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Abstract. Gene-pool Optimal Mixing Evolutionary Algorithm
(GOMEA) is a recent Evolutionary Algorithm (EA) in which the inter-
actions among parts of the solution (i.e., the linkage) are learned and
exploited in a novel variation operator. We present GOMGE, the exten-
sion of GOMEA to Grammatical Evolution (GE), a popular EA based on
an indirect representation which may be applied to any problem whose
solutions can be described using a context-free grammar (CFG). GE is
a general approach that does not require the user to tune the internals
of the EA to fit the problem at hand: there is hence the opportunity
for benefiting from the potential of GOMEA to automatically learn and
exploit the linkage. We apply the proposed approach to three variants
of GE differing in the representation (original GE, SGE, and WHGE)
and incorporate in GOMGE two specific improvements aimed at coping
with the high degeneracy of those representations. We experimentally
assess GOMGE and show that, when coupled with WHGE and SGE, it
is clearly beneficial to both effectiveness and efficiency, whereas it delivers
mixed results with the original GE.

Keywords: Genetic programming · Linkage · Family of Subsets
Representation

1 Introduction

Evolutionary Algorithms (EAs) are a powerful tool for solving complex problems.
One motivation for their wide adoption is that the user is not required to provide
a model for the problem at hand: in most cases, it is up to the EA to figure
out how the parts of the solution (w.r.t. the representation employed in that
EA) interact in determining the solution quality. However, actually knowing the
model and being able to exploit its knowledge may be crucial to determine the
effectiveness of the EA.

A model-based EA has been recently proposed for achieving both goals, i.e.,
the ability to know and exploit the model without requiring any user-provided
specification of the model itself. The Gene-pool Optimal Mixing Evolution Algo-
rithm (GOMEA) [1] is a state-of-the-art approach for solving discrete optimiza-
tion problems and has been carefully designed for exploiting the interactions
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among parts of a solution, i.e., the linkage. GOMEA is based on several crucial
contributions: an internal representation of the linkage; a method for deriving
the linkage from the population; a novel genetic operator (Gene-pool Optimal
Mixing, GOM) in which the individual iteratively receives from random donors
some portions of the genetic material defined by the linkage.

We here present GOMGE, i.e., the extension of GOMEA to Grammatical
Evolution (GE) [2]—a form of Genetic Programming (GP). GE particularly fits
the two aforementioned goals pursued by GOMEA, because it is really a general
purpose EA. In facts, key for GE success is that it can tackle any problem whose
solutions may be described by means of a context-free grammar (CFG). The
user is hence not required to know and tune the internals of the EA: he can
obtain a solution for the problem at hand by simply providing the CFG and a
fitness function. Indeed, GE has been widely used in many different applications:
e.g., generation of string similarity indexes suitable for text extraction [3], road
traffic rules synthesis [4], automatic design of analog electronic circuits [5], and
even the design of other optimization algorithms [6].

Internally, GE operates on individuals described with an indirect representa-
tion: genetic operators are applied to bit-string genotypes; then, bit-strings are
transformed into solutions (i.e., strings of the language defined by the problem-
specific CFG) by means of a genotype-phenotype mapping function. The latter,
which essentially defines the individual representation of GE, favored the adop-
tion of this EA, since it allowed building on the vast knowledge about manipula-
tion of bit-string genotypes. On the other hand, extensive research on the prop-
erties of GE representation showed that it has many drawbacks [7–9]. Indeed,
beyond inspiring a large debate among scholars which also concerned about the
aims and methods for designing an EA representation [10–12], the drawbacks of
GE representation also stimulated the recent arising of two variants—Structured
GE (SGE) [13] and Weighted Hierarchical GE (WHGE) [14]—mainly consisting
in a different genotype-phenotype mapping function and, hence, a different rep-
resentation.

