
Filtering Outliers in One Step
with Genetic Programming

Uriel López1,2, Leonardo Trujillo1,2(B) , and Pierrick Legrand3,4,5

1 Tecnológico Nacional de México/I.T. Tijuana, Tijuana, BC, Mexico
{uriel.lopez,leonardo.trujillo}@tectijuana.edu.mx

2 BioISI, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
3 IMB, UMR CNRS 5251, 351 cours de la libération, Talence, France

4 Inria Bordeaux Sud-Ouest, Talence, France
5 University of Bordeaux, Bordeaux, France

pierrick.legrand@u-bordeaux.fr

Abstract. Outliers are one of the most difficult issues when dealing
with real-world modeling tasks. Even a small percentage of outliers can
impede a learning algorithm’s ability to fit a dataset. While robust regres-
sion algorithms exist, they fail when a dataset is corrupted by more than
50% of outliers (breakdown point). In the case of Genetic Programming,
robust regression has not been properly studied. In this paper we present
a method that works as a filter, removing outliers from the target vari-
able (vertical outliers). The algorithm is simple, it uses a randomly gen-
erated population of GP trees to determine which target values should
be labeled as outliers. The method is highly efficient. Results show that
it can return a clean dataset when contamination reaches as high as 90%,
and may be able to handle higher levels of contamination. In this study
only synthetic univariate benchmarks are used to evaluate the approach,
but it must be stressed that no other approaches can deal with such high
levels of outlier contamination while requiring such small computational
effort.

Keywords: Outliers · Robust regression · Genetic programming

1 Introduction

The main application domain for Genetic Programming (GP) continues to be
symbolic regression. The ability of GP to model difficult non-linear problems,
and to produce relatively compact models when appropriate bloat control is used
[1], makes it a good option in this common machine learning task. Unlike ran-
dom ensemble regression, SVM regression or Neural Networks, for example, GP
has the potential of delivering human-readable solutions that are also accurate
and efficient. However, like any data-driven approach to modeling, much of the
quality of the final solution will be determined by the nature of the training
data; i.e.; even the best algorithm cannot produce a model when the output

c© Springer Nature Switzerland AG 2018
A. Auger et al. (Eds.): PPSN 2018, LNCS 11101, pp. 209–222, 2018.
https://doi.org/10.1007/978-3-319-99253-2_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99253-2_17&domain=pdf
http://orcid.org/0000-0003-1812-5736

210 U. López et al.

variable shows no relationship to the input variables. One particularly difficult
case in learning is when the training data is corrupted by outliers. Indeed, outlier
data points can severely skew the learning process and bias the search towards
unwanted regions in solution space.

A common way to deal with this situation is to apply a filtering process
or to use a robust objective measure, such that performance estimation is not
affected by the presence of outlier points [2]. Such methods can handle outliers
effectively under the assumption that they are relatively rare; i.e. outliers repre-
sent a minority of the data points in the dataset. However, this work considers
an extreme case; where the percentage of outliers far outnumbers the inliers,
reaching as high as 90% of the entire training set1. In this case, even the most
robust objective function cannot properly guide a learning algorithm, and it is
the same for GP.

One way to deal with outliers is to use specialized sampling techniques such
as Random Sampling Consensus (RANSAC) [3], which is often used in computer
vision systems for data calibration [4]. Indeed, this method has been successfully
combined with GP to derive accurate models even when the data contamination
is above the breakdown point; i.e., the number of outliers is above 50%. How-
ever, a noteworthy drawback of such a method is that its computational cost is
extremely high, with the number of expected samples required to build a suffi-
ciently accurate model increasing exponentially with the total contamination in
the dataset. However, and this cannot be stressed enough, in current literature
no other methods exist that can deal with such extreme cases of data contam-
ination in an automatic manner [5–7]. In many cases, the best suggestion is to
simply inspect the data visually and clean it manually. In the case of GP, for
instance, such conditions are never even tested, not even for robust GP systems
[8–10].

