
Heavy-Tailed Mutation Operators
in Single-Objective Combinatorial

Optimization

Tobias Friedrich1,2, Andreas Göbel1(B), Francesco Quinzan1,
and Markus Wagner2

1 Hasso Plattner Institute, Potsdam, Germany
{andreas.goebel,francesco.quinzan}@hpi.de
2 University of Adelaide, Adelaide, Australia

Abstract. A core feature of evolutionary algorithms is their mutation
operator. Recently, much attention has been devoted to the study of
mutation operators with dynamic and non-uniform mutation rates. Fol-
lowing up on this line of work, we propose a new mutation operator and
analyze its performance on the (1+1) Evolutionary Algorithm (EA). Our
analyses show that this mutation operator competes with pre-existing
ones, when used by the (1+1) EA on classes of problems for which results
on the other mutation operators are available. We present a “jump”
function for which the performance of the (1+1) EA using any static
uniform mutation and any restart strategy can be worse than the per-
formance of the (1+1) EA using our mutation operator with no restarts.
We show that the (1+1) EA using our mutation operator finds a (1/3)-
approximation ratio on any non-negative submodular function in polyno-
mial time. This performance matches that of combinatorial local search
algorithms specifically designed to solve this problem.

Finally, we evaluate experimentally the performance of the (1+1) EA
using our operator, on real-world graphs of different origins with up to
∼37 000 vertices and ∼1.6 million edges. In comparison with uniform
mutation and a recently proposed dynamic scheme our operator comes
out on top on these instances.

Keywords: Mutation operators · Minimum vertex cover problem
Submodular functions maximization

1 Introduction

One of the simplest and most studied evolutionary algorithm is the (1+1) EA
[4,17,20] (see Algorithm 1). A key procedure of the (1+1) EA that affects its
performance is the mutation operator, i.e., the operator that determines at each
step how the potential new solution is generated. In the past several years there

A full version of this paper is available at http://arxiv.org/abs/1805.10902.

c© Springer Nature Switzerland AG 2018
A. Auger et al. (Eds.): PPSN 2018, LNCS 11101, pp. 134–145, 2018.
https://doi.org/10.1007/978-3-319-99253-2_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99253-2_11&domain=pdf
http://arxiv.org/abs/1805.10902

Heavy-Tailed Mutation Operators 135

has been a huge effort, both from a theoretical and an experimental points of
view, towards understanding how this parameter influences the performance of
the (1+1) EA and towards deciding which is the optimal way of choosing this
parameter (e.g., see [5,6]).

The most common mutation operator on n-bit strings is the static uniform
mutation operator. This operator, unifp, flips each bit of the current solution
independently with probability p(n). This probability, p(n), is called static muta-
tion rate and remains the same throughout the run of the algorithm. The most
common choice for p(n) is 1/n; thus, mutated solutions differ in expectation in
1-bit from their predecessors. Witt [21] shows that this choice of p(n) is opti-
mal for all pseudo-Boolean linear functions. Doerr et al. [2] further observe that
changing p(n) by a constant factor can lead to large variations of the overall
run-time of the (1+1) EA. They also show the existence of functions for which
this choice of p(n) is not optimal.

Static mutation rates are not the only ones studied in literature. Jansen et al.
[13] propose a mutation rate which at time step t flips each bit independently
with probability 2(t−1) mod (�log2 n�−1)/n. Doerr et al. [3] observe that this muta-
tion rate is equivalent to a mutation rate of the form α/n, with α drawn uniformly
at random (u.a.r.) from the set {2(t−1) mod (�log2 n�−1) | t ∈ {1, . . . , �log2 n�}}.

Doerr et al. [3] notice that the choice of p(n) = 1/n is a result of over-
tailoring the mutation rates to commonly studied simple unimodal problems.
They propose a non-static mutation operator fmutβ , which chooses a mutation
rate α ≤ 1/2 from a power-law distribution at every step of the algorithm. Their
analysis shows that for a family of “jump” functions introduced below, the run-
time of the (1+1) EA yields a polynomial speed-up over the optimal time when
using fmutβ .