We applied GOMGE to the three mentioned variants of GE (the original
GE, SGE, and WHGE) and incorporated in GOMGE two small modifications
motivated by the need of coping with the degeneracy of those representations,
i.e., the tendency to map many genotypes to the same phenotype [7,8]. Our
work has a twofold aim: (a) extend the benefit in effectiveness delivered by
GOMEA to GE, hence further boosting its practical applicability, and (b) shed
new lights on the three representations, in particular concerning their proneness
to exhibit “good” linkage, i.e., a linkage which can actually be exploited to
improve the effectiveness of the EA. The latter point is of particular interest for
better understanding both GOMEA (and its linkage learning method) and GE
representations: in facts, being based on an indirect representation, the linkage
observed in GE is the result of the combination of interactions between genes
which occur during the genotype-phenotype mapping and those related to the
problem at hand.
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We performed an extensive experimental evaluation considering three GE
variants with four linkage models applied to four benchmark problems. The
results show that GOMGE does improve the effectiveness and efficiency of both
SGE and WHGE, whereas it delivers mixed results with GE.

The remainder of the paper is organized as follows. In Sect. 2, we briefly
survey previous studies relevant to the present paper. In Sects. 3 and 3.1, we
describe the standard search algorithm used in GE and GOMGE, respectively.
In Sect. 4, we discuss the results of our experimental evaluation. Finally, in Sect. 5,
we summarize the findings and draw the conclusions.

2 Related Works

GOMEA [1] has been extended to different EAs or macro-categories of problems:
to GP in GOMEA-GP [15], where a novel approach is proposed for identifying
and encapsulating relevant building blocks; to real-valued (RV) optimization
in RV-GOMEA [16]; to multi-objective (MO) optimization problems in MO-
GOMEA [17]. GOMGE is the first application of GOMEA to GE.

There have been several attempts to exploit some form of knowledge of the
model underlying the problem for improving the effectiveness of GE. These
efforts were usually aimed at discovering useful building blocks, i.e., reusable com-
ponents of the solutions. Position-independent GE (πGE) [18] proposed a novel
genotype-phenotype mapping in which the non-terminal symbol to be derived
was chosen using the information in the genotype instead of following a left-to-
right order. Decoupling non-terminal derivation from the non-terminal choice
was expected to favor the emergence of building blocks, but no experimental
evidence of the desired effect was provided. A different approach was instead
proposed in [19] and, more recently, in [20]. In both cases, the aim is to modify
the grammar to discover new problem-specific building blocks and hence improve
the search effectiveness; the two cited papers, however, greatly differ in the way
they pursue this goal. In [19] a user-defined “universal grammar” related to the
class of considered problems (e.g., symbolic regression) is available and part of
the genotype is devoted to encode a more specific grammar which describes the
actual solution space. In [20], a two phases process is proposed: in a first phase,
a probabilistic grammar-based model is learned during an evolution performed
using the original user-provided CFG. In a second phase, the new learned model
is used to evolve hopefully better solutions. In the present work, differently than
the two cited works, we attempt to learn the model (i.e., the linkage) directly
at the level of the genotype, instead of at the level of the phenotype (i.e., the
grammar).

Another attempt of incorporating the knowledge of the model in GE has
been proposed in [21] and further improved in [22]. The authors of the cited
paper describe a rather complex theoretical framework in which a model can be
obtained from a grammar by means of a deterministic algorithm: the model is a
particular graph in which vertexes are partially derived strings of the language
and edges are derivation rules. The genotype is not a bit-string, but instead a
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sequence of derivation rules which, essentially, allows to move along the graph.
Accordingly, the proposed EA uses specific genetic operators, making it rather
different than the original GE. Finally, it is worth to mention that in several
studies of model-based GP, the proposed model itself consisted in (probabilistic)
grammars (e.g., [23]): we refer the reader to [24] for a broader overview of these
approaches.

3 Grammatical Evolution

GE has been widely studied and several variants for the various EA components
have been proposed. Here, we present the most widely used search algorithm and
representation (for which we consider also the recent variants SGE and WHGE),
because they are relevant to this study.