The present work fills this notable gap by presenting an approach to clean
highly contaminated datasets in regression tasks. Particularly, this work con-
siders the case where the output variable is highly contaminated by outliers,
measurements that deviate sharply from the true signal that is trying to be
modeled. The proposed method can be used as a preprocessing step to clean the
data, applied before the actual modeling process is performed. The method is
efficient, requiring the same amount of computational effort that is required to
evaluate a single GP population. It uses a single randomly generated popula-
tion to determine which data points are outliers and which are not. Besides this
effort, all that is required is to order the population based on fitness, and with
that an efficient criterion for cleaning the data is proposed. The method can be
integrated not just with GP, but with any regression method. If used with GP,
however, then the outlier removal process is obtained basically for free since the
initial population of the GP search could be used to perform the filtering at
generation 0.

1 In fact, while the reported experiments only consider up to this level of data con-
tamination, it is straightforward to extend our approach to more severe scenarios.

Filtering Outliers in One Step with GP 211

The proposed method operates under the assumption that outlier points are
more difficult to model than inliers, when the models (GP trees) are generated
randomly. While we do not derive any formal proofs that show that this assump-
tion will hold in general, the experimental work confirms that this assumption is
valid for the set of test cases used to evaluate the proposal. We test the algorithm
on datasets that are contaminated by as much as 90% of outliers, and are able
to remove a sufficiently large proportion of the outlier instances, it then becomes
feasible for a standard robust regression method to tackle the problem.

The remainder of this paper proceeds as follows. Section 2 reviews basic con-
cepts on robust regression and outlier detection. Then, Sect. 3 presents our outlier
filter, the reader will notice that the most important characteristic of the pro-
posal is its simplicity; the section also reviews related works. Section 4 presents
the experimental work, following the general methodology of [2]. Finally, Sect. 5
provides a discussion, outlines our main conclusions and describes future work.

2 Background

2.1 Outliers

All regression and automatic modeling systems are heavily influenced by the
presence of anomalies in the training data [7]. These anomalies are usually
referred to as outliers, and can be present in the input variables, the output
variable, or in both. Outliers can be generated by several causes, such as gross
human error, equipment malfunction, extremely severe random noise or missing
data [5–7]. When outliers are rare, then it is possible to define them as data
points that are very different from the rest of the observations included in the
dataset. However, such a definition is not useful when the number of outliers
exceeds the number of inliers (non-outlier data points). Moreover, it is impor-
tant to distinguish between outliers and just signal noise. In our opinion, the two
most important distinctions are: (1) noise can be effectively modelled, and thus
filtered; and (2) outlier points deviate from inliers at a large scale, i.e. outliers
are anomalous w.r.t. the inliers, which is not a formal definition but in practice it
is a useful one. Therefore, since in this work we are concerned with the presence
of outliers in the output or target variable in regression problems (also called
vertical outliers), we can use the following definition for outliers [2]:

Definition 1. An outlier is a measurement of a system that is anomalous with
respect to the true behavior of the system.

While this definition may be seen as a tautology, there is an aspect of it that
is not immediately obvious. Notice that we are defining an outlier relative to the
“true behavior of the system”, whether this behavior is observable or not. The
definition is not based on the observed behavior in a representative dataset from
which we can pose a regression or learning task. This is crucial, because it may
seem counter intuitive to have a dataset where the majority of samples are in
fact outliers. However, if we know the true behavior of a system, in a controlled

212 U. López et al.

experiment with synthetic problems, it is straightforward to build a dataset
where the majority of points are outliers based on Definition 1. Moreover, such
a scenario is often encountered in real-world problems as well, one well-known
domain is computer vision [4].

2.2 Robust Regression

First, let us define the standard regression problem. Given a training dataset
T = {(xi, yi); i = 1, ..., n}, the goal is to derive a model that predicts yi based on
xi, where xi ∈ R

p and yi ∈ R. In GP literature we can refer to each input/output
pair (xi, yi) as a fitness case, a training instance or a data point. For linear
regression, the model is expressed as

yi = β0 + β1xi1 + · · · + βpxip + εi i = 1, .., n (1)

where the model parameters β = (β0, β1, ..., βp) ∈ R
p+1, can be estimated by

̂β0, ..., ̂βp using the least squares method [11], which can be expressed as

(̂β0, ..., ̂βp) ← arg min
β∈Rp+1

n
∑

i=1

r2
i , (2)

