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Abstract. For any population-based algorithm, the initialization of the
population is a very important step. In Genetic Programming (GP), in
particular, initialization is known to play a crucial role - traditionally,
a wide variety of trees of various sizes and shapes are desirable. In this
paper, we propose an advancement of a previously conceived Evolution-
ary Demes Despeciation Algorithm (EDDA), inspired by the biological
phenomenon of demes despeciation. In the pioneer design of EDDA, the
initial population is generated using the best individuals obtained from a
set of independent subpopulations (demes), which are evolved for a few
generations, by means of conceptually different evolutionary algorithms
- some use standard syntax-based GP and others use a semantics-based
GP system. The new technique we propose here (EDDA-V2), imposes
more diverse evolutionary conditions - each deme evolves using a distinct
random sample of training data instances and input features. Experi-
mental results show that EDDA-V2 is a feasible initialization technique:
populations converge towards solutions with comparable or even better
generalization ability with respect to the ones initialized with EDDA, by
using significantly reduced computational time.
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1 Introduction

Initialization of the population is the first step of Genetic Programming (GP).
John Koza proposed three generative methods of the initial population - Grow,
Full and Ramped Half-and-Half (RHH) [7]. All of them consist in constructing
trees in an almost random fashion and vary only in the doctrine which guides
the process. Since the RHH method is a mixture of both the Full and Grow
methods, it allows the production of trees of various sizes and shapes and it was
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frequently used in many applications. The emergence of new geometric semantic
operators [8], which introduce semantic awareness into Genetic Programming
(GP), strengthened the importance of semantics-awareness in GP. Semantics
was considered as a fundamental factor for the success of the evolutionary search
process, leading to the definition of initialization algorithms [2,3] that aimed at
increasing semantic diversity in the initial GP population. These studies clearly
showed the importance of semantics in this part of the evolutionary process.
Other contributions had already recognized that an initial population charac-
terized by a high diversity increases the effectiveness of GP, bestowing a wider
exploration ability on the process [7,12]. With the aim of directly searching
in the semantic space, Moraglio and colleagues introduced Geometric Semantic
Genetic Programming (GSGP) [8], which rapidly raised an impressive interest
in the GP community - in part, because of its interesting property of inducing a
fitness landscape characterized by the absence of locally suboptimal solutions for
any problem consisting in matching sets of input data into known targets [13]. In
GSGP, standard crossover and mutation variation operators are replaced with
so-called geometric semantic operators, that have precise effects on the semantics
of the trees, from now on, called individuals. After the emergence of Geometric
Semantic Operators (GSOs), a conceptually distinct sub-field aiming at investi-
gating the properties of GSGP was born inside the GP community. As a result,
new techniques were proposed to favor the search process of GSGP, making it
more efficient. In the context of the initialization process, Pawlak and Kraw-
iec introduced semantic geometric initialization [10] and Oliveira and colleagues
introduced the concept of dispersion of solutions, for increasing the effectiveness
of geometric semantic crossover [9]. Following this research track, in 2017, we
proposed a new initialization method which mimics the evolution of demes, fol-
lowed by despeciation, called Evolutionary Demes Despeciation Algorithm [14].
In summary, our idea consisted in seeding the initial population of N individu-
als with good quality individuals that have been evolved, for few a generations,
in N independent subpopulations (demes), by means of conceptually different
evolutionary algorithms. In this system, n% of demes use standard GP and the
remaining (100−n)% use GSGP. After evolving one deme, the best individual is
extracted to seed the initial population in the Main Evolutionary Process (MEP).
The work presented in this paper improves the previously proposed initializa-
tion method, EDDA, by including even more adverse evolutionary conditions in
each deme. In summary, in our advancement of the EDDA method, which we
will from now on call, EDDA-V2, every deme evolves using a distinct random
sample of training data instances and input features.