Algorithm 1 shows the search algorithm of GE. First, the initial population I
consisting of npop individuals is built. In this work, we consider an initialization
procedure in which genotypes of a given length lg are generated at random, but
more complex strategies may be employed. Then, the following steps are repeated
until the termination criterion is met: (1) A new population I ′ (with |I ′| = |I| =
npop) is built from I by applying the genetic operators (mutation and crossover
chosen according to the probabilities pmut, pcross) to parents selected from the
population I using a predefined parent selection criterion (SelectParent() in
Algorithm 1). (2) The population I is updated by including the new population I ′

and then by removing the npop exceeding individuals using a predefined removal
selection criterion (SelectRemoval() in Algorithm 1).

Concerning the termination criterion, the most common option is to repeat
the two steps above for a predefined number of times, usually called the number
of generations. In this work, however, we chose a different criterion for enabling
a fairer comparison with GOMGE which, differently than the m+n generational
model of Algorithm 1, may perform a large number of fitness evaluations in each
iteration of the main loop (see Sect. 3.1). We hence adopted for both search algo-
rithms the following stopping criterion. The steps are iterated until at least one
of the two following conditions is met: (a) the elapsed time T after the beginning
of the evolution exceeds a predefined time limit Tmax or (b) the population I
includes an individual with perfect fitness f (the notion of perfect fitness being
dependent, in general, on the problem).

The search algorithm defined in Algorithm 1 is agnostic to the specific selec-
tion criteria SelectParent() and SelectRemoval(): tournament selection
and worst fitness selection (i.e., truncation selection) are, respectively, common
choices. The genotype-phenotype mapping function Map() is the component in
which the GE variants mostly differ and essentially defines the individual repre-
sentation. In this work, we consider the original representation and two recent
variants: Structured GE (SGE) [13] and Weighted Hierarchical GE (WHGE) [14]:
it is worth to note that, in both cases, the proposal of the representation variant
was aimed at improving the poor properties of the original GE representation,
in particular degeneracy and locality. Degeneracy concerns the degree to which
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different genotypes are mapped to the same phenotype. Locality describes how
well genotypic neighbors correspond to phenotypic neighbors. It has been shown
that these properties are related to higher level properties of the EA, as, e.g.,
diversity [7] and evolvability [25]. It is foreseeable that degeneracy and locality
may impact also on the learnability of the linkage and may interplay with the
GOM operator.

Algorithm 1. Standard GE.
function Evolve()

I ← InitPopulation(npop)
while ¬TerminationCriterionMet() do

I′ ← ∅
while |I′| < npop do

o ← GetOperator()
Gp ← ∅
while |Gp| ≤ Arity(o) do

(gp, pp, fp)←SelectParent(I)
Gp ← Gp ∪ {gp}

end while
Gc ← Apply(o, Gp)
for all gc ∈ Gc do

pc ← Map(gc)
fc ← Fitness(pc)
I′ ← I′ ∪ {(gc, pc, fc)}

end for
end while
I ← I ∪ I′

while |I| > npop do
I ← I \ {SelectRemoval(I)}

end while
end while
return Best(I)

end function

Algorithm 2. GOMGE.
function Evolve()

I ← InitPopulation(npop)
i� = Best(I)
while ¬TerminationCriterionMet() do

F ← LearnLinkageModel(I)
I′ ← ∅
for all (g, p, f) ∈ I do

(g0, p0, f0) ← (g, p, f)
for all F ∈ RndPerm(F) do

gc ← g
(gd, pd, fd)←RandomDonor(I)
gc[F ] ← gd[F ]
pc ← Map(gc)
fc ← Fitness(pc)
if fc < f then

