MCFPs [8]. In order to represent a candidate solution for an MCFP,
PbR lets the number of genes to be equal to n and the value of each gene
is generated randomly between 1 and n, which represents the priority of each
node for constructing a path among all possible nodes [8]. Figure 2a illustrates
the PbR chromosome for the network presented in Fig. 1. In order to obtain a
feasible solution, a two-phase decoding procedure is followed. In phase I, a path is
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Fig. 2. The PbR chromosome and its corresponding solution.

Fig. 3. A feasible solution that PbR fails to represent (for the network in Fig. 1).

generated based on the priorities and the maximum possible flow is sent through
the generated path in phase II. After sending the flow on the network, the upper
bound (uij), supply and demand should be updated. If the supply/demand is
not equal to 0, the next path should be generated. The above procedure repeats
until all demands are satisfied. Figure 2b presents a feasible solution for the given
chromosome in Fig. 2a.

Although PbR has been commonly used in the network flow problems, it has
some limitations in representing the full extent of the feasible space for MCFP.
Figure 3 shows an example (for the network presented in Fig. 1) that PbR is
unable to represent. Here the first path is generated as follows: 1 → 2 → 4 → 5.
Since in Path1 after node 1, node 2 is selected, it shows that node 2 has a higher
priority than node 3. Hence, if arc (1, 2) is not saturated, PbR will not allow any
flow to be sent through arc (1, 3), essentially blocking this possibility completely
(Fig. 3, Path2). This means that PbR is unable to represent a potential feasible
solution such that the flow would go through arc (1, 3) (as shown in Fig. 3).
Another limitation for PbR is that each time a path is generated, we are supposed
to send the maximum possible amount on the generated path. These limitations
would restrict a search algorithm from reaching the full extent of the feasible
space.

3 Proposed Method

Representation plays a critical role before applying an optimisation algorithm,
and this applies to GA too. In this section we first propose a probabilistic tree-
based representation (PTbR) scheme for solving MCFPs, which alleviates the
deficiency of using PbR. Then we describe the GA employing PTbR for solving
MCFP instances.

3.1 Probabilistic Tree-Based Representation

To counteract the above-mentioned limitations of the PbR, we propose the PTbR
scheme, where a probability tree is adopted to represent a potential MCFP
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Fig. 4. Probability tree and its corresponding PTbR for the network in Fig. 1.

solution. Unlike the PbR scheme which is restricted to a small part of the feasible
space, the PTbR is able to represent all possible feasible solutions. Figure 4a
shows an example of the probability tree for the network presented in Fig. 1.
Here, the probability of each successor node to be selected is defined on each
branch.

The tree structure can be converted to a chromosome with several sub-
chromosomes. Figure 4b shows the PTbR chromosome converted from the
probability tree presented in Fig. 4a. The PTbR chromosome has n − 1 sub-
chromosomes (Sub.Ch) and the value of each gene is a random number between
0 and 1 which is then accumulated to 1 in each sub-chromosome. In order to
obtain a feasible solution from PTbR, in phase I, a path is first constructed,
and then a feasible flow is sent through the constructed path in phase II. For
example, to obtain a feasible solution for the chromosome in Fig. 4b, we gener-
ate the first path from node i = 1 (Sub.Chi=1). A random number is generated
in [0,1] (rand = 0.2), and since 0 ≤ rand = 0.2 ≤ 0.6, we move through arc
(1,2) and node 2 is selected. From node 2 (Sub.Chi=2) another random number
is generated (0.09 ≤ rand = 0.85 ≤ 1) and the selected successor node is 4.
From node 4 the only available node is 5. Hence, the following path is generated:
1 → 2 → 4 → 5.

In Phase II, we attempt to send a feasible flow through the generated path.
First the capacity of the generated path is defined (U = min{u12 = 10, u24 =
7, u45 = 8} = 7). Then, there are three possible approaches to send a feasible flow
on the generated path: (1) send a random flow between 1 and U (random(R));
(2) send a flow 1-by-1 (one-by-one (O)); (3) send the maximum possible amount
of the flow on the generated path (maximum(M)), which is the same as PbR.
In the above example, we follow the first approach (random(R)) and after cal-
culating U = 7, we send a random flow in [1, 7] (e.g., flow = 6) and the network,
supply and demand are updated. Since the demand has not been fully met (i.e.,
not equal to 0 yet), the above procedure is repeated.
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Fig. 5. A feasible solution generated based on the PTbR chromosome in Fig. 4b.

Figure 5 shows a feasible solution for the chromosome presented in Fig. 4b.
Note that in Fig. 5, after generating Path1, although arc (1,2) is not saturated,
the second path picks node 3 as the successor of node 1, unlike the PbR. This
example illustrates that PTbR allows all potential solutions to be generated
probabilistically, instead of being restricted by using PbR.