This document is organized as follows: In Sect. 2 we recall basic concepts
related to GSGP. Section 3 describes the previous and new EDDA variants,
showing their differences. Section 4 presents the experimental study. Section 5
discusses the experimental results. Finally, Sect. 6 concludes the work summa-
rizing its contribution.
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2 Geometric Semantic Genetic Programming

The term semantics, in the GP community, refers to the vector of output values
produced by evaluating an individual on a set of training instances [15]. Under
this definition, a GP individual can be seen as a point in a multi-dimensional
semantic space, where the number of dimensions is equal to the number of fit-
ness cases. In standard GP, variation operators produce an offspring by making
syntactic manipulation of the parent trees, in the hope that such manipulation
will result in a semantics which is closer to the target one. The term Geomet-
ric Semantic Genetic Programming (GSGP) designates a GP variant in which
syntactic-based GP operators - crossover and mutation - are replaced with so-
called Geometric Semantic Operators (GSOs). GSOs introduce semantic aware-
ness in the search process and induce a unimodal fitness landscape in any super-
vised problem where the fitness function can be defined as a distance between a
solution and the target. GSOs, introduced in [8], raised an impressive interest in
the GP community [16] because of their attractive property of directly search-
ing the space of underlying semantics of the programs. In this paper, we report
the definition of the GSOs for real functions domains, because we used them in
our experimental phase. For applications that consider other types of data, the
reader is referred to [8].

Geometric semantic crossover (GSC) generates, as the unique offspring of
parents T1, T2 : Rn → R, the expression TXO = (T1·TR)+((1−TR)·T2), where TR

is a random real function whose output values range in the interval [0, 1]. Anal-
ogously, geometric semantic mutation (GSM) returns, as the result of the muta-
tion of an individual T : Rn → R, the expression TM = T + ms · (TR1 − TR2),
where TR1 and TR2 are random real functions with codomain in [0, 1] and ms is a
parameter called mutation step. In their work, Moraglio and colleagues show that
GSOs create an offspring of significantly larger size with respect to standard GP
operators. This makes the fitness evaluation unacceptably slow and considerably
constrains practical usability of the GSGP system. To overcome this limitation
a possible workaround was proposed in [5], with an efficient implementation of
GSOs that makes them usable in practice. This is the implementation used in
this work.

3 Evolutionary Demes Despeciation Algorithm

In this paper, we propose an advancement of a previously conceived initialization
technique, Evolutionary Demes Despeciation Algorithm (EDDA) [14], inspired
by the biological concepts of demes evolution and despeciation. In biology, demes
are local populations, or subpopulations, of polytypic species that actively inter-
breed with one another and share distinct gene pools [17]. The term despeci-
ation indicates the combination of demes of previously distinct species into a
new population [11]. Albeit not so common in nature, despeciation is a well-
known biological phenomenon, and in some cases, it leads to a fortification of
the populations. The main idea of EDDA consists in seeding the initial popula-
tion of N individuals with good quality individuals that have been evolved, for
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a few generations, in N independent subpopulations (demes), on which distinct
evolutionary conditions were imposed. Concretely, demes are evolved by means
of conceptually different evolutionary algorithms - n% of demes are evolved by
means of GSGP, while the remaining (100 − n)% use standard GP - and dis-
tinct - mostly randomly generated - parameter sets. The experimental results
presented in [14] have shown the effectiveness of EDDA. In particular, in all the
benchmark problems taken into account, the search process, whose population
was initialized with EDDA, ended with solutions with higher, or at least com-
parable, generalization ability, but with significantly smaller size than the ones
found by GSGP using the traditional RHH generative method to initialize the
population. In the remaining part of the paper, we will refer to EDDA with the
term EDDA-V1.

The advancement we propose in this work, denominated as EDDA-V2,
imposes even more adverse evolutionary conditions. Concretely, each deme is
evolved using not only a different evolutionary algorithm and parameter set but
also a distinct random sample of training data instances and input features. In
the following pseudo-code, the distinctive algorithmic features of EDDA-V2 in
comparison to EDDA-V1 are presented in bold.

Fig. 1. Pseudo-code of the EDDA-n% system, in which demes are left to evolve for m
generations.