(g, p, f) ← (gc, pc, fc)
end if

end for
while p = p0 do

g ← Apply(Mutation, {g})
p ← Map(g)
f ← Fitness(p)

end while
I′ ← I′ ∪ {(g, p, f)}

end for
I ← I′

i� = Best(I ∪ {i�})
end while
return i�

end function

Due to space constraints, we do not describe in details the representation of
GE, SGE, and WHGE: we provide a coarse overview of the underlying principles
and refer the reader to the respective papers for further details. Being forms of
grammar-based genetic programming, in GE, SGE, and WHGE the phenotype is
a string of the language language L(G) defined by a user-provided CFG G, which
is an implicit parameter of the mapping function Map(). In the original GE [2],
the genotype g is a bit-string. Groups of 8 consecutive bits in the genotype are
called codons: each codon encodes an integer value and is consumed for deriving
the leftmost non-terminal. SGE has been introduced in [13] by Lourenço et al. In
SGE, the genotype g consists of a number of fixed-size lists (genes) of integers:
each list corresponds to a non-terminal symbol of the CFG and each integer in
the list (codon) determines a single derivation for that non-terminal. Finally, the
most recent WHGE [14] is designed to consume the genotype hierarchically with
the aim of reducing the degeneracy and increasing the locality. In WHGE, the
genotype g is a bit-string, as in the original GE.
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3.1 GOMGE: Gene-Pool Optimal Mixing EA for GE

Our GOMGE proposal consists on two localized modifications to the adaptation
of GOMEA to GP [15], described below and motivated by explorative experi-
ments and recent findings about (lack of) diversity in GE [7,26]. GOMGE is
described in Algorithm 2. After the initialization of the population, the main
loop is repeated until a termination criterion is met and consists in two steps: (i)
learning the linkage from the current population and (ii) applying the Gene-pool
Optimal Mixing (GOM) variation operator to each individual in the population.
The linkage is expressed as a Family of Subsets (FOS) F = {F1, F2, . . . } which
is a set of sets of zero-based genotype indexes (loci): i.e., Fi ⊆, {0, . . . , lg − 1},
where lg is the evolution-wise immutable size of the genotype. We experimented
with 4 different way of obtaining the FOS described at the end of this section.

Applying the GOM operator to an individual (g, p, f) consists in repeating
the following steps for each set F in a random permutation of F : (i) a donor
(gd, pd, fd) is randomly chosen in the population and (ii) the portions of the
genotype g defined by F are replaced with the corresponding portions coming
from gd; (iii) the fitness Fitness(Map(g)) of the new individual is computed
and, (iv) if there is a strict improvement, the modification on the individual g is
kept, otherwise, it is rolled back.

After preliminary experiments, we observed that this version of the GOM
often resulted in no modifications being applied to the individual, since no fit-
ness improvements were obtained. We think this finding is motivated by the
degeneracy of the indirect representation of GE and its variants: the likelihood
is non-negligible of obtaining the same individual after an iteration of GOM
operator; as a consequence, the fitness does not improve and the evolution might
stagnate. We hence modified the GOM operator by employing a forced mutation
(performed with a mutation operator suitable to the specific representation being
used) in case the phenotype did not change after the processing of all the sets in
F . The idea is borrowed from [15], where a phase called “forced improvement”
eventually results in an individual with a better fitness than the input one, yet
possibly equal to another individual in the population. Here, we instead simply
apply a standard mutation, because otherwise the tendency of GE and variants
to drastically reduce the diversity in the population during the evolution could
have been further stimulated.

Since the forced mutation might apply to the best individual in the popu-
lation (hence negatively affecting the results of the search obtained so far), we
introduced a simple mechanism for keeping track of the best individual i�, which
is updated at each iteration of the main loop.

In GOMGE, as in GOMEA, the linkage is expressed using a FOS, which
can either be learned from the population or being predefined. We considered 4
variants, two belonging to the former category (Linkage Tree and Random Tree)
and two to the latter category (Univariate and Natural).

The Univariate FOS (later denoted by U) is the simplest FOS and assumes
that there is no linkage between portions of the genotype. This FOS contains
one singleton set for each possible locus: FU = {{0}, {1}, . . . , {lg − 1}}.
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The Natural FOS (later denoted by N) is a statically built FOS which tries to
capture the representation-dependent linkage. We defined it only for GE, where
it captures the fact that derivations are chosen using groups of 8 consecutive
bits (i.e., FN,GE = {{0, 1, . . . , 7}, {8, 9, . . . , 15}, . . . }), and for SGE, where it
captures the fact that integers are organized in lists, the size of each list being
dependent on the grammar (i.e., FN,SGE = {{0, . . . , |gs0 | − 1}, {|gs0 |, . . . , |gs0 | +
|gs1 | − 1}, . . . }).

