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Abstract. The Escherization problem is that, given a goal figure, find
a closed figure that is as close as possible to the goal figure and tiles
the plane. In the Koizumi and Sugihara’s formulation for the Escher-
ization problem, the tile and goal shapes are represented as polygons
whose similarity is evaluated by the Procrustes distance. In this paper,
we incorporate a new distance function into their formulation, aiming
at finding more satisfiable tile shapes. The proposed distance function
successfully picks up tile shapes that are intuitively similar to the goal
shape even when they are somewhat different from the goal shape in
terms of the Procrustes distance. Due to the high computational cost for
solving the formulated problem, we develop a tabu search algorithm to
tackle this problem.
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1 Introduction

A tiling refers to any pattern that covers the plane without any gaps or overlap.
The Dutch artist M. C. Escher is famous for creating many artistic tilings, each
of which consists of a few recognizable (especially one) figures such as animals.
Such tiling is now called Escher tiling and it is a very intellectual task to design
artistic Escher tilings while satisfying the constraints imposed to realize tiling.

As an attempt to automatically generate Escher tilings, Kaplan and Salesin
[5] introduced the following optimization problem. Given a closed plane figure
S (goal figure), find a closed figure T such that (i) T is as close as possible to
S, and (ii) copies of T fit together to form a tiling of the plane. This problem
is called the Escherization problem named after Escher. Koizumi and Sugihara
[6] showed that when both tile and goal shapes are represented as polygons, the
Escherization problem can be formulated as an eigenvalue problem.

Several enhancements to the Koizumi and Sugihara’s formulation have been
proposed. Imahori and Sakai [3] parameterized tile shapes (polygons) in a more
flexible way, which creates a great deal of flexibility in the possible tile shapes
(extended Koizumi and Sugihara’s formulation). It requires, however, a consid-
erable computational effort to solve the Escherization problem formulated with
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this extension and they developed a local search algorithm for this problem. In
the original Koizumi and Sugihara’s formulation, the Procrustes distance [7] was
introduced to measure the similarity between the tile and goal shapes. Imahori
et al. [4], however, suggested that the Procrustes distance does not necessarily
reflect an intuitive similarity between the two shapes. To handle this issue, they
introduced weights to the Procrustes distance to emphasize the similarity with
important parts of the goal figure. The idea of the weighted Procrustes distance,
however, has not been incorporated into the extended Koizumi and Sugihara’s
formulation due to the heavy computational cost of calculating the weighted
Procrustes distance.

In this paper, we propose another similarity measure (distance function),
which captures the similarity of local structures between the tile and goal shapes,
to successfully evaluate an intuitive similarity between them. We incorporate this
similarity measure into the extended Koizumi and Sugihara’s formulation and
apply a tabu search algorithm [9] to the Escherization problem obtained.

2 Related Work

We first explain basic knowledge of tiling and then explain the Koizumi and
Sugihara’s formulation of the Escherization problem along with extended studies.

2.1 Isohedral Tilings

A monohedral tiling is one in which all the tiles are the same shape. If a monohe-
dral tiling has a repeating structure, this tiling is called isohedral. There are 93
different types of isohedral tilings [1], which are individually referred to as IH1,
IH2, . . . , IH93. Figure 1 illustrates an example of an isohedral tiling belonging
to IH47 with a few technical terms. A tiling vertex is a point where at least three
tiles meet. A tiling edge is a boundary surface where exactly two tiles meet.
A tiling polygon is the polygon formed by connecting the tiling vertices of a tile.

For each IH type, the nature of tile shapes can be represented by a template
[8]. A template represents a tiling polygon from which all possible tile shapes are
obtained by deforming the tiling edges and moving the tiling vertices under the
constraints specified by the template. For example, Fig. 1 illustrates a template
of IH47; this template means that the tiling polygon is a quadrilateral consisting
of two opposite J edges that are parallel to one another and two independent
S edges. There are four types of tiling edges (types J, S, U, and I) and it is
convenient to express these types with colored arrowheads as illustrated in Fig. 1
(only types J and S are shown). These types are closely related to how the
tiles are fitted to each other, and a template also gives information about the
adjacency relationship between the tiles.