3.2 Genetic Algorithm with PTbR

This section describes the GA employing the new representation scheme PTbR
for solving MCFPs, i.e., PtGA. The key distinction between the PtGA and the
PbR-based GA (PrGA) is that PrGA employs the PbR [8]. This PtGA can be
described by the following procedure:

Initialisation: First a population with pop size individuals (chromosomes) is
randomly generated. The process of creating a chromosome based on the PTbR
is explained in Subsect. 3.1.

Crossover and Mutation: In order to explore the feasible region, crossover and
mutation operators are applied to create the new offspring at each generation.
For PtGA, a two-point crossover operation is applied, where two blocks (sub-
chromosomes) of the selected chromosome (parents) are first randomly selected.
Then, two parents swapping the selected sub-chromosomes to generate new off-
spring. To perform mutation for PtGA, first a random parent is selected and the
randomly chosen sub-chromosome is regenerated to create a new offspring.

Fitness Evaluation and Selection: For each chromosome in the popula-
tion, after finding a feasible solution (x) by applying the decoding procedure
for PTbR, the value of cost function is evaluated using the following equation:
Minimize : z(x) =

∑n
i=1

∑n
j=1 f(xij). After calculating the fitness values for

all individuals in the population, the tournament selection procedure is applied
to select individuals for the next generation.

Termination Criteria: The termination criteria for the PtGA are as follows:
(1) no further fitness value improvement in the best individual of the population
for β successive iterations; (2) the maximum number of function evaluations
(NFEs) reached. If any of the above conditions is satisfied first, the algorithm
stops and the best solution (x∗) and its corresponding cost function value are
reported.

Note that for PrGA, it is common to employ a weight mapping crossover
(WMX) and inversion mutation [8]. The termination criteria can be the same
for both PrGA and PtGA.
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4 Experimental Studies

This section first describes the MCFP instances and cost functions that have
been adopted, followed by some discussion about the mathematical solver pack-
ages used in our experiments. We then describe the parameter settings, exper-
imental comparisons and result analysis on the performances of PrGA, PtGA,
and mathematical solvers in solving these MCFP instances.

Since our focus is to solve nonlinear non-convex MCFP, we adopt a set of
nonlinear non-convex cost functions which are commonly-used in the literature
[9,10,14]. Michalewicz et al. [14] categorised the nonlinear cost functions as (1)
piece-wise linear cost functions; (2) multimodal (nonlinear non-convex) cost func-
tions; (3) smooth cost functions which are mostly used for Operations Research
(OR) problems. In this paper we chose the nonlinear non-convex and arc-tangent
approximation of the piece-wise linear cost functions from [9,10,14] to evaluate
the performances of PrGA and PtGA. The formulation of these functions are as
follows [9,10,14]:

F1 : f(xij) = cij
(
arctan(PA(xij − S))/π + 0.5 + arctan(PA(xij − 2S))/π + 0.5+

arctan(PA(xij − 3S))/π + 0.5 + arctan(PA(xij − 4S))/π + 0.5+

arctan(PA(xij − 5S))/π + 0.5
)
.

(5)

F2 : f(xij) = cij
(
(xij/S)(arctan(PBxij)/π + 0.5) + (1 − xij/S)(arctan(PB(xij − S))/π + 0.5)+

(xij/S − 2)(arctan(PB(xij − 2S))/π + 0.5)
)
.

(6)
F3 : f(xij) = 100 × cij

(
xij(sin

( 5πxij

4S

)
+ 1.3)

)
. (7)

Note that cij is non-negative coefficient, PA and PB are set to 1000 and S
is set to 2 for F1, and 5 for F2 and F3, respectively [10]. All cost func-
tions F1, F2 and F3 are illustrated in Fig. 6. A set of 35 single-source single-
sink MCFP instances is randomly generated with different number of nodes
(n = {5, 10, 20, 40, 80, 120, 160}) and presented in Table 1 (No. denotes the
instance number, and each instance has n nodes and m arcs). Note that, for
each node size (n), five different networks are randomly generated. The number
of supply/demand for nodes 1/n are set to q = 20/−20 in the test instances up to
20 nodes and for all other test problems supply/demand are set to q = 30/− 30.

Fig. 6. Shapes of different cost functions.
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Table 1. A set of 35 randomly generated single-source single-sink MCFP instances.