The learnable variants are Linkage Tree and Random Tree, later denoted by
LT and RT, respectively. LT was already considered in the seminal GOMEA
paper and was later shown to be very beneficial to search effectiveness, in partic-
ular in black-box optimization problems [27]. LT models complex linkage struc-
tures using a hierarchy, i.e., a tree where nodes are sets of loci and a node is
the set union of its children. The LT FOS FLT is built from the population as
follows. Initially, a set of sets of loci F0 is set to FU and FLT = F0. Then, the
following steps are repeated until |F0| ≥ 1: (i) the pair F, F ′ ∈ F0 × F0 of loci
sets, with F �= F ′, is determined which exhibits the greatest mutual information;
then (ii) F, F ′ are removed from F0 and F ∪ F ′ is added to F0 and FLT. This
procedure may be implemented efficiently using the algorithm described in [28],
where the mutual information between sets of loci is estimated, rather than com-
puted using the genotype values at F, F ′ loci observed in the population (we
refer the reader to the cited paper for further details).

Finally, RT resembles LT since it also models the linkage as a hierarchy.
Differently than LT, however, a random value instead of the mutual information
is used at step 3.1 above when building FRT. The rationale is to allow, as for
LT, the simultaneous modification at different loci of the genotype.

4 Experimental Evaluation

For assessing experimentally the effectiveness of GOMGE w.r.t. the standard
GE search algorithm, we considered 4 benchmark problems: Parity (with n ∈
{5, . . . , 9}), Nguyen7 [29], KLandscapes [30] (with k ∈ {3, . . . , 7}), and Text [7].
These problems represent different domains, including boolean functions (Par-
ity), symbolic regression (Nguyen7), and synthetic problems (KLandscapes and
Text). Two of them have a tunable hardness (Parity and KLandscapes) and two
are recommended as GP benchmarks in [31] (Nguyen7 and KLandscapes); one
(Text) has been designed purposely for grammar-based GP and is based on a
grammar with more derivation rules and more symbols than the other considered
problems.

We performed the experimental evaluation using a prototype Java implemen-
tation of both standard GE and GOMGE. The implementation and the gram-
mars for the benchmark problems are publicly available1. The prototype includes
a two caches for the fitness function Fitness() and the genotype-phenotype map-
ping function Map(); both use a size-based eviction policy with a size limit of
200 000 entries.
1 https://github.com/ericmedvet/evolved-ge.

https://github.com/ericmedvet/evolved-ge


230 E. Medvet et al.

We performed 30 runs for each of the five variants (standard GE, to be
considered as the baseline and later denoted by Base., and GOMGE coupled with
the 4 FOSs, U, N, RT, and LT) on each of the four problems. We executed each
run on one node of the CINECA HPC cluster (Marconi-A1), the node having
2 Intel Xeon E5-2694 v4 CPUs (2.3 mGHz) with 18 cores each and 128 GB of
RAM.

We set the main evolutionary parameters as follows: genotype size lg = 512
for GE, lg = 128 for WHGE, or determined by d = 6 (see [13]) for SGE; popula-
tion size npop = 500; two-points same crossover for GE, WHGE or SGE crossover
for SGE with rate 0.8; bit-flip mutation with pmut = 0.01 for GE, WHGE or SGE
mutation with pmut = 0.01 for SGE with rate 0.2; tournament selection of size
3; and max elapsed time Tmax=60 s.

Table 1 shows the mean and the standard deviation (across the 30 runs) of the
final best fitness for each problem and variant. The table also shows, graphically
and for each GOMGE variant and problem, the statistical significance (p-value
with the Mann-Whitney U-test) of the null hypothesis that the final best fitness
values have equal median of those obtained with the baseline.