to find the best fit parameters of the linear model, where ri denotes the residuals
ri(̂β0, ..., ̂βp) = yi − (̂β0 + ̂β1xi1 + · · ·+ ̂βpxip) and the errors εi have an expected
value of zero [12]; if the summation in Eq. 2 is divided by n, the error measure
that must be minimized is the mean squared error (MSE). The issue with outliers
is that they bias the standard objective measures defined above (and others,
such as regularized approaches). In classical regression, there are several robust
regression methods that deal with the presence of outliers by modifying the
objective function used to perform the regression. For instance, Least Median
Squares (LMS) [13]

(̂β0, ..., ̂βp) ← arg min
β0,...,βp

med {r2
1, ..., r

2
n} (3)

where med represents the median. Another approach is Least Trimmed Squares
(LTS) [13], given by

(̂β0, ..., ̂βp) ← arg min
β0,...,βp

hp
∑

i=1

{r2
1, ..., r

2
n}i:n. (4)

where hp with p ≤ hp ≤ n is typically set to hp = (n + p + 1)/2 for maxi-
mum breakdown point, and p (size of the sample) is an algorithm parameter.
In the case of LMS, the idea is to use the median of the residuals instead of
an aggregate fitness such as the average error. A generalization of this method
is quantile regression [14]. Moreover, similar approaches have been applied with
more sophisticated regression methods, such as random decision trees [15]. LTS

Filtering Outliers in One Step with GP 213

searches for a subset of training cases that give the lowest error, since the lowest
error will be obtained when only inliers are present in the subset. Moreover,
there is an efficient implementation of this algorithm called FAST-LTS; a review
of robust methods can be found in [16]. These methods are indeed robust for
linear regression, but only when the number of outliers does not exceed 50% of
the training data, which is referred to as the breakdown point of the method.
Beyond this breakdown point, these methods also fail, but consider that stan-
dard LS has a breakdown point of 0 and theoretically the 50% breakdown cannot
be exceeded for linear regression problems. Moreover, recently it was shown that
combining LMS and LTS with GP can allow it to solve symbolic regression prob-
lems with the same order of accuracy when the dataset is contaminated by as
much as 50% of outliers, empirically showing that their breakdown point holds
in symbolic regression with GP [2].

For problems where the contamination of the dataset is above 50%, sampling
and approximate methods must be used. For instance, one approach is RANSAC
[3], a sampling method to solve parameter estimation problems where the con-
tamination level exceeds 50%. RANSAC has proven to be very useful in at least
one domain, computer vision [4], and many different version of the algorithm
have been derived such as the M-estimator Sample Consensus (MSAC), the
Maximum Likelihood Estimation Sample and Consensus (MLESAC) [17], and
the Optimal RANSAC algorithm [18]. Moreover, [2] has also shown that combin-
ing RANSAC with GP can achieve robustness in symbolic regression modeling
in extreme contamination scenarios, with empirical evidence presented for up to
90% contamination by outliers. The main drawback with RANSAC is that it
requires multiple random samples of the dataset, which have a low probabil-
ity of being sufficiently clean (composed primarily by inliers) when the original
dataset is highly contaminated, making a computationally expensive method2.

3 Outlier Removal with Genetic Programming

Before describing the proposed algorithm, we must first state the main assump-
tion on which it is based. Consider a training set T = {(xi, yi)} where some
fitness cases are inliers and other are outliers, where the l-th fitness case repre-
sents an outlier while the j-th fitness case represents an inlier. The assumption
is that for a randomly generated GP tree (model or program) K, there is a high
probability that the residual rl is larger than the residual rj . In other words,
the residuals on the outliers will be larger than the residuals on the inliers for
randomly generated models. While not at all obvious, there are some clear moti-
vations for this assumption. First, random GP trees will only be able to detect
simple and coarse relationships between the input and output variables, what
can also be considered to be as low-frequencies in the signal. On the other hand,
outliers will mostly appear as singularities in the training data, or high-frequency
2 While it would be relatively simple to parallelize the algorithm, since all samples are

taken independently, the cost can still become quite high if the modelling is done
with GP.