According to the adjacency relationship, four types of tiling edges can be
deformed in the following ways (see also Fig. 1). A type J edge can be deformed
in any arbitrary fashion, but the corresponding J edge must also be deformed
into the same shape. A type S edge must be symmetric with respect to the
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Fig. 1. Example of an isohedral tiling (left), and the template of IH47 (right) where J
and S edges are indicated by single arrowheads and facing arrowheads, respectively.
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Fig. 2. Template of IH47 for a specific
assignment of the points to the tiling
edges (left), and an example of a tile
shape (right).

IH4 IH5k1 k1

k2 k3

k4k5

k1 k1

k2 k2

k3k4

Fig. 3. Templates of IH4 and IH5. Two
opposite J edges marked with ∧ are
parallel to one another.

midpoint. A type U edge must be symmetric with respect to a line through the
midpoint and orthogonal to it. A type I edge must be a straight line.

2.2 Koizumi and Sugiharas’s Formulation and Its Extension

Koizumi and Sugihara [6] modeled the tile shape as a polygon of n points. In
this case, the template of IH47 is represented as shown in Fig. 2, where exactly
one point must be placed at each of the tiling vertices (black circles) and the
remaining points are placed on the tiling edges (white circles). This template
represents possible arrangements of the n points; the n points can be moved as
illustrated in Fig. 2. Koizumi and Sugihara originally placed the same number
of points on every tiling edge. After that, Imahori et al. [3] extended this model
to assign different numbers of points on the tiling edges (extended Koizumi and
Sugihara’s formulation). We denote the numbers of points placed on the tiling
edges as k1, k2, · · · as illustrated in Fig. 2.

Let the n points on the template be indexed clockwise by 1, 2, . . . , n, starting
from one of the tiling vertices. We represent the tile shape as a 2n-dimensional
vector u = (x1, x2, . . . , xn, y1, y2, . . . , yn)�, where (xi, yi)� is the coordinates of
the ith point in the xy-plane. We will also denote (xi, yi)� as ûi. We refer to the
tile shape (polygon) specified by u as U . The values of vector u are constrained
so that the tile shape U is consistent with the template selected. For example,
if we select IH47, the values of vector u must satisfy the following equation:
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⎧
⎨

⎩

ûh(1)+i − ûh(1) = ûh(4)−i − ûh(4) (i = 1, . . . , k1 + 1)
ûh(2)+i − ûh(2) = −(ûh(3)−i − ûh(3)) (i = 1, . . . , �k2+1

2 �)
ûh(4)+i − ûh(4) = −(ûn+1−i − ûh(1)) (i = 1, . . . , �k3+1

2 �)
, (1)

where h(s) (s = 1, . . . , 4) is the index of the sth tiling vertex as shown in Fig. 2.
Equation (1) is a homogeneous system of linear equations and is represented

by
Au = 0, (2)

where A is a m′ × 2n matrix (m′ < 2n). Let b1, b2, . . . , bm be the orthonormal
basis of Ker(A). A general solution of Eq. (2) is then given by

u = ξ1b1 + ξ2b2 + · · · + ξmbm = Bξ, (3)

where B = (b1, b2, . . . , bm ) is a 2n × m matrix and ξ = (ξ1, ξ2, . . . , ξm)� is a
parameter vector. In fact, tile shapes for every isohedral tilings can be parame-
terized in the form of Eq. (3), where the matrix B depends on the assignment
of the n points to the tiling edges as well as isohedral type.