Recently, Friedrich et al. [10] propose a new mutation operator. Their oper-
ator cMut(p) chooses at each step with constant probability p to flip 1-bit of
the solution chosen uniformly at random. With the remaining probability 1 − p,
the operator chooses k ∈ {2, . . . , n} uniformly at random and flips k bits of the
solution chosen uniformly at random. This operator performs well in optimizing
pseudo-Boolean functions, as well as combinatorial problems such as the mini-
mum vertex cover and the maximum cut. Experiments suggest that this operator
outperforms the mutation operator of Doerr et al. [3] when run on functions that
exhibit large deceptive basins of attraction, i.e., local optima whose hamming
distance from the global optimum is in Θ(n).

Inspired by the recent results of Doerr et al. [3] and Friedrich et al. [10] we
propose the mutation operator pmutβ that mutates n-bit string solutions as fol-
lows. At each step, pmutβ chooses k ∈ {1, . . . , n} from a power-law distribution.
Then k bits of the current solution are chosen uniformly at random and then
flipped. During a run of the (1+1) EA using pmutβ , the majority of mutations
consist of flipping a small number of bits, but occasionally a large number, of
up to n bit flips can be performed. In comparison to the mutations of fmutβ , the
mutations of pmutβ have a considerably higher likelihood of performing larger
than (n/2)-bit jumps. A visualization of these probabilities is shown in Fig. 1.
Our results can be summarized as follows.

136 T. Friedrich et al.

Run-Time Comparison on Artificial Landscapes. In Sect. 3.1 we show
that the (1+1) EA using pmutβ manages to find the optimum of any function
within exponential time. When run on the OneMax function, the (1+1) EA with
pmutβ finds the optimum solution in expected polynomial time.

In Sect. 3.2 we consider the problem of maximizing the n-dimensional jump
function, first introduced by Droste et al. [4].

Jump(m,n)(x) =
{

m + |x|1 if |x|1 ≤ n − m or |x|1 = n;
n − |x|1 otherwise;

We show that for any value of the parameters m,n with m constant or n −
m, the expected run time of the (1+1) EA using pmutβ remains polynomial.
This is not the case for the (1+1) EA using unifp, for which Droste et al. [4]
showed a run time of Θ(nm + n log n) in expectation. Doerr et al. [3] are able
to derive polynomial bounds for the expected run-time of the (1+1) EA using
their mutation operator fmutβ , but in their results limit the jump parameter to
m ≤ n/2.

Optimization of Submodular Functions and Experiments. In Sect. 5 we
examine the performance of the (1+1) EA with pmutβ on submodular functions.
Submodular functions arise in the analysis of various optimization problems.
Examples include: maximum facility location problems [1], maximum cut and
maximum directed cut [11], restricted SAT instances [12]. Submodular functions
are also found in AI in connection with probabilistic fault diagnosis problems
[14,15].

Submodular functions exhibit additional properties in some cases, such as
symmetry and monotonicity. These properties can be exploited to derive run
time bounds for local randomized search heuristics such as the (1+1) EA. In
particular, Friedrich and Neumann [9] give run time bounds for the (1+1) EA
and GSEMO on this problem, assuming either monotonicity or symmetry.

We show (Sect. 5.1) that the (1+1) EA with pmutβ on any non-negative,
submodular function gives a 1/3-approximation within polynomial time. This
result matches the performance of the local search heuristic of Feige et al. [7]
designed to target non-negative, submodular functions in particular. An example
of a natural non-negative submodular function that is neither symmetric nor
monotone is the utility function of a player in a combinatorial auction (see
e.g. [16]).

In Sect. 5.2 we apply our general upper bound to the maximum directed
cut problem. Unlike the results of Friedrich et al. [10] we consider graphs with
weighted edges, and our run-time bound does not depend on the maximum
outdegree.

Finally, we evaluate the performance of the (1+1) EA on the maximum
directed cut problem using pmutβ experimentally, on real-world graphs of differ-
ent origins, and with up to ∼37 000 vertices and ∼1.6 million edges. Our experi-
ments show that pmutβ outperforms unifp and fmutβ on those instances.