214 U. López et al.

components. Second, it is conceivable that a particular program might actually
produce a low residual for one (or a few) outlier(s), and in this cases the assump-
tion will not hold. However, since outliers do not follow a particular model (they
are not noise), then the residuals in all other outliers can be expected to be rela-
tively high. Finally, even if the majority of points in the training set are outliers
this assumption can be expected to hold since the models are not fitted to the
training data; i.e. the GP trees do not learn the outliers since they are randomly
generated.

In what follows we will define an algorithm for detecting outliers based on
this assumption and validate it in the experimental work reported afterward.

3.1 Proposed Algorithm

Based on the previous assumption, the proposed filtering process is summarized
in Algorithm 1. The main inputs are the training set T of size n, and a percentile
parameter ρ which defines the percentage of fitness cases that will be returned.
In step 1, Ramped Half and Half is used to generate a total of p GP trees, using
a specified function set F and a maximum depth d. The terminal set required
to generate the random models is always composed by the input variables and
randomly generated constants in the range [−1, 1]. Several informal tests showed
that the method was quite robust to parameters d, p and F .

In step 2, the residuals of each GP tree on each fitness case is computed,
constructing the matrix of residuals Rp×n, where each element ri,j is the residual
from the i-th model Ki (GP tree) on the j-th training instance xj ∈ T.

Step 3 is the key step, where the information contained in Rp×n is used to sort
the training set and identify outliers, working under the assumption that outliers
will have higher associated residuals for most GP trees. Therefore, we compute
the column wise median of Rp×n, generating a vector V of size n containing
the median residual of each training instance evaluated over all random models.
Therefore, set C will contain the ρ% of training instances from T that have the
lowest associated median residuals.

Algorithm 1. Proposed algorithm for outlier removal.
Input: Contaminated training set T of size n.

Input: Cut-off percentile ρ in(0, 1].

Input: Number of GP trees p.

Input: Function set F and model size parameter d.

Output: Set C ⊂ T of inliers.

1. Generate a random set P of models k : Rm → R,

with |P | = p using F and d.

2. Obtain the matrix of residuals Rp×n such that each ri,j is the

residual from each model ki ∈ P and each training instance

xj ∈ T

3. Sort T based on the column wise median vector of Rp×n, and return the lowest ρ% training

instances in set C.

Filtering Outliers in One Step with GP 215

3.2 Discussion

There are two general strategies to deal with outliers. The first approach is to
use the regression process to detect outliers and to basically build a model while
excluding the outliers. This approach is taken by most of the robust techniques
described above, such as LMS, LTS and even RANSAC, since the determination
of which points are outliers depends on obtaining the residuals from a fitted
model.

The second approach is to use a filtering process. A particularly well known
filter is the Hampel identifier, where a data point (xi, yi) is tagged as an outlier
if

| yi − yo |> tζ (5)

where yi is the value to be characterized, yo is a reference value, ζ is a measure
of data variation, and t is a user defined threshold [7]. The Hampel identifier
uses a window W centered on xi to compute yo and ζ, with yo set to the median
of all yj in W and ζ is 1.4826×MAD (Mean Absolute Deviation) within W ;
the value 1.4826 is chosen so that the results are not biased towards a Gaussian
distribution.

The proposed method can be considered to be a hybrid between these two
approaches. On the one hand, it is meant as a preprocessing step, used to remove
outliers before another learning algorithm is applied to the data, thus it can be
considered to be a filter. On the other hand, it is also based on the residuals
computed for each training instance. However, unlike other robust methods, the
residuals are derived from a random sampling of models, basically a population
of GP trees, and learning or parameter fitting is not performed at all.

3.3 Related Works in GP

As stated above, [2] presents several results that are relevant to robust regression
in GP. That work showed that both LMS and LTS are applicable to GP, and
empirically their breakdown also applies to GP. Also, given the general usefulness
of sampling the training instances to perform robust regression [16], that work
also tested the applicability of sampling techniques in GP, such as interleaved
sampling [19] and Lexicase selection [20]. Results showed that none of those
approaches were useful for robust regression. The best results were obtained
using RANSAC for sampling the training set and applying LMS on each selected
subset, achieving almost equal test set prediction than directly learning on a
clean training set. The method was called RANSAC-GP. The main drawback
of RANSAC-GP is the high computational cost, since GP had to be executed
on each sample and many samples were required as the percentage of outliers
increases. Moreover, one underlying assumption of RANSAC-GP is that the GP
search will be able to find a fairly accurate model on a clean subset of training
examples, since models obtained from different samples will be discriminated
based on their training performance. This assumption might not hold for some
real-world problems.