Table 1. Mean and standard deviation of the final best fitness. The best mean for
each problem is highlighted. The statistical significance (see text) is shown graphically:
‡ means p < 0.01, † means p < 0.05, and ∗ means p < 0.1 (no markers for greater
p-values).

Var. Parity-7 Nguyen7 KLand.-5 Text

GE Base. 0.5 ± 0.02 0.39 ± 0.25 0.61 ± 0.09 4.9 ± 1.2

U 0.5 ± 0.01 0.49 ± 0.19‡ 0.63 ± 0.06‡ 3.5 ± 0.7‡

N 0.5 ± 0 0.4 ± 0.2 0.61 ± 0.09 3.1± 0.8‡

RT 0.49 ± 0.02 0.68 ± 0.6‡ 0.68 ± 0.04‡ 4.5 ± 0.6‡

LT 0.49 ± 0.03 0.68 ± 0.16‡ 0.68 ± 0.04‡ 4.6 ± 0.5‡

WHGE Base. 0.17 ± 0.13 0.52 ± 0.19 0.4 ± 0.08 5.7 ± 0.8

U 0.16 ± 0.07∗ 0.31 ± 0.15‡ 0.6 ± 0.05‡ 4.9 ± 0.5‡

RT 0± 0‡ 0.18± 0.11‡ 0.29 ± 0.04‡ 4 ± 0‡

LT 0± 0‡ 0.21 ± 0.12‡ 0.25± 0.07‡ 4 ± 0‡

SGE Base. 0.08 ± 0.12 0.7 ± 0.12 0.54 ± 0.14 6.3 ± 0.5

U 0± 0‡ 0.35 ± 0.23‡ 0.34 ± 0‡ 5.4 ± 0.5‡

N 0± 0‡ 0.29 ± 0.24‡ 0.34 ± 0‡ 5.1 ± 0.3‡

RT 0± 0‡ 0.65 ± 1.14‡ 0.34 ± 0‡ 5 ± 0.2‡

LT 0± 0‡ 0.54 ± 0.21‡ 0.34 ± 0‡ 5 ± 0.2‡

The foremost finding is that GOMGE outperforms the baseline with WHGE
and SGE in almost all cases (i.e., FOS and problem), with the single exception of
U with WHGE on the KLandscapes-5 problem, for which the baseline performs
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better (0.4 vs. 0.6). The difference is always significant. GOMGE improvement
becomes evident on the Parity-7 problem, for which both WHGE and SGE
obtain the perfect fitness in all the runs only with GOMGE. Concerning the
FOS, it can be seen that the largest improvement is delivered by RT and LT, for
WHGE, and by N, for SGE (see also the next tables): the facts that LT and RT
lead to the same good performance with WHGE and that N with SGE resembles
the SGE crossover operator (see [13]) suggest that the improvement is related to
the reiterated application of the GOM operator, rather than to the possibility
of learning the linkage.

Differently, coupling GOMGE with GE representation leads to mixed results:
no significant difference are visible on one problem (Parity-7), a decrease in
the fitness is visible on two problems (Nguyen7 and KLandscapes-5), and an
improvement is visible for the last problem (Text). Overall, N is the best FOS
for GE.

For better understanding the results in terms of final best fitness, we analyzed
also three other relevant metrics: the elapsed time T , the number of actual
fitness evaluations N (corresponding to the fitness cache miss count), and the
final phenotypical diversity D. We measured the latter as the ratio between the
number of different phenotypes in the population and the population size.

Table 2. Elapsed time T (in s), number N of actual fitness evaluations (in thousands),
and final phenotype diversity D (in percentage).