Heavy-Tailed Mutation Operators 137

Algorithm 1. General framework for the (1+1) EA
Choose initial solution x ∈ {0, 1}n uniformly at random;
while convergence criterion not met do

y ← Mutation(x) for given mutation operator;
if f(y) ≥ f(x) then

x ← y;

return x;

2 Algorithms and Setting

2.1 The (1+1) Evolutionary Algorithm and Mutation Rates

In this paper we look at the run time of the simple (1+1) Evolutionary Algo-
rithm under various configurations. This algorithm requires a bit-string of fixed
length n as input. An offspring is then generated by the mutation operator,
an operator that resembles asexual reproduction. The fitness of the solution is
then computed and the less desirable result is discarded. This algorithm is elitist
in the sense that the solution quality never decreases throughout the process.
Pseudo-code for the (1+1) EA is given in Algorithm1.

In the (1+1) EA the offspring generated in each iteration depends on the
mutation operator. The standard choice for the Mutation(·) is to flip each bit
of an input string x = (x1, . . . , xn) independently with probability 1/n. In a
slightly more general setting, the mutation operator unifp(·) flips each bit of x
independently wit probability p/n, where p ∈ [0, n/2]. We refer to the parameter
p as mutation rate.

Uniform mutations can be further generalized, by sampling the mutation
rate p ∈ [0, n/2] at each step according to a given probability distribution.
We assume this distribution to be fixed throughout the optimization process.
Among this class of mutation rates, is the power-law mutation fmutβ of Doerr
et al. [3]. fmutβ chooses the mutation rate according to a power-law distribution
on [0, 1/2] with exponent β. More formally, denote with X the r.v. (random
variable) that returns the mutation rate at a given step. The power-law operator
fmutβ uses a probability distribution Dβ

n/2 s.t. Pr (X = k) = Hβ
n/2k

−β , where

Hβ
� =

∑�
j=1

1
jβ . The Hβ

� s are known in the literature as generalized harmonic
numbers. Interestingly, generalized harmonic numbers can be approximated with
the Riemann Zeta function as lim�→+∞ Hβ

� = ζ(β), with ζ(·) the Riemann Zeta
function. In particular, harmonic numbers Hβ

n/2 are always upper-bounded by a
constant, for increasing problem size and for a fixed β > 1.

2.2 Non-uniform Mutation Rates

In this paper we consider an alternative approach to the non-uniform
mutation operators described above. For a given probability distribution
P = [1, . . . , n] −→ R the proposed mutation operator samples an element

138 T. Friedrich et al.

Algorithm 2. The mutation operator pmutβ(x)

y ← x;

choose k ∈ [1, . . . , n] according to distribution Dβ
n;

flip k-bits of y chosen uniformly at random;
return y;

1e 30

1e 22

1e 14

1e 06

0 25 50 75 100

colour

1.5

2.5

3.5

Mutation(−)
pmutβ , β = 3.5

pmutβ , β = 2.5

pmutβ , β = 1.5

fmutβ , β = 3.5
fmutβ , β = 2.5
fmutβ , β = 1.5

hamming distance H(x, y) between any two points x, y ∈ {0, 1}100

P
r
(y

=
M
u
ta
ti
on

(x
))

Fig. 1. A visualization of the probability Pr (y = Mutation(x)), for any two points x, y ∈
{0, 1}n w.r.t. the Hamming distance H (x, y), for problem size n = 100 and for β =
1.5, 2.5, 3.5. We consider the case Mutation = pmutβ and Mutation = fmutβ . Note that
the y-axis follows a logarithmic scale.

k ∈ [1, . . . , n] according to the distribution P , and flips exactly k-many bits
in an input string x = (x1, . . . xn), chosen uniformly at random among all possi-
bilities. This framework depends on the distribution P , which we always assume
fixed throughout the optimization process.