In the Koizumi and Sugihara’s formulation, the goal figure is also repre-
sented as a polygon of n points and their coordinates are represented by a
2n-dimensional vector w = (xw

1 , xw
2 , . . . , xw

n , yw
1 , yw

2 , . . . , yw
n )�, where (xw

i , yw
i )�

is the coordinates of the ith point of the goal polygon. We will also denote
(xw

i , yw
i )� as ŵi. We refer to the goal shape (polygon) specified by w as W . To

measure the similarity between the two polygons U and W , they employed the
Procrustes distance [7]. Let us first, however, explain a more simple but essen-
tially the same distance measure for the ease of understanding. We refer to this
distance measure as the normal distance in this paper. The square of the normal
distance between the two polygons U and W is defined by

d2(U,W ) = ‖u − w‖2 =
n∑

i=1

‖ûi − ŵi‖2, (4)

where ‖·‖ is the Euclidean norm.
When the normal distance is used, from Eqs. (3) and (4), the Escherization

problem can be formulated as the following unconstrained optimization problem:

minimize: ‖Bξ − w‖2. (5)

This is a least-squares problem and the solution is given by ξ∗ =
(B�B)−1

B�w = B�w with the minimum value −ξ∗�ξ∗ + w�w. The opti-
mal tile shape u∗ is then obtained by u∗ = Bξ∗.

When calculating the normal distance between the two polygons, we need to
consider the n different numbering for the goal polygon W by shifting the first
point for the numbering. Therefore, we define wj (j = 1, 2, . . . , n) in the same
way as w by renumbering the index of the n points such that the jth point (in
the original index) becomes the first point.

Let I be a set of the indices for the isohedral types and Ki a set of all
possible configurations for the assignment of the n points to the tiling edges for an
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isohedral type i. For example, K47 = {(k1, k2) | 0 ≤ k1, 0 ≤ k2, 2k1 +k2 ≤ n−4}
whereas k3 is determined by k3 = n − 4 − (2k1 + k2) (see Fig. 2). Because the
matrix B depends on i ∈ I and k ∈ Ki, we denote it as Bik. Let J = {1, 2, . . . , n}
be a set of the indices of the first point for the n different numbering of the goal
polygon. If we try to perform the exhaustive search, we need to compute

min
ξ∈Rm

‖Bikξ − wj‖2 = −ξ∗
ikj

�ξ∗
ikj + w�w, (6)

for all combinations of i ∈ I, k ∈ Ki, and j ∈ J , where ξ∗
ikj = B�

ikwj .
For each i ∈ I and k ∈ Ki, it takes O(n3) time to compute Eq. (6) for all

values of j ∈ J because it takes O(n3) time for computing Bik and O(n2) time for
computing B�

ikwj (for each value of j). However, the order of Ki reaches O(n3)
for IH5 and IH6 and O(n4) for IH4, and it requires a considerable computational
time to perform the exhaustive search. Figure 3 shows the templates of IH4 and
IH5. To alleviate this problem, Imahori and Sakai [4] proposed a local search
algorithm to search for only promising configurations in Ki, which has succeeded
in finding better tile shapes than the original Koizumi and Sugihara’s method.

Finally, we mention the difference between the Procrustes distance and the
normal distance. For some isohedral types including IH47 and IH4, exactly the
same result is obtained with either distance measure. For some isohedral types,
however, the Procrustes distance must be used because the templates can only
parameterize tile shapes facing in a specific direction. For example, the two
adjacent J edges in the template of IH5 (see Fig. 3) are parameterized such that
they make equal and opposite angles with the y-axis. The Procrustes distance
calculates the normal distance after rotating U so that the normal distance
between U and W is minimized. When the Procrustes distance is used, the
Escherization problem can be reduced to an eigenvalue problem, which can be
solved in O(n2) time [4]. We use only the normal distance to explain the original
Koizumi and Sugihara’s formulation [6], the subsequent studies [2–4], and the
proposed method for the ease of understanding and due to space limitations.

2.3 The Weighted Normal Distance

The normal distance Eq. (4) seems to be the most natural similarity measure
between two polygons. Imahori et al. [4], however, suggested that the normal
distance does not necessarily reflect intuitive similarity between two polygons.
The main cause is that in many cases goal figures have important parts that char-
acterize their shapes and they assigned weights to the points on the important
parts of the goal polygon to emphasize the similarity with these parts.