As one can see from the pseudo-code reported in Fig. 1, EDDA-V2 uses a
different subset of the training instances in each deme, as well as different input
features. We claim is that the presence of demes with different fitness cases
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and input features should increase the diversity of the initial population, with
individuals that are focused on different areas of the semantic space. As a final
result of the search process, we would expect a model with an increased general-
ization ability with respect to GSGP initialized with EDDA-V1 and RHH. As a
side effect, using only a percentage of the training instances and input features
can be beneficial for reducing the computational effort when a vast amount of
training data is available.

4 Experimental Study

4.1 Test Problems

To assess the suitability of EDDA-V2 as a technique for initializing a popula-
tion, three real-life symbolic regression problems were considered. Two of them
- Plasma Protein Binding level (PPB), and Toxicity (LD50) - are problems from
the drug discovery area and their objective is to predict the value of a pharma-
cokinetic parameter, as a function of a set of molecular descriptors of potential
new drugs. The third benchmark is the Energy problem, where the objective is
to predict the energy consumption in particular geographic areas and on par-
ticular days, as a function of some observable features of those days, including
meteorological data. Table 1 reports, for each one of these problems, the number
of input features (variables) and data instances (observations) in the respective
datasets. The table also reports a bibliographic reference for every benchmark,
where a more detailed description of these datasets is available.

Table 1. Description of the benchmark problems. For each dataset, the number of fea-
tures (independent variables) and the number of instances (observations) were reported.

Dataset # Features # Instances

Protein plasma binding level (PPB) [1] 626 131

Toxicity (LD50) [1] 626 234

Energy [6] 8 768

4.2 Experimental Settings

During the experimental study, we compared the performance of EDDA-V2
against EDDA-V1. The performance are evaluated by considering the quality
of the solution obtained at the end of the evolutionary process considering pop-
ulations initialized with EDDA-V1 and EDDA-V2. Additionally, to consolidate
results of our previous work, we also included the GSGP evolutionary algorithm
that uses the traditional RHH initialization algorithm. Table 2 reports, in the
first column, the main parametrization used for every initialization algorithm
(columns two, three and four). The first line in the table contains the number of
generations after initialization.
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Table 2. Parametrization used in every initialization algorithm.

Parameters RHH EDDA.V1 EDDA.V2

1 # generations 2750 {2250, 1250} {2250, 1250}
2 # generations/deme - {5, 15} {5, 15}
3 # demes - 100 100

4 % GSGP demes - {0, 25, 50, 75, 100} {0, 25, 50, 75, 100}
5 % sampled instances - - {25, 50, 75}
6 % sampled features - - {25, 50, 75}

For each experiment, any considered initialization algorithm was used to cre-
ate 100 initial individuals, later evolved by means of GSGP evolutionary process
for a given number of generations. In order to ensure comparability of results, all
the studied systems performed the same number of fitness evaluations - includ-
ing, in particular, demes evolution in both EDDA variants. In our experiments,
there are 275000 fitness evaluations per run, independently on initialization tech-
nique. Every deme, regardless of EDDA variant and parametrization, was ini-
tialized by means of the traditional RHH algorithm with 100 individuals, later
evolved for some generations. Whenever the traditional RHH was used, tree ini-
tialization was performed with a maximum initial depth equal to 6 and no upper
limit to the size of the individuals was imposed during the evolution. Depend-
ing on the number of iterations used for demes evolution in EDDA variants,
the number of generations after despeciation may vary. For example, if, in a
given experiment, demes are evolved for 5 generations, then the number of gen-
erations after despeciation will be 2250. Similarly, if demes are evolved for 15
generations, then the number of generations after despeciation will be 1250. For
both previously mentioned cases, the number of fitness evaluations per run is
275000.