Based on the results of Doerr et al. [3], we study a specialization of our non-
uniform framework that uses a distribution of the form P = Dβ

n. We refer to this
operator as pmutβ , and pseudocode is given in Algorithm2. This operator uses
a power-law distribution on the probability of performing exactly k-bit flips in
one iteration. That is, for x ∈ {0, 1}n and all k ∈ {1, . . . , n},

Pr
(H (

x, pmutβ(x)
)

= k
)

= (Hβ
n)−1k−β (1)

We remark that with this operator, for any two points x, y ∈ {0, 1}n, the prob-
ability Pr

(
y = pmutβ(x)

)
only depends on their hamming distance H (x, y).

Although both operators, fmutβ and pmutβ , are defined in terms of a power-
law distribution their behavior differs. A visualization of this can be seen in
Fig. 1. We note that, for any choice of the constant β > 1 and all x ∈ {0, 1}n,
Pr (H (x, fmutβ(x)) = 0) > 0, while Pr

(H (
x, pmutβ(x)

)
= 0

)
= 0. We discuss

the advantages and disadvantages of these two operators in Sects. 3 and 4.

Heavy-Tailed Mutation Operators 139

3 Artificial Landscapes

3.1 General Bounds and the OneMax Function

In this section we derive a general upper-bound on the run time of the (1+1) EA
using the mutation operator pmutβ on any fitness function f : {0, 1}n −→ R. It
is well-known that the (1+1) EA using uniform mutation on any such fitness
function has expected run time at most nn. This upper-bound is tight, in the
sense that there exists a function f s.t. the expected run time of the (1+1) EA
using uniform mutation to find the global optimum of f is Ω(nn). For a discussion
on these bounds see Droste et al. [4]. Doerr et al. [3] prove that on any fitness
function f : {0, 1}n −→ R the (1+1) EA using the mutation operator fmutβ has

run time at most O
(
Hβ

n/22
nnβ

)
. Similarly, we derive a general upper-bound on

the run time of the (1+1) EA using mutation pmutβ .

Lemma 1. On any fitness function f : {0, 1}n −→ R the (1+1) EA with muta-
tion pmutβ finds the optimum solution after expected O (

Hβ
nen/enβ

)
fitness eval-

uations, with the constant implicit in the asymptotic notation independent of β.

We consider the OneMax function, defined as OneMax(x1, . . . , xn) = |x|1 =∑n
j=1 xj . This simple linear function of unitation returns the number of ones

in a pseudo-Boolean input string. The (1+1) EA with mutation operators unifp
and fmutβ finds the global optimum after O (n log n) fitness evaluations (see
[3,4,17]). It can be easily shown that the (1+1) EA with mutation operator
pmutβ achieves similar performance on this instance.

Lemma 2. The (1+1) EA with mutation pmutβ finds the global optimum of the
OneMax after expected O (

Hβ
nn log n

)
fitness evaluations, for all β > 1 and with

the constant implicit in the asymptotic notation independent of β.

Lemma 2 can be proved using the fitness level method outlined in Wegener [20].
The (1+1) EA with mutation pmutβ performs a single chosen bit-flip with prob-
ability at least (Hβ

nn)−1 and the expected time for such an event to occur is
Hβ

nn.

3.2 A Comparison with Static Uniform Mutations

Recall the definition of the jump function from the introduction. For 1 < m < n
this function exhibits a single local maximum and a single global maximum. The
first parameter of Jump(m,n) determines the hamming distance between the
local and the global optimum, while the second parameter denotes the size of
the input. We present a general upper-bound on the run time of the (1+1) EA
on Jump(m,n) with mutation operator pmutβ . Then, following the footsteps of
Doerr et al. [3], we compare the performance of pmutβ with static mutation
operators on jump functions for all m ≤ n/2.

140 T. Friedrich et al.

Lemma 3. Consider a jump function f = Jump(m,n) and denote with
Tpmutβ (f) the expected run time of the (1+1) EA using the mutation pmutβ
on the function f . Tpmutβ (f) = Hβ

n

(
n
m

) O (
mβ

)
, were the constant implicit in the

asymptotic notation is independent of m and β.

Note that the upper-bound on the run time given in Lemma3 yields polynomial
run time on all functions Jump(m,n) with m constant for increasing problem
size and also with n − m constant for increasing problem size.