Let ki (i = 1, 2, . . . , n) be a positive weight assigned to the ith point of the
goal polygon W . The weighted normal distance is then defined by

d2w(U,W ) =
n∑

i=1

ki‖ûi − ŵi‖2 = u�Gu − 2w�Gu + w�Gw, (7)
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where G is the 2n × 2n diagonal matrix whose diagonal elements are
k1, k2, . . . , kn, k1, k, . . . , kn. When the weighted normal distance is used, from
Eqs. (3) and (7), the Escherization problem is formulated as follows:

minimize: ξ�B�GBξ − 2w�GBξ + w�Gw. (8)

3 Proposed Method

We propose a new distance function to evaluate intuitive similarity between two
polygons and incorporate it into the extended Koizumi and Sugihara’s formula-
tion. We try to solve the formulated problem using tabu search (TS) [9] to search
for as many configurations k ∈ Ki as possible for each isohedral type i ∈ I.

3.1 The Proposed Similarity Measure

As expressed by Eqs. (4) and (7), in order to shorten the (weighted) normal
distance, the points of the tile polygon U must be close to the corresponding
points of the goal polygon W . In contrast, we focus on the similarity of the
relative positional relationship of adjacent points between two polygons. The
proposed distance function is defined as follows:

d2a(U,W ) =
n∑

i=1

ki‖(ûi+1 − ûi) − (ŵi+1 − ŵi)‖2, (9)

where n + 1 represents 1 and ki is the weight. We refer to the proposed distance
as the (weighted) adjacent difference (AD) distance.

In the right side of Fig. 4, we can see a typical example of a tile polygon (red
line) that is determined to be very similar to the goal polygon “bat” under the
AD distance but is not so under the normal distance. The middle of the figure
shows the opposite situation. Compared to the tile shape in the middle of the
figure, the tile shape in the right side does not so much overlap with the goal
polygon, but it seems to be intuitively more similar to the goal polygon than the
former one. The reason is that local shapes of the contours of the wings and ears
are well preserved in the right side figure even though overall shape is distorted
(e.g., the vertical width of the wings is getting narrower). As exemplified in this
example, even if the global structure is somewhat distorted, it would be better to
actively preserve local structures of the goal shape to search for more satisfiable
tile shapes. The AD distance is designed assuming such a situation.

It is also possible to assign weights to edges of the goal polygon W and ki in
Eq. (9) is the weight assigned to the edge between ith and (i + 1)th points. In
fact, Eq. (9) can be expressed by the same matrix representation as the right side
of Eq. (7), where G is a 2n × 2n symmetric tridiagonal matrix whose non-zero
elements are defined as follows:

⎧
⎨

⎩

gi,i = gi+n,i+n = ki + ki+1

gi,i+1 = gi+n,i+1+n = −ki
gi+1,i = gi+1+n,i+n = −ki

, (10)
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goal polygon normal distance AD distance 

Fig. 4. Goal polygon “bat” and tile shapes that are very close to the goal polygon
under the normal distance and the AD distance, respectively.

where 2n + 1 means 1. We should note that the matrix G depends on the first
point for the numbering of the goal polygon j (∈ J) (this also applies to the case
where the weighted normal distance is used) because the indices of the weighted
edges must be also shifted depending on the numbering. Therefore, we define
Gj (j = 1, 2, . . . , n) in the same way as Eq. (10), by renumbering the index such
that the jth point (in the original index) becomes the first point.