No. n m No. n m No. n m No. n m No. n m No. n m No. n m
1

5

8 6

10

24 11

20

114 16

40

369 21

80

1484 26

120

3419 31

160

4882
2 8 7 34 12 98 17 385 22 1406 27 3166 32 4718
3 8 8 32 13 105 18 373 23 1560 28 3326 33 4986
4 9 9 27 14 99 19 406 24 1353 29 3212 34 4835
5 8 10 29 15 101 20 406 25 1526 30 2911 35 5130

This paper focuses on solving nonlinear non-convex MCFPs, which could be
considered as mixed integer nonlinear programming (MINLP) problems. How-
ever, only very few mathematical solver packages exist for solving MINLP prob-
lems, such as CPLEX, Couennn, Baron, LINDOGlobal and AlphaECP [5,12,18].
Some of these solvers have serious limitations. For instance, CPLEX is only
capable of solving quadratic optimisation problems, BARON cannot handle the
trigonometric functions sin(x), cos(x), while Couenne is not able to handle the
arctangent function [5]. Among these solvers, AlphaECP and LINDOGlobal are
able to handle general MINLPs [12,18]. As a result, we choose to compare our
PtGA and PrGA results with those of LINDOGlobal and AlphaECP.

4.1 Parameter Settings

Both PrGA and PtGA are implemented in MATLAB on a PC with Intel(R)
Core(TM) i7-6500U 2.50 GHz processor with 8 GB RAM and run 30 times for
each problem instance. In order to solve MCFP instances using mathematical
solvers, AlphaECP is applied through a high level mathematical language gen-
eral algebraic modelling system (GAMS) [11] and LINDOGlobal [12] is applied
directly on all problem instances.

The parameter settings for the PrGA are as follows: maximum number
of iterations (Itmax = 200), population size (pop size = min{n × 10, 300}),
crossover rate (Pc = 0.95), mutation rate (Pm = 0.3) and maximum num-
ber of function evaluations (NFEs = 100,000). The parameter settings for the
PtGA are Itmax = 200, pop size = min{n × 5, 300}, Pc = 0.95, Pm = 0.3
and NFEs = 100,000. The pop size value depends on the number of nodes (n)
and increases for the larger networks and the Pm = 0.3 value decreases linearly
in each iteration. If the results are not improved in β = 30 successive itera-
tions for PrGA or PtGA, the algorithm is terminated. The run time limit for
LINDOGlobal and AlphaECP is set to 3600 seconds (s). Other parameters for
AlphaECP and LINDOGlobal are set as default settings.

4.2 Results and Analysis

As mentioned in the procedure of PTbR, after finding a path, there are three
possible ways to send the flow over the generated path, i.e., send possible flow (1)
randomly (R), (2) one-by-one (O), or (3) by a maximum possible amount (M).
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Table 2. Results for cost function F1.

No. n m PtGA-R PtGA-O PTGA-M PrGA LINDOGlobal AlphaECP ht mean std t mean std t mean std t mean std t’ OBJ t’ OBJ
1

5

8 5 30.1752 7.29E-15 12 30.1752 7.29E-15 3 30.1752 7.29E-15 7 30.1752 7.29E-15 1 30.1752 1 30.1752 0
2 8 5 32.2126 0.00E+00 13 32.2126 0.00E+00 3 32.2126 0.00E+00 7 32.2126 0.00E+00 2 32.2126 1 32.2126 0
3 8 5 33.0507 7.29E-15 15 33.0507 7.29E-15 4 33.0507 7.29E-15 6 33.0507 7.29E-15 1 33.0507 1 33.0507 0
4 9 5 33.1016 7.29E-15 13 33.1016 7.29E-15 4 33.1016 7.29E-15 7 33.1016 7.29E-15 1 33.1016 1 33.1016 0
5 8 6 40.3756 2.19E-14 15 40.3756 2.19E-14 3 40.3756 2.19E-14 6 40.3756 2.19E-14 1 40.3756 1 40.3756 0
6

10

24 45 29.2974 2.08E-01 76 29.1682 8.03E-02 42 29.2961 9.99E-02 32 30.0343 3.16E-05 3600 29.135 268 30.021 -1
7 34 57 19.8109 2.03E-01 88 20.1956 3.09E-01 45 20.7775 2.94E-01 42 24.1056 6.01E-01 3600 19.5957 3600 20.184 -1
8 32 48 23.4834 1.16E-01 85 23.6681 1.46E-01 37 24.0765 2.34E-01 28 25.3353 1.39E-01 3600 23.3061 350 24.018 -1
9 27 48 26.1797 2.31E-01 69 26.2407 1.52E-01 34 26.4196 7.96E-02 29 28.3965 2.01E-01 3600 25.9165 525 25.929 -1
10 29 49 19.8438 9.12E-02 68 20.2202 2.30E-01 34 21.4404 1.55E-01 32 23.3819 2.95E-01 3600 19.6325 740 19.6325 -1
11