Following the analysis of Doerr et al. [3], we can compare the run time of the
(1+1) EA with mutation pmutβ with the (1+1) EA with uniform mutations, on
the jump function Jump(m,n) for m ≤ n/2.

Corollary 4. Consider a jump function f = Jump(m,n) with m ≤ n/2 and
denote with Tpmutβ (f) the run time of the (1+1) EA using the mutation pmutβ
on the function f . Similarly, denote with Topt(f) the run time of the (1+1) EA
using the best possible static uniform mutation on the function f . Then it holds
Tpmutβ (f) ≤ cmβ−0.5 Hβ

n Topt(f), for a constant c independent of m and β.

The result above holds because Doerr et al. [3] prove that the best possible
optimization time for a static mutation rate a function f = Jump(m,n) with
m ≤ n/2 is lower-bounded as 1/2nm/mm (n/(n − m))n−m ≤ Topt(f).

4 An Application to the Minimum Vertex Cover Problem

In this section, we study the minimum vertex cover problem (MVC): Given a
graph G = (V,E) with n vertices, find a minimal subset U ⊆ V such that each
edge in E is incident to at least one vertex in U . Following Friedrich et al. [8], we
approach MVC by minimizing the functions (u(x), |x|1) in lexicographical order,
where u(x) is the number of uncovered edges.

Lemma 5. On any graph G = (V,E), the (1+1) EA with mutation pmutβ
finds a not necessarily minimum vertex cover after expected O (

Hβ
nn log n

)
fitness

evaluations.

This lemma follows from Friedrich et al. [8, Theorems 1 and 2] and (1) for k = 1.
The (1 + 1) EA using unifp as a mutation operator, when solving MVC on

complete bipartite graphs, does not find the global optimum within polynomial
time. Consider the complete bipartite graph G = (V,E) with partitions V1, V2

of size m and n − m respectively, where 0 < m < n/2. The expected run time
of the (1 + 1) EA using unifp on this instance is at least Ω

(
mnm−1 + n log n

)
.

For m ≤ n/3 the (1 + 1) EA using mutation fmutβ finds the global optimum

of MVC after at most O
(
Hβ

n/2n
β2m

)
fitness evaluations in expectation and for

m ≥ n/3 after at most O
(
Hβ

n/2n
β2n

)
fitness evaluations in expectation. For a

discussion on these run time bounds see Friedrich et al. [8] and Doerr et al. [3].

Theorem 6. On any complete bipartite graph G = (V,E), the (1+1) EA using
mutation pmutβ finds a solution to the MVC after expected O (

Hβ
n (n log n + nβ)

)
fitness evaluations.

Heavy-Tailed Mutation Operators 141

5 Maximizing Submodular Functions

5.1 A General Upper-Bound

Consider a finite set V and a function f : 2V −→ R. We say that f is submodular
if for all U,W ⊆ V , f(U) + f(W) ≥ f(U ∪ W) + f(U ∩ W). We consider the
problem of maximizing a non-negative submodular function, with the (1+1) EA
using the mutation operator pmutβ . This problem is APX-complete. That is,
this problem is NP-hard and does not admit a polynomial time approximation
scheme (PTAS), unless P = NP.

We prove that the (1+1) EA with mutation pmutβ is a (1/3 − ε/n)-
approximation algorithm for the problem of maximizing a submodular function.
In our analysis we assume neither monotonicity nor symmetry. We approach this
problem by searching for (1 + α)-local optima, which we define below.

Definition 7. Let f : 2V −→ R≥0 be any submodular function. A set S ⊆ V is
a (1 + α)-local optimum if it holds (1 + α)f(S) ≥ f(S\{u}) for all u ∈ S, and
(1 + α)f(S) ≥ f(S ∪ {v}) for all v ∈ V \S, for a constant α > 0.

The definition given above is useful in the analysis because it can be proved
that either (1+α)-local optima or their complement always yield a good approx-
imation of the global maximum.