The function set we considered in our experiments was {+,−, ∗, /}, where /
was protected as in [7]. Fitness was calculated as the Root Mean Squared Error
(RMSE) between predicted and expected outputs. The terminal set contained
the number of variables corresponding to the number of features in each dataset.
Tournament selection of size 5 was used. Survival was elitist as it always copied
the best individual into the next generation. As done in [4], the probability of
applying GSC and GSM is dynamically adapted during the evolutionary process
where the crossover rate is p and the mutation rate is 1 − p. Following [16], the
mutation step ms of GSM was randomly generated, with uniform probability
in [0, 1], at each mutation event.

For all the considered test problems, 30 independent runs of each studied
system were executed. In each one of these runs, the data was split into a training
and a test set, where the former contains 70% of the data samples selected
randomly with uniform distribution, while the latter contains the remaining
30% of the observations. For each generation of every studied system, the best
individual on the training set has been considered, and its fitness (RMSE) on
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the training and test sets was stored. For simplicity, from now on, we will refer
to the former as training error and to the latter as test error or unseen error.

5 Results

This section presents the results obtained in the experimental phase. In par-
ticular, the section aims at highlighting the differences in terms of perfor-
mance between the two EDDA variants taken into account and GSGP. For
each benchmark, we considered four different parameterizations of EDDA-
V1 and EDDA-V2. We denote each parametrization by using the quadruple
%GSGP MATURITY %INSTANCES %FEATURES, where the first term
corresponds to the percentage of individuals in each deme evolved by means of
GSGP, the maturity (i.e., the number of generations the individuals are evolved),
the percentage of instances in the dataset and, finally, the percentage of input
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Fig. 2. Evolution of the (median) best fitness on the training (insets image) and test
sets for the energy benchmark and the following parameterizations: (a) 50 5 25 25;
(b) 50 15 50 50; (c) 50 5 75 75; (d) 50 5 50 50. The legend for all the plots is:

EDDA−V1 EDDA−V2 RHH
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features considered. The results reported in this section consider values of these
four parameters that were randomly selected from the values reported in Table 2.
This allows analyzing the performance of EDDA-2 across different problems and
parameterizations. Results of the experimental phase are reported from Figs. 2,
3 and 4. Each plot displays the generalization error (i.e., the fitness on unseen
instances) and contains an inset showing the training fitness. Considering the
training fitness, one can notice the same evolution of the fitness in all the con-
sidered benchmarks. EDDA-V1, in particular, is the best performer followed by
EDDA-V2 and GSGP. Focusing on the two EDDA variants, these results were
expected since EDDA-V1 is learning a model by using the whole training set and
all the available features. On the other hand, EDDA-V2 is learning a model of
the data considering a sample of the whole training set and, additionally, only a
reduced number of features. Under this light, it is interesting to comment on the
performance of EDDA-V2 and GSGP. The experimental results suggest that the
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Fig. 3. Evolution of the (median) best fitness on the training (insets image) and test
sets for the PPB benchmark and the following parametrizations: (a) 25 15 75 75;
(b) 25 5 50 50; (c) 25 5 75 75; (d) 75 5 75 75. The legend for all the plots is:

EDDA−V1 EDDA−V2 RHH
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usage of RHH for initializing the population results in poor performance when
compared to EDDA-V2.

To summarize, results show the superior performance of EDDA-V1 when
training error is taken into account, but EDDA-V2 produces a final model with
an error that is smaller than the one produced by GSGP. This is a notable result
because it shows that the proposed initialization method can outperform GSGP
initialized with ramped half and half by considering a lower number of training
instances and features.

While results on the training set are important to understand the ability of
EDDA-V2 to learn the model of the training data, it is even more important
and interesting to evaluate its performance on unseen instances. Considering
the plots reported from Figs. 2, 3 and 4, one can see that the EDDA-V2 actually
produces good quality solutions that are able to generalize over unseen instances.
In particular, EDDA-V2 presents a very nice behavior in the vast majority of
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Fig. 4. Evolution of the (median) best fitness on the training (insets image) and test
sets for the LD50 benchmark and the following parameterizations: (a) 25 5 75 75;
(b) 10 5 25 25; 10 5 50 50(c); (d) 10 5 75 75. The legend for all the plots is:

EDDA−V1 EDDA−V2 RHH
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the problems, showing better or comparable performance with respect to the
other competitors without overfitting to the training data. Focusing on the other
techniques, GSGP is the worst performer over all the considered benchmarks and
parameterizations.