20

114 160 8.8767 4.60E-01 172 10.9784 4.74E-01 178 13.0274 7.23E-01 153 15.8245 2.03E-01 3600 8.3929 3600 7.0800 -1
12 98 141 11.7898 2.18E-01 167 12.4354 3.02E-01 156 13.2006 4.27E-01 160 15.4705 2.40E-01 3600 11.5964 3600 11.372 -1
13 105 213 8.2120 4.40E-01 239 9.619 5.36E-01 191 10.7931 4.36E-01 133 11.7116 4.25E-01 3600 7.0803 3600 6.4935 -1
14 99 187 10.1773 3.85E-01 227 11.3854 7.18E-01 202 12.881 6.11E-01 175 15.1102 9.30E-01 3600 10.5551 3600 10.7775 1
15 101 132 14.9139 3.17E-01 191 15.5517 5.14E-01 104 16.5822 7.43E-01 154 18.4694 5.16E-01 3600 13.8717 3600 13.6730 -1
16

40

369 340 1.6119 3.08E-01 437 3.1972 4.35E-01 362 4.1695 5.34E-01 411 6.6595 7.00E-01 3600 0.4433 3600 5.366 -1
17 385 316 3.5652 4.57E-01 376 4.853 4.95E-01 285 6.0036 3.92E-01 407 10.1381 8.84E-01 3600 4.9674 3600 10.375 1
18 373 393 0.5091 3.26E-01 523 1.9296 4.46E-01 406 3.0951 7.99E-01 432 5.1361 1.09E+00 3600 0.1937 3600 4.717 -1
19 406 330 0.8437 3.93E-01 370 3.22 6.36E-01 279 6.5308 4.73E-01 342 10.684 6.18E-01 3600 0.2118 3600 2.298 -1
20 406 359 3.5742 4.14E-01 435 6.177 6.60E-01 320 9.1484 6.27E-01 360 12.2394 7.58E-01 3600 8.7013 3600 2.7180 -1
21

80

1484 336 0.7333 2.71E-04 401 0.8181 1.67E-01 375 2.3523 7.75E-01 459 3.2517 1.32E+00 3600 NF 3600 5.703 1
22 1406 326 0.6737 4.90E-04 336 0.806 1.56E-01 369 2.2178 4.64E-01 506 5.4074 1.03E+00 3600 NF 3600 4.982 1
23 1560 279 0.8085 3.36E-04 361 1.6541 4.84E-01 278 4.128 8.63E-01 429 5.6396 9.22E-01 3600 NF 3600 7.476 1
24 1353 342 0.6585 3.50E-04 464 1.793 5.88E-01 354 4.3911 7.70E-01 779 8.1006 1.32E+00 3600 NF 3600 4.18 1
25 1526 322 0.7628 3.39E-04 394 1.0477 3.20E-01 302 2.7758 5.56E-01 583 5.0059 1.11E+00 3600 NF 3600 8.642 1
26

120

3419 725 1.0924 5.37E-04 725 2.8201 3.69E-01 711 5.525 4.39E-01 877 8.5144 1.17E+00 3600 NF 3600 6.585 1
27 3166 728 1.0818 9.44E-04 805 2.4484 3.89E-01 624 4.9784 6.08E-01 754 7.6565 1.16E+00 3600 NF 3600 2.103 1
28 3326 892 1.0152 6.75E-04 893 2.3935 3.03E-01 636 5.0317 6.01E-01 906 7.5819 7.76E-01 3600 NF 3600 13.321 1
29 3212 748 1.0532 7.88E-04 877 2.5385 5.05E-01 673 5.2673 6.27E-01 777 10.2727 1.74E+00 3600 NF 3600 3.414 1
30 2911 774 0.9446 4.06E-04 828 2.0145 4.28E-01 697 4.2784 6.21E-01 817 7.5239 1.37E+00 3600 NF 3600 4.297 1
31

160

4882 837 12.2598 2.55E+00 914 14.5003 4.81E-01 950 15.6057 5.54E-01 922 13.8152 2.74E-01 3600 NF 3600 14.18 1
32 4718 961 6.1413 1.42E+00 919 15.6089 9.73E-01 952 17.0593 7.89E-01 927 14.6681 9.81E-01 3600 NF 3600 10.578 1
33 4986 902 8.5483 1.21E+00 912 16.2194 6.18E-01 947 17.2818 8.47E-01 1345 15.1022 7.50E-01 3600 NF 3600 14.45 1
34 4835 853 6.3798 1.01E+00 1064 11.199 4.81E-01 1067 12.1144 6.70E-01 942 10.3464 4.48E-01 3600 NF 3600 14.1422 1
35 5130 994 10.6176 1.22E+00 1068 19.7703 7.79E-01 1081 20.5212 8.59E-01 896 18.9247 5.97E-01 3600 NF 3600 15.043 1

Table 3. Results for cost function F2.