Theorem 8. Consider a non-negative submodular function f : 2V −→ R≥0 over
a set of cardinality |V | = n and let S be a (1+ε/n2)-local optimum. Then either
S or V \S is a (1/3 − ε/n)-approximation of the global maximum.

We remark that Theorem 8 as we present it is implicit in the proof of Theorem
3.4 in Feige et al. [7]. Also, it is possible to construct examples of submodular
functions that exhibit (1 + ε/n2)-local optima with arbitrarily bad approxima-
tion ratios. Thus, (1 + ε/n2)-local optima alone do not yield any approximation
guarantee with respect to the global maximum, unless the valuation oracle is
symmetric.

We can use Theorem 8 to estimate the run time of the (1+1) EA using muta-
tion pmutβ to maximize a given submodular function. Intuitively, it is always
possible to find a (1 + ε/n2)-local optimum in polynomial time using single bit-
flips. It is then possible to compare the approximate local solution S with its
complement V \S by flipping all bits in one iteration.

Theorem 9. Let f : 2V −→ R≥0 be a non-negative submodular function over a
set of cardinality |V | = n. Then the (1+1) EA with mutation pmutβ finds a (1/3−
ε/n)-approximation of the global maximum after expected O (

1
εn3 log

(
n
ε

)
+ nβ

)
fitness evaluations.

5.2 An Application to the Maximum Directed Cut Problem

Let G = (V,E) be a graph, together with a weight function w : E �−→ R≥0 on
the edges. We assume the weights to be non-negative. We consider the problem

142 T. Friedrich et al.

of finding a subset U ⊆ V of nodes such that the sum of the weights on the
outer edges of U is maximal. This problem is the maximum directed cut prob-
lem (Max-Di-Cut) and is a known to be NP-complete. In contrast to Friedrich
and Neumann [9], our analysis considers both directed and undirected graphs,
although it might be possible to obtain improved bounds on undirected graphs.
Furthermore, unlike Friedrich et al. [10] our run-time bound does not depend on
the size of the maximum cut in G.

We first define the cut function.

Definition 10. Let G = (V,E) be a graph together with a non-negative weight
function w : E −→ R≥0. For each subset of nodes U ⊆ V , consider the set
Δ(U) = {(e1, e2) ∈ E : e1 ∈ U and e2 /∈ U} of all edges leaving U . We define
the cut function f : 2V −→ R≥0 as f(U) =

∑
e∈Δ(U) w(e).

Since we require the weights to be non-negative, the cut function is also non-
negative. For any graph G = (V,E) the corresponding cut function is always sub-
modular and, in general, non-monotone (see e.g. [7,9]). If a graph G is directed,
then the corresponding cut function needs not be symmetric. Using Theorem9,
we derive the following upper-bound on the run time.

Corollary 11. Let G = (V,E) be a graph of order n together with a non-
negative weight function w : E �−→ R≥0. Then the (1+1) EA with mutation
pmutβ is a (1/3 − ε/n)-approximation algorithm for the Max-Di-Cut on G. Its
expected optimization time is O (

1
εn3 log

(
n
ε

)
+ nβ

)
.

5.3 Experiments on Large Real Graphs

For our experimental investigations, we select the 123 large instances used by
Wagner et al. [19]. The number of vertices ranges from about 400 to over 6
million and the number of edges ranges from about 1000 to over 56 million. All
123 instances are available online [18].

The instances vary widely in their origin. For example, we include 14 collabo-
ration networks (ca-*, from various sources such as Citeseer and also Hollywood
productions), 14 web graphs (web-*, showing the state of various subsets of the
internet at particular points in time), five infrastructure networks (inf-*), six
interaction networks (ia-*, e.g. about email exchange), 21 general social net-
works (soc-*, e.g., Delicious, LastFM, Youtube) and 44 subnets of Facebook
(socfb-*, mostly from different American universities). We take these graphs
and run Algorithm1 with different mutation operators: fmutβ and pmutβ with
β ∈ {1.5, 2.5, 3.5} and unif1. The solution representation is based on vertices and
we initialize uniformly at random. Each edge has a weight of 1.