216 U. López et al.

Robust GP regression has not received much attention in GP, but some
works are notable. In [9] GP and Geometric Semantic Genetic Programming
(GSGP) are compared to determine which method was more sensitive to noisy
data. The training sets are corrupted with Gaussian noise, up to a maximum
of 20% of the training instances, concluding that GSGP is more robust when
the contamination is above 10%. However, outliers are not considered. Another
example is [10], in this case focusing on classification problems with GP-based
multiple feature construction when the data set is incomplete, which can also
considered to be outliers. The proposed method performs well, even when there
is up to 20% of missing data, but extreme cases such as the ones tested here are
not reported. A more related work is [21], where the authors build ensembles
of GP models evolved using a multiobjective approach, where both accuracy
and program size are minimized. The proposed approach is based on the same
general assumption of many techniques intended to be robust to outliers, that
model performance will be worse on outlier points that inliers. The ensembles
are built from hundreds of indenpendent GP runs, a process that is much more
expensive than the one proposed in the present work. Moreover, results are only
presented for a single test case, where it is not known how many outliers are
present, but results indicate that it is not higher than 5%. The method also
requires human interpretation and analysis of the results, while the method
proposed in this work is mostly automated except for the algorithm parameters.

4 Experimental Evaluation

4.1 Experimental Setup

As a first experimental test, we use the same procedure followed in [2]. First,
we use the synthetic problems defined in Table 1. The datasets for each problem
consist of 200 data points; i.e. input/output pairs of the form (xi, yi). The inde-
pendent variable (input) was randomly sampled using a uniform distribution
within the domain of each problem (see Table 1), and the corresponding value
of the dependent variable (output) was then computed with the known model
syntax. These represent the clean data samples or inliers of each problem. Then,
these datasets were contaminated by different amounts of outliers, from 10%
to 90% contamination in increments of 10%, for each. Thus, for each problem
we have nine different datasets, each with a different amount of outliers. The
proposed method is executed 30 times on each dataset, for each problem and for
each level of contamination, to evaluate the robustness of the approach. To turn
a particular fitness case (xi, yi) into an outlier, we first solve inequality 5 for yi,
such that

yi > yo + tζ

or yi < yo − tζ.
(6)

The decision to add or subtract from yi, as defined in Eq. 5, is done randomly,
and the value of t is set randomly within the range [10, 100] to guarantee a large

Filtering Outliers in One Step with GP 217

Table 1. Benchmark problems used in this work, where U [a, b, c] denotes c uniform
random samples drawn from a to b, that specifies how the initial training sets are
constructed consisting solely of inliers.

Objective function Training set

x4 + x3 + x2 + x U[−1, 1, 200]

x5 − 2x3 + x U[−1, 1, 200]

x3 + x2 + x U[−1, 1, 200]

x5 + x4 + x3 + x2 + x U[−1, 1, 200]

x6 + x5 + x4 + x3 + x2 + x U[−1, 1, 200]

amount of deviance from the original data, with ζ computed by the median of
all yi within the function domain of each symbolic regression benchmark.

The parameters for the proposed method are set as follows. The function
set is given by F = {+,−,×,÷, sin, cos} where ÷ is the protected division, the
maximum tree depth is set to d = 3, and the number of randomly generated
models is p = 100. The percentile parameter ρ is evaluated from 10% to 90%
in 10% increments. The method was coded using the Distributed Evolutionary
Algorithms in Python library (DEAP) [22], basically building on top of the
population initialization function.