No. n m PtGA-R PtGA-O PTGA-M PrGA LINDOGlobal AlphaECP ht mean std t mean std t mean std t mean std t’ OBJ t’ OBJ
1

5

8 4 7.525 1.82E-15 8 7.525 1.82E-15 2 7.525 1.82E-15 5 7.525 2.92E-15 1 7.525 1 7.525 0
2 8 5 8.65 0.00E+00 12 8.7085 1.56E-01 3 8.65 0.00E+00 5 8.65 0.00E+00 1 8.65 1 8.65 0
3 8 4 8.225 3.65E-15 8 8.225 3.65E-15 2 8.225 3.65E-15 5 8.225 3.65E-15 1 8.225 1 8.225 0
4 9 5 9.925 1.82E-15 14 10.1713 3.84E-01 3 9.925 1.82E-15 5 9.925 1.82E-15 1 9.925 1 9.925 0
5 8 5 11.375 5.47E-15 10 11.375 5.47E-15 2 11.375 5.47E-15 6 11.375 5.47E-15 1 11.375 1 11.375 0
6

10

24 34 11.0999 1.82E-15 41 12.3986 5.47E-15 33 11.5073 5.26E-01 22 12.2462 2.76E-01 90 11.05 230 12.054 -1
7 34 28 11.185 1.10E-01 37 11.2515 9.10E-02 17 11.0976 8.46E-02 25 11.3236 3.65E-15 360 11.014 310 11.024 -1
8 32 40 10.8903 1.09E-01 54 11.1688 1.09E-01 25 11.0155 5.40E-02 21 11.2944 3.65E-15 580 10.725 431 12.224 -1
9 27 26 11.3939 3.65E-15 36 11.3939 3.65E-15 20 11.3990 1.55E-02 26 11.8862 9.16E-02 610 11.3939 581 12.774 0
10 29 42 9.8438 1.03E-01 56 10.4882 7.34E-02 22 10.0002 1.30E-01 23 9.9807 1.57E-01 840 9.7293 743 9.7293 -1
11

20

114 127 9.8945 3.65E-15 171 10.7446 1.05E-02 90 10.6551 8.82E-02 159 10.5488 1.18E-01 3600 9.8945 3600 12.054 0
12 98 134 11.4485 0.00E+00 190 11.5245 2.89E-02 101 11.5641 4.27E-02 157 11.595 4.56E-02 3600 11.4485 3600 11.653 0
13 105 99 10.8133 3.65E-15 113 10.8133 3.65E-15 87 10.8133 2.32E-05 161 11.1547 4.77E-02 3600 10.8133 3600 10.8932 0
14 99 119 10.3787 0.00E+00 115 10.3787 0.00E+00 91 10.3787 0.00E+00 168 10.7202 1.88E-01 3600 10.3787 3600 11.209 0
15 101 115 10.7386 3.65E-15 123 10.7386 3.65E-15 94 10.7386 3.65E-15 172 10.759 6.63E-03 3600 10.7386 3600 10.828 0
16

40

369 348 9.7242 3.65E-15 395 13.8021 2.75E-01 281 10.9094 2.19E-02 372 10.9402 1.35E-02 3600 9.7242 3600 10.973 0
17 385 368 10.4645 2.27E-01 427 12.0613 3.25E-01 232 10.5797 9.81E-02 373 10.8525 1.16E-01 3600 11.1484 3600 11.244 1
18 373 490 9.4592 1.82E-15 537 13.9817 2.84E-01 348 11.0849 4.99E-02 381 11.1263 1.69E-02 3600 9.4592 3600 11.213 0
19 406 299 9.5696 1.82E-15 348 14.144 1.01E-01 230 10.8622 1.34E-01 379 11.1395 7.01E-02 3600 9.5696 3600 11.294 0
20 406 314 10.0842 1.82E-15 424 13.2452 3.54E-01 221 10.908 1.29E-01 372 11.0853 1.38E-01 3600 10.0842 3600 11.219 0
21

80

1484 323 10.4395 1.88E-01 364 14.4468 2.41E-01 243 10.6247 1.77E-02 325 10.7098 4.24E-02 3600 13.6678 3600 10.589 1
22 1406 326 11.4700 1.43E-01 396 14.4949 4.10E-02 250 11.5366 1.76E-02 369 11.5842 2.24E-02 3600 13.6122 3600 13.982 1
23 1560 249 9.3868 1.01E-02 360 14.4684 8.50E-02 209 10.6202 1.55E-02 395 10.6933 3.05E-02 3600 9.5945 3600 10.603 1
24 1353 364 10.9509 2.92E-01 510 14.8001 5.86E-02 286 11.0069 2.04E-02 343 11.135 5.69E-02 3600 12.2486 3600 12.623 1
25 1526 332 9.8808 6.44E-01 340 14.7078 1.23E-01 250 10.6271 4.95E-02 400 10.7367 5.29E-02 3600 9.9196 3600 14.412 0
26