We perform 100 independent runs (100 000 evaluations each) with an overall
computation budget of 72 h per mutation-instance pair. Out of the initial 123
instances 67 finish their 100 repetitions per instance within this time limit.1

1 Source categories of the 67 instances: 2x bio-*, 6x ca-*, 5x ia-*, 2x inf-*, 1x soc-*,
40x socfb-*, 4x tech-*, 7x web-*. The largest graph is socfb-Texas84 with 36 364
vertices and 1 590 651 edges.

Heavy-Tailed Mutation Operators 143

Table 1. Average ranks (based on mean cut size) at t = 10 000 and t = 100 000
iterations (lower is better). Our pmutβ approaches perform best at both budgets. unif1
or fmut1.5 have the worst average rank. The colors correspond to the average rank of
a scheme (colder colors are better).

-8
%

-4
%

0

67 instances sorted alphabetically

ga
p
to

hi
gh

es
t
av

er
ag

e
cu

t
si
ze

(0
%

=
be

st
)

fmut1.5
fmut2.5
fmut3.5
pmut1.5
pmut2.5
pmut3.5
unif1

Fig. 2. Distance of average cut size to best average of the seven approaches.

We will report on these 67 in the following, and we will use the average cut size
achieved in the 100 runs as the basis for our analyses.

First, we rank the seven approaches based on the average cut size achieved
in 100 independent runs (best rank is 1, worst rank is 7). Table 1 shows the
average rank achieved by the seven different mutation approaches across the 68
instances. It is obvious that unif1 is among the worst. pmutβ clearly performs
best, however, while pmutβ with β = 1.5 performs best at 10 000 iterations,
pmutβ with β = 3.5 performs best when the budget is 100 000 iterations.

Across the 67 instances, the achieved cut sizes vary significantly (see Fig. 2
and Table 2). For example, the average gap between the worst and the best
approach is 46% at 10 000 iterations and it still is 8.1% at 100 000 iterations. Also,
when we compare the best fmutβ and pmutβ configurations (as per Table 2), then
we can see that (i) pmutβ is better or equal to fmutβ , and (ii) the performance
advantage of pmutβ over fmutβ is 2.2% and 1.3% on average, with a maximum
of 4.8% and 6.4% (i.e., for 10 000 and 100 000 evaluations).

144 T. Friedrich et al.

Table 2. Summary of cut-size differences. “Total” refers to the gap between the best
and worst performing mutation out of all seven. The two highlighted pairs compare
the best fmutβ and pmutβ values listed in Table 1.

t = 10k t = 100k

Total pmut1.5 vs fmut1.5 Total pmut3.5 vs fmut3.5

Min gap 0.3% 0.3% 0.0% 0.0%

Mean gap 12.2% 2.2% 2.1% 1.3%

Max gap 46.0% 4.8% 8.1% 6.4%

6 Discussion

In the pursuit of optimizers for complex landscapes that arise in industrial prob-
lems, we have identified a new mutation operator. This operator allows for good
performance of the classical (1+1) EA when optimizing not only simple artifi-
cial test functions, but the whole class of non-negative submodular functions.
As submodular functions find applications in a variety of natural settings, it is
interesting to consider the potential utility of our operator as a building block for
optimizers of more complex landscapes, where submodularity can be identified
in parts of these landscapes.

Acknowledgements. The authors would like to thank Martin Krejca for giving his
advice on one of the proofs, and Karen Seidel for proof-reading the paper.

References

1. Ageev, A.A., Sviridenko, M.: An 0.828-approximation algorithm for the uncapaci-
tated facility location problem. Discrete Appl. Math. 93(2–3), 149–156 (1999)

2. Doerr, B., Jansen, T., Sudholt, D., Winzen, C., Zarges, C.: Mutation rate matters
even when optimizing monotonic functions. Evol. Comput. 21(1), 1–27 (2013)

3. Doerr, B., Le, H.P., Makhmara, R., Nguyen, T.D.: Fast genetic algorithms. In:
GECCO, pp. 777–784 (2017)

4. Droste, S., Jansen, T., Wegener, I.: On the analysis of the (1+1) evolutionary
algorithm. Theoret. Comput. Sci. 276(1–2), 51–81 (2002)