Elapsed time T [s] Act. fitness ev. N [×103] Pheno. div. D [%]

Var. Par.-7 Ng.7 KL.-5 Text Par.-7 Ng.7 KL.-5 Text Par.-7 Ng.7 KL.-5 Text

GE Base. 85 66 65 59 0.2 6.8 5 5 6 4 7 2

U 114 57 59 59 0.4 12.8 19.2 192.8 23 35 68 93

N 123 59 55 60 0.2 37.8 32.1 133.7 28 54 69 97

RT 145 65 65 68 0.7 7.9 14.7 67.9 27 53 69 96

LT 149 79 72 69 0.6 8 14.6 53.1 28 54 69 96

WHGE Base. 68 64 64 61 10.7 9.4 10.5 6.5 11 4 31 12

U 71 64 71 62 585.2 299.8 160.2 197.6 92 89 88 92

RT 14 86 61 77 353.7 548.7 352.7 591.9 79 56 89 48

LT 15 85 61 83 328.7 360.7 321.4 457.1 71 45 54 51

SGE Base. 43 61 62 62 1.2 3.3 2.6 1.2 5 7 5 4

U 20 60 64 60 39.6 50.1 52.1 45.1 98 71 62 91

N 1 63 63 59 38.8 89.9 53.3 62 98 71 38 82

RT 2 57 76 58 47.3 81.2 54.8 46.3 92 52 27 50

LT 4 53 68 59 57.9 21.8 52 33.4 64 27 27 32

Table 2 shows the mean (across the 30 runs) of the three metrics T,N,D
for each problem and variant. Two main observations may be made. First, the
number of actual fitness evaluation increases with GOMGE, the increment being
remarkable for WHGE and SGE (up to 20×). This figure is also reflected in the
elapsed time T , when a perfect fitness value is not found. We recall that one of
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the two termination criteria is the elapsed time, with a time limit of Tmax = 60s:
however, since the condition is evaluated once per main loop, the limit may be
exceeded, in particular for GOMGE. It can also be noted that GE, in all the 5
variants, performs a very low number (hundreds, on average) of actual fitness
evaluations for the Parity-7 problem: this is mainly due to high degeneracy, which
has already been shown to hamper this representation in particular in problems
where the phenotype should be large [7], and, to a lesser extent, to invalidity,
i.e., the tendency of generating a null phenotype after exceeding the maximum
number of wrappings [2].

Second, Table 2 shows that the final phenotypical diversity is in general much
larger with GOMGE than with the baseline, in all cases: values are around
10% with the latter and often exceed 90% with GOMGE. This finding can be
explained by the fact that GOMGE does not select best individuals for applying
the GOM operator, but rather replaces a parent with a child only upon a fit-
ness improvement, a mechanism resembling the established diversity promotion
scheme known as deterministic crowding [32]. Together, the two observations
suggest that GOMGE is at the same time more effective and more efficient than
the baseline in exploring the search space: indeed, it can be noted from Tables 1
and 2 than the largest fitness improvements are obtained in sync with improve-
ments in the metrics N and D. Significantly, the only problem in which GOMGE
outperforms the baseline with GE is the one (Text) in which the increment of
N and D is the greatest.

5 Concluding Remarks

We presented GOMGE, an application of the Gene-pool Optimal Mixing Evolu-
tionary Algorithm (GOMEA) to Grammatical Evolution (GE), a form of general-
purpose Genetic Programming which is widely used by practitioners because it
easily applies to any problem whose solutions may be described by a context-free
grammar. We incorporated in GOMGE two specific improvements for coping
with the degeneracy (i.e., the tendency to map many genotypes to the same
pohenotype) of GE indirect representations. We applied GOMGE to three vari-
ants of GE (original GE, SGE, and WHGE), essentially differing in the individ-
ual representation, a key component of any EA which has been shown to impact
on many higher-level EA properties (e.g., evolvability), and eventually on its
effectiveness.

We performed an extensive experimental evaluation of 4 GOMGE variants,
differing in the way of obtaining a linkage model, on 4 benchmark problems. The
results show that GOMGE is significantly beneficial to both effectiveness and
efficiency of the search with SGE and WHGE, whereas it delivers mixed results
with the original GE. At a deeper analysis, the experimental results suggest that
the drastic increase in the phenotypical diversity and in the number of actual
fitness evaluation are key factors for explaining the performance gap between
GOMGE and standard GE.
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We think that our proposal further boosts the applicability of GE to practical
problems and sheds new light on the possibility of GE representations to exhibit
“good” and learnable linkage.
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