120

3419 645 11.5658 2.21E-01 699 14.8154 7.21E-02 603 11.9241 2.23E-02 670 12.0306 3.47E-02 3600 NF 3600 10.568 -1
27 3166 555 11.8297 8.19E-01 617 15.1228 1.32E-01 402 11.9766 5.31E-02 595 12.1168 5.61E-02 3600 NF 3600 12.861 1
28 3326 670 11.9377 1.62E-01 716 15.1615 8.53E-02 461 12.1081 4.14E-02 467 12.2275 5.72E-02 3600 NF 3600 12.038 1
29 3212 745 11.8559 4.17E-03 864 15.3256 7.73E-02 396 12.1214 4.13E-02 791 12.2555 6.60E-02 3600 11.8478 3600 12.028 -1
30 2911 731 12.5460 1.59E-01 699 15.3006 7.35E-02 478 12.7238 4.79E-02 877 12.7510 6.14E-02 3600 14.2069 3600 16.797 1
31

160

4882 989 11.4402 3.48E-01 1004 26.5183 5.87E-01 914 16.903 5.39E-01 908 18.4306 7.00E-01 3600 NF 3600 12.4545 1
32 4718 946 12.0739 2.05E-01 1021 28.0915 5.06E-01 999 19.0685 5.14E-01 912 20.5485 1.07E+00 3600 NF 3600 11.435 -1
33 4986 846 12.0254 3.27E-01 929 28.4358 6.94E-01 912 18.9474 6.31E-01 914 20.4764 1.01E+00 3600 NF 3600 12.241 1
34 4835 916 11.6837 1.78E-01 1029 25.521 4.70E-01 1005 16.7851 7.29E-01 994 18.3083 7.24E-01 3600 NF 3600 11.884 1
35 5130 995 12.1966 9.78E-01 1122 30.2795 6.41E-01 1082 19.7566 6.03E-01 951 21.2144 7.46E-01 3600 NF 3600 12.691 1

This creates three different variants of the PTbR-based GA, namely PtGA-R,
PtGA-O, and PtGA-M respectively.

To compare the effectiveness of these representation methods, we evaluate
these variants, as well as PrGA using a set of 35 MCFP instances. Tables 2, 3
and 4 present the results of PtGA-R, PtGA-O, PtGA-M, PrGA, LINDOGlobal,
and AlphaECP on a total of 35 test problems using cost functions F1, F2, F3. The
std and t (for PrGA and PtGA) denote the standard deviation of the results and
the average of running time in seconds respectively, and the mean represents the
average of cost function values over 30 runs. The t′ and OBJ for LINDOGlobal
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Table 4. Results for cost function F3.

No. n m PtGA-R PtGA-O PTGA-M PrGA LINDOGlobal AlphaECP ht mean std t mean std t mean std t mean std t’ OBJ t’ OBJ
1

5

8 5 114.3819 7.29E-14 11 114.3819 7.29E-14 3 114.3819 7.29E-14 9 114.3819 7.29E-14 1 114.3819 1 114.3819 0
2 8 6 111.8675 0.00E+00 14 111.8675 0.00E+00 4 111.8675 0.00E+00 9 111.8675 0.00E+00 1 111.8675 1 111.8675 0
3 8 7 138.2576 0.00E+00 16 138.2576 0.00E+00 3 138.285 0.00E+00 6 138.285 0.00E+00 1 138.2576 1 142.79 0
4 9 7 107.3083 0.00E+00 14 107.3083 0.00E+00 3 120.0322 5.83E-14 6 123.3197 2.92E-14 1 107.3083 1 123.32 0
5 8 6 150.9943 2.92E-14 15 150.9943 2.92E-14 3 150.9943 2.92E-14 7 150.9943 2.92E-14 1 150.9943 1 150.9943 0
6

10

24 66 106.7312 1.44E+00 108 107.7509 2.18E+00 43 118.2249 5.35E-01 41 135.3015 1.87E+00 3600 104.5113 332 141.64 -1
7 34 36 81.7436 3.64E-01 69 85.7071 3.81E+00 39 89.5549 7.08E+00 32 117.8976 1.06E+01 3600 80.97226 431 108.13 -1
8 32 49 89.4711 1.47E+00 65 88.569 6.40E-01 36 90.3497 2.08E+00 33 131.963 6.02E-01 3600 86.41261 491 135.434 -1
9 27 45 112.2958 1.31E+00 74 115.9811 4.28E+00 37 114.265 1.58E+00 27 152.5404 1.28E+00 3600 110.3257 288 133.92 -1
10 29 49 90.1242 8.41E-01 78 90.2275 8.48E-01 39 90.4574 1.21E+00 35 104.8298 8.38E+00 3600 88.05281 333 135.81 -1
11