5. Eiben, A.E., Hinterding, R., Michalewicz, Z.: Parameter control in evolutionary
algorithms. IEEE Trans. Evol. Comput. 3(2), 124–141 (1999)

6. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computation. Natural
Computing Series. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-
662-05094-1

7. Feige, U., Mirrokni, V.S., Vondrák, J.: Maximizing non-monotone submodular
functions. SIAM J. Comput. 40(4), 1133–1153 (2011)

8. Friedrich, T., He, J., Hebbinghaus, N., Neumann, F., Witt, C.: Approximating
covering problems by randomized search heuristics using multi-objective models.
Evol. Comput. 18(4), 617–633 (2010)

9. Friedrich, T., Neumann, F.: Maximizing submodular functions under matroid con-
straints by evolutionary algorithms. Evol. Comput. 23(4), 543–558 (2015)

https://doi.org/10.1007/978-3-662-05094-1
https://doi.org/10.1007/978-3-662-05094-1

Heavy-Tailed Mutation Operators 145

10. Friedrich, T., Quinzan, F., Wagner, M.: Escaping large deceptive basins of attrac-
tion with heavy mutation operators. In: GECCO (2018, accepted). https://hpi.de/
friedrich/docs/paper/GECCO18.pdf

11. Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for max-
imum cut and satisfiability problems using semidefinite programming. J. ACM
42(6), 1115–1145 (1995)

12. H̊astad, J.: Some optimal inapproximability results. J. ACM 48(4), 798–859 (2001)
13. Jansen, T., Wegener, I.: Real royal road functions-where crossover provably is

essential. Discrete Appl. Math. 149(1–3), 111–125 (2005)
14. Krause, A., Guestrin, C.: Near-optimal observation selection using submodular

functions. In: AAAI, pp. 1650–1654 (2007)
15. Lee, J., Mirrokni, V.S., Nagarajan, V., Sviridenko, M.: Non-monotone submodular

maximization under matroid and knapsack constraints. In: STOC, pp. 323–332
(2009)

16. Lehmann, B., Lehmann, D.J., Nisan, N.: Combinatorial auctions with decreasing
marginal utilities. Games Econ. Behav. 55(2), 270–296 (2006)

17. Mühlenbein, H.: How genetic algorithms really work: mutation and hillclimbing.
In: PPSN, pp. 15–26 (1992)

18. Rossi, R.A., Ahmed, N.K.: The Network Data Repository with Interactive Graph
Analytics and Visualization (Website) (2015). http://networkrepository.com

19. Wagner, M., Friedrich, T., Lindauer, M.: Improving local search in a minimum
vertex cover solver for classes of networks. In: CEC, pp. 1704–1711 (2017)

20. Wegener, I.: Theoretical aspects of evolutionary algorithms. In: Orejas, F., Spirakis,
P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 64–78. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-48224-5 6

21. Witt, C.: Worst-case and average-case approximations by simple randomized search
heuristics. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, pp.
44–56. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31856-9 4

https://hpi.de/friedrich/docs/paper/GECCO18.pdf
https://hpi.de/friedrich/docs/paper/GECCO18.pdf
http://networkrepository.com
https://doi.org/10.1007/3-540-48224-5_6
https://doi.org/10.1007/978-3-540-31856-9_4

	Heavy-Tailed Mutation Operators in Single-Objective Combinatorial Optimization
	1 Introduction
	2 Algorithms and Setting
	2.1 The (1+1) Evolutionary Algorithm and Mutation Rates
	2.2 Non-uniform Mutation Rates

	3 Artificial Landscapes
	3.1 General Bounds and the OneMax Function
	3.2 A Comparison with Static Uniform Mutations

	4 An Application to the Minimum Vertex Cover Problem
	5 Maximizing Submodular Functions
	5.1 A General Upper-Bound
	5.2 An Application to the Maximum Directed Cut Problem
	5.3 Experiments on Large Real Graphs

	6 Discussion
	References