4.2 Results

Figure 1 presents the main results. In each plot, the horizontal axis corresponds
to the value of the ρ parameter, while the vertical axis represents the level
of contamination in the output set C. In other words, the vertical axis shows
the percentage of inliers contained in the clean set C, which in the best case
would be 100%. However, it is important to remember, particularly when the
contamination is above 50%, that a desired goal is for the vertical axis to be as
high as possible, but in practice it can be sufficient if it is above 50%. In such a
case it would be possible to use a robust regression method to solve the resulting
modeling problem with set C. Each plot corresponds to one of the benchmarks
from Table 1, and each shows nine curves, one for each contamination level. Each
curve corresponds to the median performance over all 30 executions on each of
the contaminated training sets.

All of the curves show a regular and informative pattern. First, on each
problem the top curve corresponds to the lowest level of contamination 10%.
As ρ increases, more points are returned as possible inliers but might in fact be
outliers; i.e., C is larger, therefore the probability of the set being completely
clean gradually declines. While the 10% level of contamination seems rather
low in our tests, it is far above the breakdown point of non-robust regression
methods. However, for this simplest case the percentage of inliers never falls
below 90%. Second, as the level of contamination increases the performance
on each problem gradually degrades, but not in a significant manner. Take for

218 U. López et al.

Fig. 1. Performance on the benchmark problems. The horizontal axis corresponds to
the percentile parameter ρ, and the vertical axis represents the percentage of inliers in
the resulting clean set C. Each curve represents the median value performance over 30
independent runs for each level of contamination.

instance the most extreme case, when contamination is at the 90% level. Using
a conservative value for ρ of only 10%, the set returned contains a high amount
of inliers. In 4 problems it is above 90% and in only one case it falls to about
70%. In this latter case, Benchmark 3, this means that the new training set C
now contains only 30% of outliers instead of the original 90%. This is useful,
since it is now possible to build a model using a robust regression approach,
such as LMS or LTS. For all other contamination levels, the performance is even
more encouraging. For example, for contamination at 80% or lower it would
be possible to set ρ = 30% and produce a clean dataset that contains less than
40% of outliers. These are highly encouraging results, showing that the proposed

Filtering Outliers in One Step with GP 219

Table 2. Median performance on Benchmark 1, shown as the percentage of inliers in
the returned clean set C; bold values represent the level of contamination where the
number of detected inliers falls below 100%.

ρ value

Outliers ρ = 10 ρ = 20 ρ = 30 ρ = 40 ρ = 50 ρ = 60 ρ = 70 ρ = 80 ρ = 90

10% 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 98.3

20% 100.0 100.0 100.0 100.0 100.0 100.0 100.0 96.8 88.8

30% 100.0 100.0 100.0 100.0 100.0 100.0 96.4 87.1 77.7

40% 100.0 100.0 100.0 100.0 99.0 95.0 84.6 75.0 66.6

50% 100.0 100.0 100.0 100.0 94.0 82.5 71.4 62.5 55.5

60% 100.0 100.0 100.0 92.5 78.0 66.6 57.1 50.0 44.4

70% 100.0 100.0 93.3 72.5 60.0 50.0 42.8 37.5 33.3

80% 100.0 90.0 65.8 50.0 40.0 33.3 28.5 25.0 22.2

90% 90.0 50.0 33.3 25.0 20.0 16.6 14.2 12.5 11.1

Table 3. Median performance on Benchmark 3, shown as the percentage of inliers in
the returned clean set C; bold values represent the level of contamination where the
number of detected inliers falls below 100%.

ρ value

Outliers ρ = 10 ρ = 20 ρ = 30 ρ = 40 ρ = 50 ρ = 60 ρ = 70 ρ = 80 ρ = 90

10% 100.0 100.0 100.0 100.0 100.0 100.0 99.2 97.5 94.4

20% 100.0 100.0 100.0 100.0 100.0 98.3 95.7 90.9 85.5

30% 100.0 100.0 100.0 100.0 99.0 94.5 89.2 81.8 74.4

40% 100.0 100.0 100.0 99.3 93.0 87.5 79.2 71.2 63.8

50% 100.0 100.0 100.0 93.1 84.5 75.4 66.4 58.7 52.7

60% 100.0 100.0 94.1 80.0 71.0 62.5 54.2 46.8 43.3

70% 100.0 100.0 76.6 63.7 55.0 45.4 40.0 35.6 32.2

80% 100.0 75.0 56.6 45.0 37.0 30.8 27.1 23.7 21.1

90% 70.0 40.0 28.3 21.2 18.0 15.0 13.5 12.1 10.5

method can identify outliers fairly easily using the proposed configuration. To
better grasp these results, the numerical results for Benchmark 1 and Benchmark
3 are respectively shown in Tables 2 and 3. In each table, the bold value indicates
when the median percentage of returned inliers falls below 100%.