20

114 90 69.7972 1.25E+00 163 105.9186 8.93E-01 81 103.9751 3.76E+00 86 103.4472 4.32E+00 3600 66.6795 3600 102.375 -1
12 98 111 79.5198 5.91E-01 194 116.2849 4.75E-01 79 116.3386 5.97E+00 78 122.6103 3.04E+00 3600 79.3041 3600 92.146 0
13 105 137 96.3334 2.15E+00 234 123.3836 2.84E+00 137 120.5739 1.11E+00 93 116.6993 5.49E+00 3600 90.1959 3600 137.339 -1
14 99 92 79.4689 0.00E+00 213 103.5296 1.40E+00 86 99.9841 3.27E+00 80 115.5684 1.98E+00 3600 79.4689 3600 115.578 0
15 101 145 82.9519 1.56E+00 199 108.6625 1.11E+00 99 111.233 2.93E+00 75 115.2218 2.27E+00 3600 78.4144 3600 116.503 -1
16

40

369 299 75.7446 6.09E-01 384 119.4979 4.80E+00 323 105.1299 2.87E+00 223 108.7354 3.66E+00 3600 77.1499 3600 145.164 1
17 385 253 89.9066 3.16E-01 396 108.3421 1.07E+00 241 111.1345 2.21E+00 294 119.3059 3.82E+00 3600 90.1749 3600 148.655 1
18 373 203 83.1843 3.89E+00 582 133.7859 3.33E+00 433 106.883 4.90E+00 215 93.0854 3.19E+00 3600 79.8989 3600 90.777 -1
19 406 282 72.447 5.14E-01 355 119.7419 4.45E+00 231 99.0947 3.44E+00 285 103.488 2.99E+00 3600 73.0978 3600 92.443 1
20 406 288 65.1725 4.73E-01 359 127.004 3.93E+00 277 102.8105 6.24E+00 201 109.9314 3.55E+00 3600 65.0667 3600 117.312 0
21

80

1484 325 83.9645 1.85E+00 404 138.502 5.27E+00 296 109.589 1.40E+00 336 107.3701 2.04E+00 3600 90.1854 3600 124.549 1
22 1406 238 93.3544 1.13E+00 332 128.5883 6.91E+00 246 109.0366 1.42E+00 347 108.2733 2.49E+00 3600 93.4224 3600 129.357 0
23 1560 296 106.1091 3.03E+00 304 143.037 2.91E+00 243 112.9184 1.57E+00 272 111.1676 1.20E+00 3600 148.6104 3600 107.493 0
24 1353 261 63.7182 4.32E-01 464 134.5088 7.03E+00 331 108.1399 2.83E+00 314 94.7708 5.95E+00 3600 65.3662 3600 132.307 1
25 1526 365 59.5713 2.19E-14 293 134.002 6.85E+00 241 101.3695 7.98E+00 335 106.9928 5.50E+00 3600 59.5713 3600 125.508 0
26

120

3419 544 86.9299 1.93E+00 595 130.1538 2.76E+00 491 84.2045 2.36E+00 686 89.0996 3.92E+00 3600 NF 3600 91.267 1
27 3166 464 55.0274 1.79E+00 475 129.6023 2.81E+00 437 83.2053 3.92E+00 544 87.5812 5.25E+00 3600 66.009 3600 92.576 1
28 3326 530 80.7884 8.00E+00 693 131.3889 3.27E+00 535 88.2298 5.87E-01 685 88.4319 5.24E-01 3600 NF 3600 80.755 0
29 3212 486 84.6939 5.19E+00 566 133.1519 2.59E+00 528 90.2997 5.19E-01 535 89.1701 4.72E-01 3600 NF 3600 136.381 1
30 2911 481 89.7215 1.09E+00 525 136.358 4.51E+00 455 90.4635 1.55E+00 582 95.9605 6.85E+00 3600 NF 3600 102.4492 1
31