To summarize the results of this first part of the experimental phase, it is
possible to state that EDDA-V2 outperforms GSGP with respect to the training
fitness by also producing models able to generalize over unseen instances. When
EDDA-V2 is compared against EDDA-V1, it performs poorer on the training
instances, but the generalization error is better with respect to the latter system.

To conclude the experimental phase, Fig. 5 shows the time (ms) needed to
initialize and evolve demes with EDDA-V1 and EDDA-V2. As expected EDDA-
V2 requires less computational time.

To assess the statistical significance of these results, a statistical validation
was performed considering the results achieved with the EDDA variants. First
of all, given that it is not possible to assume a normal distribution of the values
obtained by running the different EDDA variants, we ran the Shapiro-Wilk test
and we considered a value of α = 0.05. The null hypothesis of this test is that
the values are normally distributed. The result of the test suggests that the null
hypothesis should be rejected. Hence, we used the Mann–Whitney U test for
comparing the results returned EDDA-V2 against the ones produced by EDDA-
V1 under the null hypotheses that the distributions are the same across repeated
measures. Also, in this test a value of α = 0.05 was used.
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Fig. 5. Time needed to initialize and evolve a deme for 5 iterations, with a 50% of
GSGP individuals, 50% of training instances, and 50% of features. Median calculated
over all the demes and runs for (a) Energy, (b) PPB, and (c) LD50. The legend for all
the plots is: EDDA−V1 EDDA−V2
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Table 3 reports the p-values returned by the Mann–Whitney test, and bold
is used to denote values suggesting that the null hypotheses should be rejected.
Considering these results, it is interesting to note that with respect to the train-
ing error, EDDA-V2 and EDDA-V1 produced comparable results in the vast
majority of the benchmarks and configurations taken into account. The same
result applies to the test error, where it is important to highlight that, in each
benchmark, there exists at least one parameters configuration that allows EDDA-
V2 to outperform EDDA-V1.

Table 3. p-values returned by the Mann–Whitney U test. Test and training error
achieved by populations initialized with EDDA-V2 and EDDA-V1 are compared. Val-
ues in the column parametrization correspond to the ones used in subplots (A), (B),
(C), (D) of Figs. 2, 3, and 4. Bold is used to denote p-values suggesting that the null
hypotheses should be rejected.

Parametrization Test Training

Energy PPB LD50 Enrgy PPB Ld50

A 0.048 0.203 0.065 0.043 0.523 0.109

B 0.708 0.267 0.230 0.123 0.035 0.273

C 0.440 0.230 0.016 0.187 0.142 0.031

D 0.708 0.203 0.390 0.109 0.843 0.901

6 Conclusions

Population initialization plays a fundamental role in the success of GP. Differ-
ent methods were developed and investigated in the EA literature, all of them
pointing out the importance of maintaining diversity among the different indi-
viduals in order to avoid premature convergence. A recent contribution, called
Evolutionary Demes Despeciation Algorithm (EDDA-V1 in this paper), intro-
duced an initialization technique in GP inspired by the biological phenomenon
of demes despeciation. The method seeds a population of N individuals with the
best solutions obtained by the independent evolution of N different populations,
or demes. EDDA-V1 has demonstrated its effectiveness in initializing a GSGP
population when compared to the standard ramped half and half method. This
paper extended the initialization technique by defining a new method, called
EDDA-V2 that initializes a population by evolving different parallel demes and,
in each deme, it uses a different subset of the training instances and a differ-
ent subset of the input features. This ensures an increased level of diversity, by
also reducing the time needed for the initialization step. Experimental results
obtained over three benchmark problems demonstrated that populations initial-
ized with EDDA-V2 and evolved by GSGP converge towards solutions with a
comparable or better generalization ability with respect to the ones initialized
with EDDA-V1 and the traditional ramped half and half technique.
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