5 Conclusions and Future Work

Dealing with outliers is a notoriously hard problem in regression. The algorithm
presented in this work can effectively clean highly contaminated datasets. Stan-
dard regression techniques breakdown with even a single outlier in the training

220 U. López et al.

set, while robust regression techniques fail when the contamination by outliers is
greater than 50% on the training set. In such a cases, sampling techniques such
as RANSAC are required, but the number of samples required grows rapidly
with the percentage of outliers.

The proposed algorithm uses a random GP population to determine which
training instances are inliers and which are not. It works under the assumption
that outliers will be more difficult to model for randomly generated GP trees
than inliers are; i.e. the residuals on outliers will be larger than on inliers. While
robust regression methods also work under this assumption, this only holds after
the model has been tuned, after learning has been performed. Moreover, this
will only be possible if outliers represent a minority in the training set. On
the other hand, the proposed algorithm does not perform any learning, basing
its decision entirely on a random set of models. The proposed algorithm seems
related to several other machine learning approaches. As stated above, it is
obviously related to robust regression methods, particularly quantile regression,
but without performing any model fitting. It is also related to RANSAC, since
it performs a random sampling, but of models instead of training instances.

Results are encouraging, compared to other methods, only RANSAC can
attempt to deal with problems where the level of contamination exceeds 50%.
Take for instance the Hampel identifier, it would be useless since the median
value in the dataset would be an outlier. Moreover, while RANSAC can deal
with similar problems, its computational cost can become excessive and depends
on the ability of the learning or modeling algrithm to extract relatively accurate
models [2]. The proposed method is efficient, since it only requires generating
and evaluating a single GP population.

Future work will focus on the following. First, extend the evaluation to real-
world multi-variate problems, a more challenging scenario. Second, determine
how specific parameters of the proposed algorithm affect performance, partic-
ularly the number of random models generated. Third, attempt to determine
a general setting for ρ, at least experimentally. Fourth, clearly define how the
proposed algorithm relates to other robust regression and learning algorithms.
Finally, extend the method to deal with outliers in the input variables.

Acknowledgments. This research was funded by CONACYT (Mexico) Fron-
teras de la Ciencia 2015-2 Project No. FC-2015-2:944, BioISI R&D unit,
UID/MULTI/04046/2013 funded by FCT/MCTES/PIDDAC, Portugal, and first
author supported by CONACYT graduate scholarship No. 573397.

References

1. Trujillo, L., et al.: Neat genetic programming: controlling bloat naturally. Inf. Sci.
333, 21–43 (2016)

2. López, U., Trujillo, L., Martinez, Y., Legrand, P., Naredo, E., Silva, S.: RANSAC-
GP: dealing with outliers in symbolic regression with genetic programming. In:
McDermott, J., Castelli, M., Sekanina, L., Haasdijk, E., Garćıa-Sánchez, P. (eds.)
EuroGP 2017. LNCS, vol. 10196, pp. 114–130. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-55696-3 8

https://doi.org/10.1007/978-3-319-55696-3_8
https://doi.org/10.1007/978-3-319-55696-3_8

Filtering Outliers in One Step with GP 221

3. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model
fitting with applications to image analysis and automated cartography. Commun.
ACM 24(6), 381–395 (1981)

4. Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd
edn. Cambridge University Press, Cambridge (2004). ISBN 0521540518

5. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Com-
put. Surv. 41(3), 15:1–15:58 (2009)

6. Hodge, V.J., Austin, J.: A survey of outlier detection methodologies. Artif. Intell.
Rev. 22, 85–126 (2004)

7. Pearson, R.: Mining Imperfect Data: Dealing with Contamination and Incomplete
Records. Society for Industrial and Applied Mathematics. SIAM, Philadelphia
(2005)