3.2 The Extended Koizumi and Sugihara’s Formulation with the
AD Distance

The weighted normal distance Eq. (7) and the AD distance Eq. (9) have the same
matrix representation and the Escherization problem using the AD distance
is also formulated by Eq. (8). When the AD distance is incorporated into the
extended Koizumi and Sugihara’s formulation, we need to solve the following
optimization problem:

minimize: ξ�B�
ikGjBikξ − 2wj

�GjBikξ + wj
�Gjwj , (11)

for all combinations of i ∈ I, k ∈ Ki, and j ∈ J .
Let us consider Eq. (8) again instead of Eq. (11) for simplicity (indices i, k,

and j are omitted). The solution ξ∗ to Eq. (8) is obtained by solving the equation
B�GBξ = B�Gw (the minimum is −ξ∗�ξ∗ + w�w). However, as explained
later, the matrix B�GB is rank deficient (when the AD distance is used) and
we find the solution in the following way, which is essentially the same as in [4].
First, a set of column vectors b1, b2, . . . , bm (see Eq. (3)) are linearly transformed
into b′

1, b
′
2, . . . , b′

m ′ such that b′
i
�

Gb′
j = δij (the Kronecker delta function) for

i, j ∈ {1, 2, . . . ,m′} (as explained later, m′ = m−2). Such a set of column vectors
can be obtained in O(n3) time by using the Gram-Schmidt orthogonalization
process with an inner product defined as <x,y> = x�Gy. Let a matrix B′

be defined as B′ = (b′
1, b

′
2, . . . , b′

m ′) and the tile shape U be parameterized by
u = B′ξ. Because B′�GB′ becomes an identity matrix, the solution to Eq. (8)
(B is replaced with B′ in this case) is obtained by ξ∗ = B′�Gw. Note that when
the AD distance is used, m′ = m−2 because the matrix G is rank deficient by 2.
Therefore, the degree of freedom for parameterizing tile shapes is also reduced.
Intuitively, this is because the value of the AD distance does not depends on the
position of the center of gravity of U (it does not determined uniquely).
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The matrix B′ depends on i (∈ I) and k (∈ Ki). In addition, unlike in the
case of the matrix B, B′ depends on j (∈ J). Therefore, we denote the matrix
B′ as B′

ikj when specifying the indices i, k, and j. For each i ∈ I and k ∈ Ki, it
takes O(n4) time for solving the optimization problem Eq. (11) (i.e., computing
ξ∗

ikj = B′
ikj

�
Gjwj ) for all values of j because it takes O(n3) time for computing

B′
ikj . Note that if the weight is not introduced, B′

ikj does not depend on j and
it takes O(n3) time in the same situation. Remember that when the normal
distance is used, this computational cost is O(n3) (see Sect. 2.2). Therefore, it
is computationally more difficult to search for many configurations k ∈ Ki for
each isohedral type i ∈ I, compared to the case of the normal distance. This also
applies to the case where the weighted normal distance is used, and therefore
the weighted normal distance was not incorporated into the extended Koizumi
and Sugihara’s formulation.

3.3 A Tabu Search Algorithm

It requires a considerable computation time to solve the optimization problem
Eq. (11) for all possible combinations of i ∈ I, k ∈ Ki, and j ∈ J and we propose
a TS algorithm to search for only promising configurations among them. The
basic idea is similar to the local search algorithm [4] developed for the extended
Koizumi and Sugihara’s formulation with the normal distance (Eq. (6)), but we
propose a TS algorithm here to enhance the performance. Compared to the case
of the normal distance, however, the required computational cost is significantly
increased and we need to reduce the computational cost.

The TS algorithm is performed for each isohedral type i ∈ I. In the TS
algorithm, the solution candidate represents a configuration (k, j) and its objec-
tive value is given by −ξ∗

ikj
�ξ∗

ikj + w�w (the minimum of Eq. (11)). We define
the neighborhood as a set of configurations (k′, j′) given by the combinations of
j′ ∈ {j, j ± 1} and k′ that is obtained by incrementing (or decrementing) the
number of points assigned to two tiling edges in all possible ways. For example,
if we select IH47 (see Fig. 2), for the current k = (k1, k2), possible values of k′ are
(k1 ± 1, k2 ∓ 2, k3), (k1, k2 ± 1, k3 ∓ 1), (k1 ± 1, k2, k3 ∓ 2) (actually k3 is omitted
because k3 is obtained as n − 4 − 2k1 − k2).