160

4882 885 80.6756 5.27E+00 994 257.169 5.66E+00 631 145.3273 6.83E+00 907 158.2989 1.14E+01 3600 145.654 3600 98.52.90 1
32 4718 835 82.8948 9.12E+00 944 270.3601 8.35E+00 651 156.9115 8.70E+00 895 174.8577 9.43E+00 3600 144.216 3600 123.975 1
33 4986 910 80.4273 5.40E+00 1006 266.059 6.02E+00 694 159.3669 5.94E+00 800 170.5026 1.20E+01 3600 NF 3600 117.75 1
34 4835 992 82.432 3.75E+00 946 247.8246 4.70E+00 740 143.5167 7.49E+00 949 158.1368 9.00E+00 3600 NF 3600 102.685 1
35 5130 988 88.063 4.01E+00 1040 272.3081 5.92E+00 856 162.7781 7.43E+00 917 181.6462 9.77E+00 3600 173.679 3600 117.999 1

Table 5. The Friedman test’s results for PtGA-R, PtGA-O, PtGA-M and PrGA.

p-value Mean column ranks

PtGA-R PtGA-O PtGA-M PrGA

F1 0.000E+00 16.49 34.13 50.94 60.43

F2 0.000E+00 18.99 59.27 32.69 51.05

F3 0.000E+00 16.28 54.94 41.05 49.72

and AlphaECP (exact methods) denote the running time and the cost function
value, respectively. “NF” denotes that the mathematical solver cannot find any
feasible solution in the time limit of an hour (3600 s). The best cost function
value for each instance is presented in boldface.

To carry out a comprehensive comparison among PtGA-R, PtGA-O, PtGA-
M, and PrGA, we use Friedman test [6]. For each function (F1, F2 and F3) we
perform the Friedman test with the significance level set to 0.05, and the results
are shown in Table 5. Since the p-values in all three functions are almost zero
(less than 0.05), there are overall statistically significant differences between
the mean ranks of the algorithms (PtGA-R, PtGA-O, PtGA-M and PrGA).
The mean column rank values of the PtGA-R is less than those of the PtGA-
O, PtGA-M and PrGA (Table 5) which indicates that PtGA-R’s performance is
better than those of the other GA variants. It is clearly evident that the superior
performance of the PrGA-R comes from utilising PTbR in its procedure and
sending a random possible flow.

We also compare the performance of PtGA-R with LINDOGlobal and
AlphaECP by applying a one-sample t-test with the significance level set to
0.05. After performing the one-sample t-test, if PtGA-R has statistically better
or worse performance than that of the mathematical solvers, the parameter h is
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Fig. 7. Convergence graphs for PtGA, PrGA, LINDOGlobal and AlphaECP.

set to 1 and −1 respectively, otherwise h is set to 0. The last column of Tables 2,
3 and 4 presents the value of h for all instances.

For cost function F1, Table 2 shows that PtGA-R has better performance on
all instances with n = {80,120,160} compared with that of PtGA-O, PtGA-M,
PrGA, LINDOGlobal and AlphaECP. Furthermore, LINDOGlobal fails to find
any feasible solutions when the problem size is increased (n = {80,120,160}). For
F2, Table 3 shows that on 28 out of 35 instances (80%), the PtGA-R has equal
or better performance than the two mathematical solvers.

With regard to cost function F3, Table 4 shows that even on instances 3
and 4 (small-sized instances), PrGA failed to find the optimal solutions due
to the limitations of PbR in searching the feasible region, which is consistent
with our analysis in Subsect. 2.1. In all large-sized instances (n = {80,120,160}),
the PtGA-R has similar or better performance than that of the mathematical
solvers.

Figure 7 shows the convergence graphs of PtGA-R, PtGA-O, PtGA-M, PrGA
and the mathematical solvers for large-sized instances on F2 and F3. Since LIN-
DOGlobal is not able to find any feasible solution for all large-sized problems
on F1, we are not able to provide the convergence graph for that cost function.
As shown in Fig. 7, PtGA-R converges to a good solution faster than other GA
variants as well as LINDOGlobal and AlphaECP. Based on Fig. 7, LINDOGlobal
cannot find any feasible solution after about 1000 s. Once a solution is found,
mathematical solvers (specially LINDOGlobal) are not able to improve it.

5 Conclusion

This paper has proposed a new encoding scheme called probabilistic tree-based
representation (PTbR) for more effective handling of MCFPs. We examine the
commonly-used priority-based representation (PbR), and compare it with PTbR
to demonstrate that PTbR is superior to PbR for solving MCFPs. To validate our
analysis on these representation schemes, the PTbR-based GA (i.e., PtGA) and
PbR-based GA (i.e., PrGA) are evaluated over a set of 35 single-source single-
sink network instances with up to five thousand variables. The experimental
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results demonstrate that PtGA with a random flow (i.e., PtGA-R) has better
performance than PrGA on all problem instances. In addition, PtGA-R has
also been shown to produce better solutions and have better efficiency than
mathematical solvers such as LINDOGlobal and AlphaECP when considering
the large-sized instances. For future research, one can focus on solving large-
sized real-world MCFP using the proposed representation method.
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