8. Kotanchek, M.E., Vladislavleva, E.Y., Smits, G.F.: Symbolic regression via genetic
programming as a discovery engine: insights on outliers and prototypes. In: Riolo,
R., O’Reilly, U.M., McConaghy, T. (eds.) Genetic Programming Theory and Prac-
tice VII. Genetic and Evolutionary Computation, pp. 55–72. Springer, Boston
(2010). https://doi.org/10.1007/978-1-4419-1626-6 4

9. Miranda, L.F., Oliveira, L.O.V.B., Martins, J.F.B.S., Pappa, G.L.: How noisy data
affects geometric semantic genetic programming. In: Proceedings of the Genetic
and Evolutionary Computation Conference, GECCO 2017, pp. 985–992. ACM,
New York (2017)

10. Tran, C.T., Zhang, M., Andreae, P., Xue, B.: Genetic programming based feature
construction for classification with incomplete data. In: Proceedings of the Genetic
and Evolutionary Computation Conference. GECCO 2017, pp. 1033–1040. ACM,
New York (2017)

11. Rousseeuw, P.J.: Least median of squares regression. J. Am. Stat. Assoc. 79(388),
871–880 (1984)

12. Alfons, A., Croux, C., Gelper, S.: Sparse least trimmed squares regression for
analyzing high-dimensional large data sets. Ann. Appl. Stat. 7(1), 226–248 (2013)

13. Giloni, A., Padberg, M.: Least trimmed squares regression, least median squares
regression, and mathematical programming. Math. Comput. Model. 35(9), 1043–
1060 (2002)

14. Bertsimas, D., Mazumder, R.: Least quantile regression via modern optimization.
ArXiv e-prints (2013)

15. Meinshausen, N.: Quantile regression forests. J. Mach. Learn. Res. 7, 983–999
(2006)

16. Hubert, M., Rousseeuw, P.J., Van Aelst, S.: Statist. Sci. High-breakdown robust
multivariate methods 23, 92–119 (2008)

17. Torr, P.H., Zisserman, A.: MLESAC: a new robust estimator with application to
estimating image geometry. Comput. Vis. Image Underst. 78(1), 138–156 (2000)

18. Hast, A., Nysjö, J., Marchetti, A.: Optimal RANSAC-towards a repeatable algo-
rithm for finding the optimal set (2013)

19. Gonçalves, I., Silva, S.: Balancing learning and overfitting in genetic programming
with interleaved sampling of training data. In: Krawiec, K., Moraglio, A., Hu,
T., Etaner-Uyar, A.Ş., Hu, B. (eds.) EuroGP 2013. LNCS, vol. 7831, pp. 73–84.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37207-0 7

20. Spector, L.: Assessment of problem modality by differential performance of lexicase
selection in genetic programming: a preliminary report. In: Proceedings of the
Fourteenth International Conference on Genetic and Evolutionary Computation
Conference Companion, GECCO Companion 2012, pp. 401–408. ACM (2012)

https://doi.org/10.1007/978-1-4419-1626-6_4
https://doi.org/10.1007/978-3-642-37207-0_7

222 U. López et al.

21. Kotanchek, M., Smits, G., Vladislavleva, E.: Pursuing the pareto paradigm: tour-
naments, algorithm variations and ordinal optimization. In: Riolo, R., Soule, T.,
Worzel, B. (eds.) Genetic Programming Theory and Practice IV. Genetic and Evo-
lutionary Computation. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
0-387-49650-4 11

22. Fortin, F.A.: DEAP: evolutionary algorithms made easy. J. Mach. Learn. Res. 13,
2171–2175 (2012)

https://doi.org/10.1007/978-0-387-49650-4_11
https://doi.org/10.1007/978-0-387-49650-4_11

	Filtering Outliers in One Step with Genetic Programming
	1 Introduction
	2 Background
	2.1 Outliers
	2.2 Robust Regression

	3 Outlier Removal with Genetic Programming
	3.1 Proposed Algorithm
	3.2 Discussion
	3.3 Related Works in GP

	4 Experimental Evaluation
	4.1 Experimental Setup
	4.2 Results

	5 Conclusions and Future Work
	References