Algorithm 1 depicts the TS algorithm. We denote the current solution (k, j)
and its neighborhood as x and N (x), respectively. Before starting the iterations,
the current solution x and the current best solution xbest are initialized with
a randomly generated solution (line 1). At each iteration, the best non-tabu
solution x′ (we define tabu solutions later) is selected from the neighborhood
N (x) (line 3). In addition, the aspiration criterion is considered, where a solution
that improves the current best solution xbest is always regarded as a non-tabu
solution as an exception. The current solution x and current best solution xbest

(if necessary) are then updated by x′ (line 4). Iterations are repeated until the
number of iterations reaches a given maximum number iterMax (lines 2 and 5).
Finally, the current best solution xbest is returned (line 7).

We explain how to define tabu solutions with an example where k is repre-
sented as (k1, k2, k3, k4). Let the current solution be denoted as (k1, k2, k3, k4; j).
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If the current solution is replaced with the selected solution (k′
1, k2, k

′
3, k4; j

′),
two pairs of (k′

1, j
′) and (k′

3, j
′) are stored in the tabu list during the subsequent

T iterations. At each iteration, when a neighbor solution (k1, k′
2, k

′
3, k4; j

′) is
obtained from the current solution (k1, k2, k3, k4; j), this solution is regarded as
a tabu-solution if both (k′

2, j
′) and (k′

3, j
′) exists in the tabu list.

Algorithm 1. Tabu-Search(isohedral type i)
1: Set the solution x randomly, set xbest := x, and iter no := 0;
2: while (iter no ≤ iterMax) do
3: Select a best non-tabu solution x′ ∈ N (x) (aspiration criterion is considered);
4: Update x := x′ and xbest := x′ (if x′ is better than xbest);
5: Set iter no := iter no + 1;
6: end while
7: return xbest;

We mention the main difference between the proposed TS and the local
search used in [4]. In [4], the solution candidate was represented by only k and
it was evaluated by testing the n different values for j. Its computational effort
is O(n3) when using the normal distance. On the other hand, however, it takes
O(n4) time in the same situation when the weighted AD distance is used because
it takes O(n3) time for each value of j. In our observation, the optimal value of j
for the value of k tends to continuously change with the change of k. Therefore,
it is reasonable to restrict the search range of j around the current value of j in
the neighborhood as in the proposed TS algorithm. Therefore, we have decided
to include the variable j in the solution x.

Although there are 93 isohedral types, it is enough to consider only 10 isohe-
dral types (IH1, IH2, IH3, IH4, IH5, IH6, IH7, IH8, IH21, IH28) for the optimiza-
tion because the remaining 83 types are approximately obtained by assigning no
point to tiling edges in the 10 isohedral types. In our observation, good tile shapes
are mostly obtained with IH4, IH5, and IH6 because other isohedral types do
not have enough flexibility to represent tile shapes (e.g., most tiling edges have
the same shape). We therefore consider only the three isohedral types IH4, IH5,
IH6 for the optimization. In fact, the order of Ki is equal to or greater than
O(n3) only for these isohedral types.

Through preliminary experiments, the parameters of the TS algorithm were
determined as follows: T = 50 and iterMax = 100, where we set the value of
iterMax to a small value since it was better to repeat the TS algorithm from
different initial solutions rather than to continue one trial for a long time. We
define one set of trials as 60 runs of the TS algorithm during which the top 20
tile shapes (including non-local minima) found are stored.

4 Experimental Results

We implemented the proposed TS algorithm in C++ and executed the program
code on a Ubuntu 14.04 Linux PC with Intel Core i7-4790@3.60 GHz CPU.
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We applied one set of trials of the TS algorithm to the three goal figures hip-
pocampus (n = 59), bird (n = 60), and spider (n = 126) using each of the four
distance functions (normal distance, weighted normal distance, AD distance,
and weighted AD distance). The execution time of one set of TS algorithm were
about 50s (normal and AD distances) and 140s (weighted normal and weighted
AD distances) for the goal polygon bird and about 400s (normal and AD dis-
tances) for the goal polygon spider.

Figure 5 shows the three goal polygons followed by the intuitively best tile
shapes obtained with the four distance functions. Note that the top tile shape
in terms of the distance value do not necessarily the best one form an intuitive
point of view, and we selected the intuitively best one among the top 20 tile
shapes for each distance function, where the numbers in parentheses indicate
the ranking in terms of distance values. The tile shapes are drawn with red
lines on the points of the goal polygons (black points). When the (weighted)
AD distance is used, the position of the center of gravity of the tile shape is not
determined (see Sect. 3.2) and we put the tile such that the normal distance is
minimized. When the weighted normal distance and the weighted AD distance
are used, the weighted values were all set to four and the weighted points or the
both ends of the weighted edges are drawn in green. In addition, Fig. 6 presents
three tilings generated from the tile shapes shown on the right side of Fig. 5.

We first discuss the results for hippocampus. From the definition, when the
normal distance is used, the resulting tile shape seems to be most overlapped
with the goal polygon, but differences in some local structures are conspicuous.
By using the weighted normal distance, the difference in the weighted part (head)
is getting smaller. When using the AD distance, although the obtained tile shape
does not so much overlap the goal polygon (compared to the normal distance
case), local structures of the goal polygon are well maintained. The obtained tile
shape seems to be intuitively quite similar to the goal polygon, except for the
problem that the width of the head part is shortened and the neck is too thin.
By introducing weights to the AD distance, the local shape of the head part is
getting similar to that of the goal polygon and the aforementioned problem in
the AD distance is somewhat improved.

Next, we discuss the results for bird. The tile shape obtained with the normal
distance seems to be most overlapped with the goal polygon, but the difference
in the foot part is conspicuous. Therefore, we assigned weights to the foot part as
well as the beak part for the weighted normal distance. However, no particular
improvement is found when the weighted normal distance is used. In contrast
to the (weighted) normal distance, when using the AD distance, not only the
overall structure but also the local structures (especially the foot part) are well
maintained. By introducing weights to the AD distance, only the local shape of
the beak parts is slightly improved.

Next, we discuss the results for spider, which is a pretty challenging goal
figure. Since it was difficult to determine appropriate weight points and edges,
only the normal and AD distances were tested. We can see that the tile shape
obtained with the AD distance seems to be intuitively more similar to the goal
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Hippocampus normal(14) weighed normal(14) AD(4) weighted AD(3)

Bird normal(5) weighed normal(4) AD(2) weighted AD(12)

Spider normal(3) AD(11)

Fig. 5. The goal polygons and tile shapes obtained with the four distance functions.
(Color figure online)

figure than that with the normal distance. The main reason is that the shape
of each leg is well preserved, although the positions of the bases of the legs are
different from those of the goal figure.

We also mention the problem of the AD distance. Compared to the normal
distance, tile shapes obtained with the AD distance are rich in variety and many
undesirable tile shapes are also included in the top 20 tile shapes. The reason for
this is that the value of the AD distance may be small even if overall tile shape
is fairly distorted from the goal shape. In the present situation, a satisfiable tile
shape is obtained when the global structure happens to be similar to that of
the goal figure to some extent. In such a case, we can find a very satisfiable tile
shape which cannot be obtained with the (weighted) normal distance.
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Fig. 6. Tilings generated from the tile shapes on the right side of Fig. 5. (Color figure
online)

5 Conclusion

We have proposed a new distance function (AD distance), which captures the
similarity of local structures between the two shapes. When the AD distance
is incorporated into the (extended) Koizumi and Sugihara’s formulation of the
Escherization problem, tile shapes obtained actively preserve local structures of
the goal shape even if the global structure is sacrificed. Experimental results
showed that it is better to positively preserve local structures of the goal shape
by allowing the global structure to deform (if the degree of deformation is not
very large), in order to obtain intuitively satisfiable tile shapes. Due to the high
computational cost of the exhaustive search for the formulated Escherization
problem, we developed a TS algorithm for solving this problem, which made it
possible to obtain satisfiable tile shapes in a reasonable computational time.
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